Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
Biophys J ; 121(2): 193-206, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34958776

RESUMEN

Voltage-gated sodium channels (Nav) underlie the electrical activity of nerve and muscle cells. Humans have nine different subtypes of these channels, which are the target of small-molecule inhibitors commonly used to treat a range of conditions. Structural studies have identified four lateral fenestrations within the Nav pore module that have been shown to influence Nav pore blocker access during resting-state inhibition. However, the structural differences among the nine subtypes are still unclear. In particular, the dimensions of the four individual fenestrations across the Nav subtypes and their differential accessibility to pore blockers is yet to be characterized. To address this, we applied classical molecular dynamics simulations to study the recently published structures of Nav1.1, Nav1.2, Nav1.4, Nav1.5, and Nav1.7. Although there is significant variability in the bottleneck sizes of the Nav fenestrations, the subtypes follow a common pattern, with wider DI-II and DIII-IV fenestrations, a more restricted DII-III fenestration, and the most restricted DI-IV fenestration. We further identify the key bottleneck residues in each fenestration and show that the motions of aromatic residue sidechains govern the bottleneck radii. Well-tempered metadynamics simulations of Nav1.4 and Nav1.5 in the presence of the pore blocker lidocaine also support the DI-II fenestration being the most likely access route for drugs. Our computational results provide a foundation for future in vitro experiments examining the route of drug access to sodium channels. Understanding the fenestrations and their accessibility to drugs is critical for future analyses of diseases mutations across different sodium channel subtypes, with the potential to inform pharmacological development of resting-state inhibitors and subtype-selective drug design.


Asunto(s)
Bloqueadores de los Canales de Sodio , Canales de Sodio , Humanos , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/farmacología
2.
ChemMedChem ; 17(2): e202100547, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34632703

RESUMEN

The discovery of novel analgesic agents with high potency, low toxicity and low addictive properties remain a priority. This study aims to identify the analgesic potential of quinoline derived α-trifluoromethylated alcohols (QTA) and their mechanism of action. We synthesized and characterized several compounds of QTAs and screened them for antiepileptic and analgesic activity using zebrafish larvae in high thorough-put behavior analyses system. Toxicity and behavioral screening of 9 compounds (C1-C9) identified four candidates (C2, C3, C7 and C9) with antiepileptic properties that induces specific and reversible reduction in photomotor activity. Importantly, compounds C2 and C3 relieved the thermal pain response in zebrafish larvae indicating analgesic property. Further, using novel in vivo CoroNa green assay, we show that compounds C2 and C3 block sodium channels and reduce inflammatory sodium signals released by peripheral nerve and tissue damage. Thus, we have identified novel QTA compounds with antiepileptic and analgesic properties which could alleviate neuropathic pain.


Asunto(s)
Analgésicos/farmacología , Anticonvulsivantes/farmacología , Metanol/análogos & derivados , Quinolinas/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Analgésicos/síntesis química , Analgésicos/química , Animales , Anticonvulsivantes/síntesis química , Anticonvulsivantes/química , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Metanol/síntesis química , Metanol/química , Metanol/farmacología , Estructura Molecular , Quinolinas/síntesis química , Quinolinas/química , Bloqueadores de los Canales de Sodio/síntesis química , Bloqueadores de los Canales de Sodio/química , Relación Estructura-Actividad , Pez Cebra
3.
Biophys J ; 120(24): 5553-5563, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34774501

RESUMEN

Voltage-gated sodium channels play a vital role in nerve and muscle cells, enabling them to encode and transmit electrical signals. Currently, there exist several classes of drugs that aim to inhibit these channels for therapeutic purposes, including local anesthetics, antiepileptics and antiarrhythmics. However, sodium-channel-inhibiting drugs lack subtype specificity; instead, they inhibit all sodium channels in the human body. Improving understanding of the mechanisms of binding of existing nonselective drugs is important in providing insight into how subtype-selective drugs could be developed. This study used molecular dynamics simulations to investigate the binding of the antiepileptics carbamazepine and lamotrigine and the local anesthetic lidocaine in neutral and charged states to the recently resolved human Nav1.4 channel. Replica exchange solute tempering was used to enable greater sampling of each compound within the pore. It was found that all four compounds show similarities in their binding sites within the pore. However, the positions of the carbamazepine and lamotrigine did not occlude the center of the pore but preferentially bound to homologous domain DII and DIII. The charged and neutral forms of lidocaine positioned themselves more centrally in the pore, with more common interactions with DIV. The best localized binding site was for charged lidocaine, whose aromatic moiety interacted with Y1593, whereas the amine projected toward the selectivity filter. Comparisons with our previous simulations and published structures highlight potential differences between tonic and use-dependent block related to conformational changes occurring in the pore.


