Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosci Biotechnol Biochem ; 77(1): 205-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23291760
2.
PLoS One ; 5(12): e15568, 2010 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-21187965

RESUMEN

BACKGROUND: There is only one established drug binding site on sodium channels. However, drug binding of sodium channels shows extreme promiscuity: ∼25% of investigated drugs have been found to potently inhibit sodium channels. The structural diversity of these molecules suggests that they may not share the binding site, and/or the mode of action. Our goal was to attempt classification of sodium channel inhibitors by measuring multiple properties of inhibition in electrophysiology experiments. We also aimed to investigate if different properties of inhibition correlate with specific chemical properties of the compounds. METHODOLOGY/PRINCIPAL FINDINGS: A comparative electrophysiological study of 35 compounds, including classic sodium channel inhibitors (anticonvulsants, antiarrhythmics and local anesthetics), as well as antidepressants, antipsychotics and neuroprotective agents, was carried out using rNav1.2 expressing HEK-293 cells and the QPatch automatic patch-clamp instrument. In the multi-dimensional space defined by the eight properties of inhibition (resting and inactivated affinity, potency, reversibility, time constants of onset and offset, use-dependence and state-dependence), at least three distinct types of inhibition could be identified; these probably reflect distinct modes of action. The compounds were clustered similarly in the multi-dimensional space defined by relevant chemical properties, including measures of lipophilicity, aromaticity, molecular size, polarity and electric charge. Drugs of the same therapeutic indication typically belonged to the same type. We identified chemical properties, which were important in determining specific properties of inhibition. State-dependence correlated with lipophilicity, the ratio of the neutral form of molecules, and aromaticity: We noticed that the highly state dependent inhibitors had at least two aromatic rings, logP>4.0, and pKa<8.0. CONCLUSIONS/SIGNIFICANCE: The correlations of inhibition properties both with chemical properties and therapeutic profiles would not have been evident through the sole determination of IC(50); therefore, recording multiple properties of inhibition may allow improved prediction of therapeutic usefulness.


Asunto(s)
Bloqueadores de los Canales de Sodio/clasificación , Bloqueadores de los Canales de Sodio/farmacología , Anestésicos/farmacología , Anticonvulsivantes/farmacología , Automatización , Química Farmacéutica/métodos , Relación Dosis-Respuesta a Droga , Electrofisiología/métodos , Humanos , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Cinética , Técnicas de Placa-Clamp , Sodio/química , Canales de Sodio/química
3.
Herzschrittmacherther Elektrophysiol ; 21(4): 228-38, 2010 Dec.
Artículo en Alemán | MEDLINE | ID: mdl-21113605

RESUMEN

Class I antiarrhythmic drugs are sodium channel inhibitors that act by slowing myocardial conduction and, thus, interrupting or preventing reentrant arrhythmia. Due to proarrhythmic effects and the risk of ventricular tachyarrhythmia, class I antiarrhythmics should not be administered in patients with structural heart disease. Nevertheless, there remains a broad spectrum of arrhythmias--among the most common being atrial fibrillation--that can successfully be treated with class I antiarrhythmic drugs. This review gives an overview on the classification, antiarrhythmic mechanisms, indications, side effects, and application modes of class I antiarrhythmic drugs.


Asunto(s)
Antiarrítmicos/clasificación , Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Bloqueadores de los Canales de Sodio/clasificación , Bloqueadores de los Canales de Sodio/uso terapéutico , Administración Oral , Antagonistas Adrenérgicos beta/uso terapéutico , Antiarrítmicos/efectos adversos , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/mortalidad , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/mortalidad , Contraindicaciones , Relación Dosis-Respuesta a Droga , Quimioterapia Combinada , Electrocardiografía/efectos de los fármacos , Femenino , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Infusiones Intravenosas , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológico , Embarazo , Ensayos Clínicos Controlados Aleatorios como Asunto , Bloqueadores de los Canales de Sodio/efectos adversos , Taquicardia por Reentrada en el Nodo Atrioventricular/tratamiento farmacológico , Taquicardia Supraventricular/tratamiento farmacológico , Taquicardia Ventricular/tratamiento farmacológico
4.
Bioorg Med Chem Lett ; 17(16): 4630-4, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17588748
5.
Toxicon ; 49(4): 490-512, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17223149

RESUMEN

The voltage-gated sodium (Na(v)) channel is a target for a number of drugs, insecticides and neurotoxins. These bind to at least seven identified neurotoxin binding sites and either block conductance or modulate Na(v) channel gating. A number of peptide neurotoxins from the venoms of araneomorph and mygalomorph spiders have been isolated and characterized and determined to interact with several of these sites. These all conform to an 'inhibitor cystine-knot' motif with structural, but not sequence homology, to a variety of other spider and marine snail toxins. Of these, spider toxins several show phyla-specificity and are being considered as lead compounds for the development of biopesticides. Hainantoxin-I appears to target site-1 to block Na(v) channel conductance. Magi 2 and Tx4(6-1) slow Na(v) channel inactivation via an interaction with site-3. The delta-palutoxins, and most likely mu-agatoxins and curtatoxins, target site-4. However, their action is complex with the mu-agatoxins causing a hyperpolarizing shift in the voltage-dependence of activation, an action analogous to scorpion beta-toxins, but with both delta-palutoxins and mu-agatoxins slowing Na(v) channel inactivation, a site-3-like action. In addition, several other spider neurotoxins, such as delta-atracotoxins, are known to target both insect and vertebrate Na(v) channels most likely as a result of the conserved structures within domains of voltage-gated ion channels across phyla. These toxins may provide tools to establish the molecular determinants of invertebrate selectivity. These studies are being greatly assisted by the determination of the pharmacophore of these toxins, but without precise identification of their binding site and mode of action their potential in the above areas remains underdeveloped.


Asunto(s)
Proteínas de Insectos/farmacología , Neurotoxinas/farmacología , Control Biológico de Vectores , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Venenos de Araña/farmacología , Arañas/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Insectos/química , Proteínas de Insectos/clasificación , Activación del Canal Iónico , Datos de Secuencia Molecular , Neurotoxinas/química , Neurotoxinas/clasificación , Conformación Proteica , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/clasificación , Canales de Sodio/química , Canales de Sodio/metabolismo , Venenos de Araña/química , Venenos de Araña/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...