Asunto(s)
Anestésicos Locales , Canales de Sodio Activados por Voltaje , Anestésicos Locales/química , Anestésicos Locales/metabolismo , Anestésicos Locales/farmacología , Antiarrítmicos/farmacología , Anticonvulsivantes , Sitios de Unión , Humanos , Lidocaína/química , Lidocaína/metabolismo , Lidocaína/farmacología , Canal de Sodio Activado por Voltaje NAV1.4 , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio Activados por Voltaje/metabolismo
4.
Molecules ; 26(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808667

RESUMEN

Novel α-aminoamide derivatives containing different benzoheterocyclics moiety were synthesized and evaluated as voltage-gated sodium ion channels blocks the treatment of pain. Compounds 6a, 6e, and 6f containing the benzofuran group displayed more potent in vivo analgesic activity than ralfinamide in both the formalin test and the writhing assay. Interestingly, they also exhibited potent in vitro anti-Nav1.7 and anti-Nav1.8 activity in the patch-clamp electrophysiology assay. Therefore, compounds 6a, 6e, and 6f, which have inhibitory potency for two pain-related Nav targets, could serve as new leads for the development of analgesic medicines.


Asunto(s)
Amidas , Analgésicos , Dolor/tratamiento farmacológico , Bloqueadores de los Canales de Sodio , Amidas/síntesis química , Amidas/química , Amidas/farmacología , Analgésicos/síntesis química , Analgésicos/química , Analgésicos/farmacología , Animales , Evaluación de Medicamentos , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Dolor/inducido químicamente , Dolor/metabolismo , Bloqueadores de los Canales de Sodio/síntesis química , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/farmacología
5.
Future Med Chem ; 12(20): 1829-1843, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33034205

RESUMEN

Aim: Conventional experimental approaches used for the evaluation of the proarrhythmic potential of compounds in the drug discovery process are expensive and time consuming but an integral element in the safety profile required for a new drug to be approved. The voltage-gated sodium ion channel 1.5 (Nav 1.5), a target known for arrhythmic drugs, causes adverse cardiac complications when the channel is blocked. Results: Machine learning classification and regression models were built to predict the possibility of blocking these channels by small molecules. The finalized models tested with balanced accuracies of 0.88, 0.93 and 0.94 at three thresholds (1, 10 and 30 µmol, respectively). The regression model built to predict the pIC50 of compounds had q2 of 0.84 (root-mean-square error = 0.46). Conclusion: The machine learning models that have been built can act as effective filters to screen out the potentially toxic compounds in the early stages of drug discovery.


Asunto(s)
Aprendizaje Automático , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Relación Estructura-Actividad Cuantitativa , Bibliotecas de Moléculas Pequeñas/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Humanos , Modelos Estadísticos , Análisis de Regresión , Bibliotecas de Moléculas Pequeñas/química , Bloqueadores de los Canales de Sodio/química
6.
Sci Rep ; 10(1): 14791, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908170

RESUMEN

The voltage-gated sodium channel isoform NaV1.7 is highly expressed in dorsal root ganglion neurons and is obligatory for nociceptive signal transmission. Genetic gain-of-function and loss-of-function NaV1.7 mutations have been identified in select individuals, and are associated with episodic extreme pain disorders and insensitivity to pain, respectively. These findings implicate NaV1.7 as a key pharmacotherapeutic target for the treatment of pain. While several small molecules targeting NaV1.7 have been advanced to clinical development, no NaV1.7-selective compound has shown convincing efficacy in clinical pain applications. Here we describe the discovery and characterization of ST-2262, a NaV1.7 inhibitor that blocks the extracellular vestibule of the channel with an IC50 of 72 nM and greater than 200-fold selectivity over off-target sodium channel isoforms, NaV1.1-1.6 and NaV1.8. In contrast to other NaV1.7 inhibitors that preferentially inhibit the inactivated state of the channel, ST-2262 is equipotent in a protocol that favors the resting state of the channel, a protocol that favors the inactivated state, and a high frequency protocol. In a non-human primate study, animals treated with ST-2262 exhibited reduced sensitivity to noxious heat. These findings establish the extracellular vestibule of the sodium channel as a viable receptor site for the design of selective ligands targeting NaV1.7.


Asunto(s)
Guanidina/química , Canal de Sodio Activado por Voltaje NAV1.7/química , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/farmacología , Animales , Descubrimiento de Drogas , Ganglios Espinales/metabolismo , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/química , Canal de Sodio Activado por Voltaje NAV1.2/química , Canal de Sodio Activado por Voltaje NAV1.3/química , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.6/química , Canal de Sodio Activado por Voltaje NAV1.8/química , Estructura Secundaria de Proteína
7.
Pharm Res ; 37(10): 181, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32888082

RESUMEN

PURPOSE: This work describes a staged approach to the application of pharmacokinetic-pharmacodynamic (PK-PD) modeling in the voltage-gated sodium ion channel (NaV1.7) inhibitor drug discovery effort to address strategic questions regarding in vitro to in vivo translation of target modulation. METHODS: PK-PD analysis was applied to data from a functional magnetic resonance imaging (fMRI) technique to non-invasively measure treatment mediated inhibition of olfaction signaling in non-human primates (NHPs). Initial exposure-response was evaluated using single time point data pooled across 27 compounds to inform on in vitro to in vivo correlation (IVIVC). More robust effect compartment PK-PD modeling was conducted for a subset of 10 compounds with additional PD and PK data to characterize hysteresis. RESULTS: The pooled compound exposure-response facilitated an early exploration of IVIVC with a limited dataset for each individual compound, and it suggested a 2.4-fold in vitro to in vivo scaling factor for the NaV1.7 target. Accounting for hysteresis with an effect compartment PK-PD model as compounds advanced towards preclinical development provided a more robust determination of in vivo potency values, which resulted in a statistically significant positive IVIVC with a slope of 1.057 ± 0.210, R-squared of 0.7831, and p value of 0.006. Subsequent simulations with the PK-PD model informed the design of anti-nociception efficacy studies in NHPs. CONCLUSIONS: A staged approach to PK-PD modeling and simulation enabled integration of in vitro NaV1.7 potency, plasma protein binding, and pharmacokinetics to describe the exposure-response profile and inform future study design as the NaV1.7 inhibitor effort progressed through drug discovery.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/química , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/farmacología , Algoritmos , Analgésicos/química , Analgésicos/farmacocinética , Analgésicos/farmacología , Animales , Circulación Cerebrovascular , Diseño de Fármacos , Descubrimiento de Drogas , Células HEK293 , Humanos , Técnicas In Vitro , Macaca mulatta , Imagen por Resonancia Magnética , Modelos Biológicos , Olfato/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacocinética
8.
Biochem Pharmacol ; 181: 114148, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32663452

RESUMEN

Chronic pain is a common and often debilitating condition. Existing treatments are either inefficacious or associated with a wide range of side effects. The progress on developing safer and more effective analgesics has been slow, in large part due to our limited understanding of the physiological mechanisms underlying pain in different diseases. Generation and propagation of action potentials is a central component of pain sensation and voltage-gated sodium channels (NaVs) play a critical role in this process. In particular, the NaV subtype 1.7, has emerged as a promising universal target for the treatment of pain. Recently, a spider venom peptide, µ-TRTX-Pn3a, was found to be a highly selective inhibitor of NaV1.7. Here, we report the first recombinant expression method for Pn3a in a bacterial host, which provides an inexpensive route to production. Furthermore, we have developed a method for bio-conjugation of our recombinantly produced Pn3a via sortase A-mediated ligation, providing avenues for further pre-clinical development. We demonstrate how heterologous expression in bacteria enables facile isotope labelling of Pn3a, which allowed us to study the membrane binding properties of the peptide by high-resolution solution-state nuclear magnetic resonance (NMR) spectroscopy using a recently developed lipid nanodisc system. The heteronuclear NMR data indicate that the C-terminal region of the peptide undergoes a conformational change upon lipid binding. The membrane binding properties of Pn3a are further validated using isothermal titration calorimetry (ITC), which revealed that Pn3a binds to zwitterionic planar lipid bilayers with thermodynamics that are largely driven by enthalpic contributions.


Asunto(s)
Membrana Celular/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Péptidos/metabolismo , Proteínas Recombinantes/metabolismo , Bloqueadores de los Canales de Sodio/metabolismo , Animales , Membrana Celular/química , Células HEK293 , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Potenciales de la Membrana/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.7/genética , Técnicas de Placa-Clamp , Péptidos/química , Péptidos/genética , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/farmacología , Venenos de Araña/química , Venenos de Araña/metabolismo
9.
Biochem Pharmacol ; 181: 114080, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32511987

RESUMEN

Management of chronic pain presents a major challenge, since many currently available treatments lack efficacy and have problems such as addiction and tolerance. Loss of function mutations in the SCN9A gene lead to a congenital inability to feel pain, with no other sensory deficits aside from anosmia. SCN9A encodes the voltage-gated sodium (NaV) channel 1.7 (NaV1.7), which has been identified as a primary pain target. However, in developing NaV1.7-targeted analgesics, extreme care must to be taken to avoid off-target activity on other NaV subtypes that are critical for survival. Since spider venoms are an excellent source of NaV channel modulators, we screened a panel of spider venoms to identify selective NaV1.7 inhibitors. This led to identification of two novel NaV modulating venom peptides (ß/µ-theraphotoxin-Pe1a and ß/µ-theraphotoxin-Pe1b (Pe1b) from the arboreal tarantula Phormingochilus everetti. A third peptide isolated from the tarantula Bumba pulcherrimaklaasi was identical to the well-known ProTx-I (ß/ω-theraphotoxin-Tp1a) from the tarantula Thrixopelma pruriens. A tethered toxin (t-toxin)-based alanine scanning strategy was used to determine the NaV1.7 pharmacophore of ProTx-I. We designed several ProTx-I and Pe1b analogues, and tested them for activity and NaV channel subtype selectivity. Several analogues had improved potency against NaV1.7, and altered specificity against other NaV channels. These analogues provide a foundation for development of Pe1b as a lead molecule for therapeutic inhibition of NaV1.7.


Asunto(s)
Analgésicos/farmacología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Péptidos/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Analgésicos/química , Analgésicos/aislamiento & purificación , Animales , Análisis Mutacional de ADN/métodos , Femenino , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Mutación , Canal de Sodio Activado por Voltaje NAV1.7/genética , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Oocitos/fisiología , Péptidos/química , Péptidos/genética , Conformación Proteica , Homología de Secuencia de Aminoácido , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/aislamiento & purificación , Venenos de Araña/química , Venenos de Araña/metabolismo , Xenopus laevis
10.
Biochem Pharmacol ; 181: 114107, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32579958

RESUMEN

Venom peptides are amongst the most exquisite group of bioactive molecules able to alter the normal physiology of organisms. These bioactive peptides penetrate tissues and blood vessels to encounter a number of receptors and ion channels to which they bind with high affinity and execute modulatory activities. Arachnid is the most diverse class of venomous animals often rich in peptides modulating voltage-gated sodium (NaV), calcium (CaV), and potassium (KV) channels. Spider venoms, in particular, contain potent and selective peptides targeting these channels, with a few displaying interesting multi-target properties for NaV and CaV channels underlying disease mechanisms such as in neuropathic pain, motor neuron disease and cancer. The elucidation of the pharmacology and structure-function properties of these venom peptides are invaluable for the development of effective drugs targeting NaV and CaV channels. This perspective discusses spider venom peptides displaying multi-target properties to modulate NaV and CaV channels in regard to their pharmacological features, structure-function relationships and potential to become the next generation of effective drugs to treat neurological disorders and other multi-ion channels related diseases.


Asunto(s)
Bloqueadores de los Canales de Calcio/uso terapéutico , Enfermedad de la Neurona Motora/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Péptidos/uso terapéutico , Bloqueadores de los Canales de Sodio/uso terapéutico , Animales , Bloqueadores de los Canales de Calcio/química , Humanos , Terapia Molecular Dirigida/métodos , Enfermedad de la Neurona Motora/metabolismo , Neoplasias/metabolismo , Neuralgia/metabolismo , Péptidos/química , Bloqueadores de los Canales de Sodio/química , Ponzoñas/química , Ponzoñas/metabolismo
11.
Biochem Pharmacol ; 181: 114082, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32524995

RESUMEN

The role of voltage-gated sodium (NaV) channels in pain perception is indisputable. Of particular interest as targets for the development of pain therapeutics are the tetrodotoxin-resistant isoforms NaV1.8 and NaV1.9, based on animal as well as human genetic studies linking these ion channel subtypes to the pathogenesis of pain. However, only a limited number of inhibitors selectively targeting these channels have been reported. HSTX-I is a peptide toxin identified from saliva of the leech Haemadipsa sylvestris. The native 23-residue peptide, stabilised by two disulfide bonds, has been reported to inhibit rat NaV1.8 and mouse NaV1.9 with low micromolar activity, and may therefore represent a scaffold for development of novel modulators with activity at human tetrodotoxin-resistant NaV isoforms. We synthetically produced this hydrophobic peptide in high yield using a one-pot oxidation and single step purification and determined the three-dimensional solution structure of HSTX-I using NMR solution spectroscopy. However, in our hands, the synthetic HSTX-I displayed only very modest activity at human NaV1.8 and NaV1.9, and lacked analgesic efficacy in a murine model of inflammatory pain.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Péptidos/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Toxinas Biológicas/farmacología , Canales de Sodio Activados por Voltaje/metabolismo , Secuencia de Aminoácidos , Analgésicos/química , Analgésicos/farmacología , Animales , Células Cultivadas , Humanos , Hiperalgesia/prevención & control , Sanguijuelas/química , Sanguijuelas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Péptidos/química , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/química , Soluciones/química , Toxinas Biológicas/química , Canales de Sodio Activados por Voltaje/genética
12.
Acta Pharmacol Sin ; 41(3): 293-302, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31316182

RESUMEN

Nav1.7 channels are mainly distributed in the peripheral nervous system. Blockade of Nav1.7 channels with small-molecule inhibitors in humans might provide pain relief without affecting the central nervous system. Based on the facts that many reported Nav1.7-selective inhibitors contain aryl sulfonamide fragments, as well as a tricyclic antidepressant, maprotiline, has been found to inhibit Nav1.7 channels, we designed and synthesized a series of compounds with ethanoanthracene and aryl sulfonamide moieties. Their inhibitory activity on sodium channels were detected with electrophysiological techniques. We found that compound 10o potently inhibited Nav1.7 channels stably expressed in HEK293 cells (IC50 = 0.64 ± 0.30 nmol/L) and displayed a high Nav1.7/Nav1.5 selectivity. In mouse small-sized dorsal root ganglion neurons, compound 10o (10, 100 nmol/L) dose-dependently decreased the sodium currents and dramatically suppressed depolarizing current-elicited neuronal discharge. Preliminary in vivo experiments showed that compound 10o possessed good analgesic activity: in a mouse visceral pain model, administration of compound 10o (30-100 mg/kg, i.p.) effectively and dose-dependently suppressed acetic acid-induced writhing.


Asunto(s)
Analgésicos/farmacología , Descubrimiento de Drogas , Maprotilina/farmacología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/tratamiento farmacológico , Bloqueadores de los Canales de Sodio/farmacología , Sulfonamidas/farmacología , Ácido Acético , Analgésicos/administración & dosificación , Analgésicos/química , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inyecciones Intraperitoneales , Masculino , Maprotilina/administración & dosificación , Maprotilina/química , Ratones , Ratones Endogámicos ICR , Estructura Molecular , Dolor/inducido químicamente , Dimensión del Dolor , Bloqueadores de los Canales de Sodio/administración & dosificación , Bloqueadores de los Canales de Sodio/química , Relación Estructura-Actividad , Sulfonamidas/administración & dosificación , Sulfonamidas/química
13.
Curr Med Sci ; 39(6): 863-873, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31845216

RESUMEN

Voltage-gated sodium (Nav) channels are critical players in the generation and propagation of action potentials by triggering membrane depolarization. Mutations in Nav channels are associated with a variety of channelopathies, which makes them relevant targets for pharmaceutical intervention. So far, the cryoelectron microscopic structure of the human Nav1.2, Nav1.4, and Nav1.7 has been reported, which sheds light on the molecular basis of functional mechanism of Nav channels and provides a path toward structure-based drug discovery. In this review, we focus on the recent advances in the structure, molecular mechanism and modulation of Nav channels, and state updated sodium channel blockers for the treatment of pathophysiology disorders and briefly discuss where the blockers may be developed in the future.


Asunto(s)
Canalopatías/genética , Mutación , Bloqueadores de los Canales de Sodio/química , Canales de Sodio Activados por Voltaje/metabolismo , Potenciales de Acción , Canalopatías/tratamiento farmacológico , Microscopía por Crioelectrón , Diseño de Fármacos , Humanos , Modelos Moleculares , Conformación Proteica , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Relación Estructura-Actividad , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/genética
14.
ACS Chem Neurosci ; 10(12): 4834-4846, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31697467

RESUMEN

Naringenin (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is a natural flavonoid found in fruits from the citrus family. Because (2S)-naringenin is known to racemize, its bioactivity might be related to one or both enantiomers. Computational studies predicted that (2R)-naringenin may act on voltage-gated ion channels, particularly the N-type calcium channel (CaV2.2) and the NaV1.7 sodium channel-both of which are key for pain signaling. Here we set out to identify the possible mechanism of action of naringenin. Naringenin inhibited depolarization-evoked Ca2+ influx in acetylcholine-, ATP-, and capsaicin-responding rat dorsal root ganglion (DRG) neurons. This was corroborated in electrophysiological recordings from DRG neurons. Pharmacological dissection of each of the voltage-gated Ca2+ channels subtypes could not pinpoint any selectivity of naringenin. Instead, naringenin inhibited NaV1.8-dependent and tetrodotoxin (TTX)-resistant while sparing tetrodotoxin sensitive (TTX-S) voltage-gated Na+ channels as evidenced by the lack of further inhibition by the NaV1.8 blocker A-803467. The effects of the natural flavonoid were validated ex vivo in spinal cord slices where naringenin decreased both the frequency and amplitude of sEPSC recorded in neurons within the substantia gelatinosa. The antinociceptive potential of naringenin was evaluated in male and female mice. Naringenin had no effect on the nociceptive thresholds evoked by heat. Naringenin's reversed allodynia was in mouse models of postsurgical and neuropathic pain. Here, driven by a call by the National Center for Complementary and Integrative Health's strategic plan to advance fundamental research into basic biological mechanisms of the action of natural products, we advance the antinociceptive potential of the flavonoid naringenin.


Asunto(s)
Analgésicos/farmacología , Flavanonas/farmacología , Ganglios Espinales/citología , Canal de Sodio Activado por Voltaje NAV1.8/efectos de los fármacos , Nocicepción/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Sodio/metabolismo , Analgésicos/química , Analgésicos/uso terapéutico , Animales , Canales de Calcio/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Flavanonas/química , Flavanonas/metabolismo , Flavanonas/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/tratamiento farmacológico , Dolor Postoperatorio/tratamiento farmacológico , Conformación Proteica , Mapeo de Interacción de Proteínas , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/metabolismo , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/uso terapéutico , Organismos Libres de Patógenos Específicos , Relación Estructura-Actividad
15.
J Med Chem ; 62(21): 9618-9641, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31525968

RESUMEN

Nonselective antagonists of voltage-gated sodium (NaV) channels have been long used for the treatment of epilepsies. The efficacy of these drugs is thought to be due to the block of sodium channels on excitatory neurons, primarily NaV1.6 and NaV1.2. However, these currently marketed drugs require high drug exposure and suffer from narrow therapeutic indices. Selective inhibition of NaV1.6, while sparing NaV1.1, is anticipated to provide a more effective and better tolerated treatment for epilepsies. In addition, block of NaV1.2 may complement the anticonvulsant activity of NaV1.6 inhibition. We discovered a novel series of aryl sulfonamides as CNS-penetrant, isoform-selective NaV1.6 inhibitors, which also displayed potent block of NaV1.2. Optimization focused on increasing selectivity over NaV1.1, improving metabolic stability, reducing active efflux, and addressing a pregnane X-receptor liability. We obtained compounds 30-32, which produced potent anticonvulsant activity in mouse seizure models, including a direct current maximal electroshock seizure assay.


Asunto(s)
Amidas/química , Sistema Nervioso Central/metabolismo , Epilepsia/tratamiento farmacológico , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Bloqueadores de los Canales de Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Animales , Perros , Células Hep G2 , Humanos , Células de Riñón Canino Madin Darby , Ratones , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.6/química , Dominios Proteicos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/uso terapéutico , Relación Estructura-Actividad
16.
Pharm Res ; 36(9): 137, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332533

RESUMEN

PURPOSE: Pitt Hopkins Syndrome (PTHS) is a rare genetic disorder caused by mutations of a specific gene, transcription factor 4 (TCF4), located on chromosome 18. PTHS results in individuals that have moderate to severe intellectual disability, with most exhibiting psychomotor delay. PTHS also exhibits features of autistic spectrum disorders, which are characterized by the impaired ability to communicate and socialize. PTHS is comorbid with a higher prevalence of epileptic seizures which can be present from birth or which commonly develop in childhood. Attenuated or absent TCF4 expression results in increased translation of peripheral ion channels Kv7.1 and Nav1.8 which triggers an increase in after-hyperpolarization and altered firing properties. METHODS: We now describe a high throughput screen (HTS) of 1280 approved drugs and machine learning models developed from this data. The ion channels were expressed in either CHO (KV7.1) or HEK293 (Nav1.8) cells and the HTS used either 86Rb+ efflux (KV7.1) or a FLIPR assay (Nav1.8). RESULTS: The HTS delivered 55 inhibitors of Kv7.1 (4.2% hit rate) and 93 inhibitors of Nav1.8 (7.2% hit rate) at a screening concentration of 10 µM. These datasets also enabled us to generate and validate Bayesian machine learning models for these ion channels. We also describe a structure activity relationship for several dihydropyridine compounds as inhibitors of Nav1.8. CONCLUSIONS: This work could lead to the potential repurposing of nicardipine or other dihydropyridine calcium channel antagonists as potential treatments for PTHS acting via Nav1.8, as there are currently no approved treatments for this rare disorder.


Asunto(s)
Dihidropiridinas/farmacología , Reposicionamiento de Medicamentos/métodos , Hiperventilación/tratamiento farmacológico , Discapacidad Intelectual/tratamiento farmacológico , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Animales , Teorema de Bayes , Células CHO , Cricetulus , Dihidropiridinas/química , Facies , Células HEK293 , Humanos , Canal de Potasio KCNQ1/metabolismo , Aprendizaje Automático , Bloqueadores de los Canales de Potasio/química , Bibliotecas de Moléculas Pequeñas/química , Bloqueadores de los Canales de Sodio/química , Relación Estructura-Actividad , Bloqueadores del Canal de Sodio Activado por Voltaje/química
17.
J Agric Food Chem ; 67(28): 7793-7809, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31274315

RESUMEN

Indoxacarb, a commercialized oxadiazine insecticide, nearly irreversibly blocks open/inactivated, but not resting sodium channels. The structure-activity relationships showed that the substituents at the position of the chiral atom in the oxadiazine ring are very important to the biological activity of oxadiazine insecticide. Here we synthesized a series of tricyclic oxadiazine 4a-methyl ester derivatives. The chiral atom in the oxadiazine ring has been epimerized and substituted with either pyrethric acid or cinnamic acid derivatives. Benzene ring in the tricyclic moiety was substituted with a chlorine, fluorine, or bromine atom, and nitrogen-linked benzene ring was substituted with a trifluoromethyl or trifluoromethoxy group. Toxicity of these compounds against Spodoptera litura F. was evaluated. Diastereoisomers of most toxic compounds J7 and J9 with pyrethric acid moiety were separated by flash column chromatography. The more polar diastereoisomers, J7-L-Rf and J9-L-Rf, and compounds J24 and J26 with cinnamic acid moiety exhibited highest insecticidal activities. We further used Monte Carlo energy minimizations to dock compound J7 and J24 in the NavMs-based homology model of the open cockroach sodium channel. In the low-energy binding modes, the compound interacted with residues in the inner pore and domain interfaces, which previously were proposed to contribute to receptors of pyrethroids and sodium channel blocker insecticides. Our results define compound J7 and J24 as a potentially useful optimized hit for the development of multiple sites sodium channel blocker or modulator.


Asunto(s)
Insecticidas/química , Insecticidas/toxicidad , Oxazinas/química , Oxazinas/toxicidad , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/toxicidad , Animales , Cucarachas/efectos de los fármacos , Cucarachas/metabolismo , Descubrimiento de Drogas , Ésteres/química , Ésteres/farmacología , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Modelos Moleculares , Canales de Sodio/química , Canales de Sodio/metabolismo , Spodoptera/efectos de los fármacos , Spodoptera/metabolismo , Relación Estructura-Actividad
18.
Dokl Biochem Biophys ; 484(1): 9-12, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31012002

RESUMEN

An effective bacterial system for the production of ß-toxin Ts1, the main component of the Brazilian scorpion Tityus serrulatus venom, was developed. Recombinant toxin and its 15N-labeled analogue were obtained via direct expression of synthetic gene in Escherichia coli with subsequent folding from the inclusion bodies. According to NMR spectroscopy data, the recombinant toxin is structured in an aqueous solution and contains a significant fraction of ß-structure. The formation of a stable disulfide-bond isomer of Ts1, having a disordered structure, has also been observed during folding. Recombinant Ts1 blocks Na+ current through NaV1.5 channels without affecting the processes of activation and inactivation. At the same time, the effect upon NaV1.4 channels is associated with a shift of the activation curve towards more negative membrane potentials.


Asunto(s)
Venenos de Escorpión , Bloqueadores de los Canales de Sodio , Animales , Humanos , Proteínas Musculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Ratas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Venenos de Escorpión/biosíntesis , Venenos de Escorpión/química , Venenos de Escorpión/aislamiento & purificación , Venenos de Escorpión/farmacología , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/aislamiento & purificación , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Relación Estructura-Actividad , Xenopus laevis
19.
J Med Chem ; 62(19): 8695-8710, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31012583

RESUMEN

Voltage-gated sodium ion channel subtype 1.7 (NaV1.7) is a high interest target for the discovery of non-opioid analgesics. Compelling evidence from human genetic data, particularly the finding that persons lacking functional NaV1.7 are insensitive to pain, has spurred considerable effort to develop selective inhibitors of this Na+ ion channel target as analgesic medicines. Recent clinical setbacks and disappointing performance of preclinical compounds in animal pain models, however, have led to skepticism around the potential of selective NaV1.7 inhibitors as human therapeutics. In this Perspective, we discuss the attributes and limitations of recently disclosed investigational drugs targeting NaV1.7 and review evidence that, by better understanding the requirements for selectivity and target engagement, the opportunity to deliver effective analgesic medicines targeting NaV1.7 endures.


Asunto(s)
Analgésicos/química , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Bloqueadores de los Canales de Sodio/química , Analgésicos/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Humanos , Canal de Sodio Activado por Voltaje NAV1.7/química , Dolor/tratamiento farmacológico , Dolor/patología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Bloqueadores de los Canales de Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Sulfonamidas/química , Sulfonamidas/metabolismo
20.
Br J Pharmacol ; 176(9): 1298-1314, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30784059

RESUMEN

BACKGROUND AND PURPOSE: The NaV 1.7 channel is highly expressed in dorsal root ganglia of the sensory nervous system and plays a central role in the pain signalling process. We investigated a library prepared from original venoms of 117 different animals to identify new selective inhibitors of this target. EXPERIMENTAL APPROACH: We used high throughput screening of a large venom collection using automated patch-clamp experiments on human voltage-gated sodium channel subtypes and then in vitro and in vivo electrophysiological experiments to characterize the active peptides that have been purified, sequenced, and chemically synthesized. Analgesic effects were evaluated in vivo in mice models. KEY RESULTS: We identified cyriotoxin-1a (CyrTx-1a), a novel peptide isolated from Cyriopagopus schioedtei spider venom, as a candidate for further characterization. This 33 amino acids toxin belongs to the inhibitor cystine knot structural family and inhibits hNaV 1.1-1.3 and 1.6-1.7 channels in the low nanomolar range, compared to the micromolar range for hNaV 1.4-1.5 and 1.8 channels. CyrTx-1a was 920 times more efficient at inhibiting tetrodotoxin (TTX)-sensitive than TTX-resistant sodium currents recorded from adult mouse dorsal root ganglia neurons and in vivo electrophysiological experiments showed that CyrTx-1a was approximately 170 times less efficient than huwentoxin-IV at altering mouse skeletal neuromuscular excitability properties. CyrTx-1a exhibited an analgesic effect in mice by increasing reaction time in the hot-plate assay. CONCLUSIONS AND IMPLICATIONS: The pharmacological profile of CyrTx-1a paves the way for further molecular engineering aimed to optimize the potential antinociceptive properties of this peptide.


Asunto(s)
Analgésicos/farmacología , Antagonistas de Narcóticos/farmacología , Dolor/tratamiento farmacológico , Bloqueadores de los Canales de Sodio/farmacología , Venenos de Araña/farmacología , Canales de Sodio Activados por Voltaje/metabolismo , Analgésicos/química , Analgésicos/aislamiento & purificación , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Ratones , Antagonistas de Narcóticos/química , Antagonistas de Narcóticos/aislamiento & purificación , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/aislamiento & purificación , Venenos de Araña/química , Venenos de Araña/aislamiento & purificación , Arañas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA