Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 188(1): 593-607, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34695209

RESUMEN

Virus infections that cause mosaic or mottling in leaves commonly also induce increased levels of reactive oxygen species (ROS). However, how ROS contributes to symptoms is less well documented. Bamboo mosaic virus (BaMV) causes chlorotic mosaic symptoms in both Brachypodium distachyon and Nicotiana benthamiana. The BaMV △CPN35 mutant with an N-terminal deletion of its coat protein gene exhibits asymptomatic infection independently of virus titer. Histochemical staining of ROS in mock-, BaMV-, and BaMV△CPN35-infected leaves revealed that hydrogen peroxide (H2O2) accumulated solely in BaMV-induced chlorotic spots. Moreover, exogenous H2O2 treatment enhanced yellowish chlorosis in BaMV-infected leaves. Both BaMV and BaMV△CPN35 infection could induce the expression of Cu/Zu superoxide dismutase (CSD) antioxidants at messenger RNA and protein level. However, BaMV triggered the abundant accumulation of full-length NbCSD2 preprotein (prNbCSD2, without transit peptide cleavage), whereas BaMV△CPN35 induced a truncated prNbCSD2. Confocal microscopy showed that majority of NbCSD2-green fluorescent protein (GFP) predominantly localized in the cytosol upon BaMV infection, but BaMV△CPN35 infection tended to cause NbCSD2-GFP to remain in chloroplasts. By 5'-RNA ligase-mediated rapid amplification of cDNA ends, we validated CSDs are the targets of miR398 in vivo. Furthermore, BaMV infection increased the level of miR398, while the level of BaMV titer was regulated positively by miR398 but negatively by CSD2. In contrast, overexpression of cytosolic form NbCSD2, impairing the transport into chloroplasts, greatly enhanced BaMV accumulation. Taken together, our results indicate that induction of miR398 by BaMV infection may facilitate viral titer accumulation, and cytosolic prNbCSD2 induction may contribute to H2O2 accumulation, resulting in the development of BaMV chlorotic symptoms in plants.


Asunto(s)
Antioxidantes/metabolismo , Brachypodium/genética , Brachypodium/virología , Peróxido de Hidrógeno/metabolismo , Nicotiana/genética , Nicotiana/virología , Enfermedades de las Plantas/genética , Potexvirus/patogenicidad , Brachypodium/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Productos Agrícolas/virología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/virología , Nicotiana/metabolismo , Virulencia/efectos de los fármacos , Virulencia/genética
2.
mBio ; 10(4)2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455653

RESUMEN

Positive-sense RNA viruses in the Tombusviridae family have genomes lacking a 5' cap structure and prototypical 3' polyadenylation sequence. Instead, these viruses utilize an extensive network of intramolecular RNA-RNA interactions to direct viral replication and gene expression. Here we demonstrate that the genomic RNAs of Panicum mosaic virus (PMV) and its satellites undergo sequence modifications at their 3' ends upon infection of host cells. Changes to the viral and subviral genomes arise de novo within Brachypodium distachyon (herein called Brachypodium) and proso millet, two alternative hosts of PMV, and exist in the infections of a native host, St. Augustinegrass. These modifications are defined by polyadenylation [poly(A)] events and significant truncations of the helper virus 3' untranslated region-a region containing satellite RNA recombination motifs and conserved viral translational enhancer elements. The genomes of PMV and its satellite virus (SPMV) were reconstructed from multiple poly(A)-selected Brachypodium transcriptome data sets. Moreover, the polyadenylated forms of PMV and SPMV RNAs copurify with their respective mature icosahedral virions. The changes to viral and subviral genomes upon infection are discussed in the context of a previously understudied poly(A)-mediated antiviral RNA degradation pathway and the potential impact on virus evolution.IMPORTANCE The genomes of positive-sense RNA viruses have an intrinsic capacity to serve directly as mRNAs upon viral entry into a host cell. These RNAs often lack a 5' cap structure and 3' polyadenylation sequence, requiring unconventional strategies for cap-independent translation and subversion of the cellular RNA degradation machinery. For tombusviruses, critical translational regulatory elements are encoded within the 3' untranslated region of the viral genomes. Here we describe RNA modifications occurring within the genomes of Panicum mosaic virus (PMV), a prototypical tombusvirus, and its satellite agents (i.e., satellite virus and noncoding satellite RNAs), all of which depend on the PMV-encoded RNA polymerase for replication. The atypical RNAs are defined by terminal polyadenylation and truncation events within the 3' untranslated region of the PMV genome. These modifications are reminiscent of host-mediated RNA degradation strategies and likely represent a previously underappreciated defense mechanism against invasive nucleic acids.


Asunto(s)
Brachypodium/virología , Genoma Viral/genética , Panicum/virología , Tombusviridae/genética , Regiones no Traducidas 3'/genética , Poliadenilación , Estabilidad del ARN , ARN Mensajero/genética , Virus Satélites/genética , Tombusviridae/fisiología , Replicación Viral
3.
Virology ; 514: 182-191, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29197268

RESUMEN

Panicum mosaic virus (PMV) is a helper RNA virus for satellite RNAs (satRNAs) and a satellite virus (SPMV). Here, we describe modifications that occur at the 3'-end of a satRNA of PMV, satS. Co-infections of PMV+satS result in attenuation of the disease symptoms induced by PMV alone in Brachypodium distachyon and proso millet. The 375 nt satS acquires ~100-200 nts from the 3'-end of PMV during infection and is associated with decreased abundance of the PMV RNA and capsid protein in millet. PMV-satS chimera RNAs were isolated from native infections of St. Augustinegrass and switchgrass. Phylogenetic analyses revealed that the chimeric RNAs clustered according to the host species from which they were isolated. Additionally, the chimera satRNAs acquired non-viral "linker" sequences in a host-specific manner. These results highlight the dynamic regulation of viral pathogenicity by satellites, and the selective host-dependent, sequence-based pressures for driving satRNA generation and genome compositions.


Asunto(s)
Virus Helper , Especificidad del Huésped , Enfermedades de las Plantas , Satélite de ARN , Virus Satélites , Tombusviridae , Brachypodium/virología , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Genoma Viral , Virus Helper/genética , Virus Helper/fisiología , Panicum/virología , Filogenia , Enfermedades de las Plantas/virología , Poaceae/virología , Recombinación Genética , Satélite de ARN/genética , Satélite de ARN/metabolismo , Virus Satélites/genética , Virus Satélites/fisiología , Tombusviridae/genética , Tombusviridae/fisiología
4.
Methods Mol Biol ; 1667: 73-85, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29039005

RESUMEN

Alternative splicing (AS) promotes transcriptome and proteome diversity in plants, which influences growth and development, and host responses to stress. Advancements in next-generation sequencing, bioinformatics, and computational biology tools have allowed biologists to investigate AS landscapes on a genome-wide scale in several plant species. Furthermore, the development of Brachypodium distachyon (Brachypodium) as a model system for grasses has facilitated comparative studies of AS within the Poaceae. These analyses revealed a plethora of genes in several biological processes that are alternatively spliced and identified conserved AS patterns among monocot and dicot plants. In this chapter, using a Brachypodium-virus pathosystem as a research template, we provide an overview of genomic and bioinformatic tools that can be used to investigate constitutive and alternative splicing in plants.


Asunto(s)
Empalme Alternativo , Brachypodium/genética , Regulación de la Expresión Génica de las Plantas , Genómica/métodos , Proteínas de Plantas/genética , Transcriptoma , Brachypodium/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Proteoma/genética , Análisis de Secuencia de ARN/métodos , Tombusviridae/fisiología
5.
Methods Mol Biol ; 1667: 101-117, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29039007

RESUMEN

Plant transformation is an invaluable technique in plant genomics by which an extra foreign DNA sequence is introduced into a plant genome. Changing the plant genome is leading to owning new genetic characteristics. Model plant is a keystone in a study of the comprehensive plant phylum. Here, I describe an efficient method to transform the plant species Brachypodium distachyon which, due to its characters, is developing to be an important plant model.


Asunto(s)
Brachypodium/genética , Plantas Modificadas Genéticamente/genética , Transformación Genética , Agrobacterium tumefaciens/genética , Brachypodium/embriología , Brachypodium/virología , ADN de Plantas/genética , Ingeniería Genética/métodos , Genoma de Planta , Plantas Modificadas Genéticamente/embriología , Plantas Modificadas Genéticamente/virología , Plásmidos/genética
6.
Methods Mol Biol ; 1667: 289-310, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29039016

RESUMEN

Brachypodium distachyon has recently emerged as a model plant species for the grass family (Poaceae) that includes major cereal crops and forage grasses. One of the important traits of a model species is its capacity to be transformed and ease of growing both in tissue culture and in greenhouse conditions. Hence, plant transformation technology is crucial for improvements in agricultural studies, both for the study of new genes and in the production of new transgenic plant species. In this chapter, we review an efficient tissue culture and two different transformation systems for Brachypodium using most commonly preferred gene transfer techniques in plant species, microprojectile bombardment method (biolistics) and Agrobacterium-mediated transformation.In plant transformation studies, frequently used explant materials are immature embryos due to their higher transformation efficiencies and regeneration capacity. However, mature embryos are available throughout the year in contrast to immature embryos. We explain a tissue culture protocol for Brachypodium using mature embryos with the selected inbred lines from our collection. Embryogenic calluses obtained from mature embryos are used to transform Brachypodium with both plant transformation techniques that are revised according to previously studied protocols applied in the grasses, such as applying vacuum infiltration, different wounding effects, modification in inoculation and cocultivation steps or optimization of bombardment parameters.


Asunto(s)
Brachypodium/genética , Técnicas de Transferencia de Gen , Plantas Modificadas Genéticamente/genética , Técnicas de Cultivo de Tejidos/métodos , Transformación Genética , Agrobacterium/genética , Brachypodium/embriología , Brachypodium/virología , Plantas Modificadas Genéticamente/embriología , Plantas Modificadas Genéticamente/virología
7.
Virus Genes ; 52(2): 299-302, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26814813

RESUMEN

Barley yellow dwarf viruses (BYDVs) belong to the family Luteoviridae and cause disease in cereals. Because of the large and complex genome of cereal plants, it is difficult to study host-virus interactions. In order to establish a model host system for the studies on BYDVs, we examined the susceptibility of a monocot model plant, Brachypodium distachyon, to BYDV-GAV infection. Fourteen days after BYDV-GAV inoculation by aphid transmission, B. distachyon plants (inbred line Bd21-3) showed conspicuous disease symptoms such as leaf reddening, dwarfness and root stunting. Virus accumulation was detected in both shoots and roots using reverse transcription PCR and triple antibody sandwich ELISA. Compared with infected wheat plants, B. distachyon plants developed more severe disease symptoms and accumulated a higher level of BYDV-GAV. Under transmission electron microscope, we observed that virus particles accumulated in companion cells and BYDV-GAV infection was associated with the deformation of chloroplasts in the infected leaves of B. distachyon plants. Our results suggest that B. distachyon is a suitable and promising experimental model plant for the host-BYDV-GAV pathosystem and possibly for other BYDVs.


Asunto(s)
Brachypodium/virología , Interacciones Huésped-Patógeno , Luteovirus/fisiología , Tropismo Viral , Enfermedades de las Plantas/virología , Triticum/virología
8.
Plant Signal Behav ; 10(8): e1042640, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26156297

RESUMEN

Splicing and alternative splicing (AS) are widespread co- and post-transcriptional regulatory processes in plants. Recently, we characterized genome-wide AS landscapes and virus-induced AS patterns in Brachypodium distachyon (Brachypodium), a C3 model grass. Brachypodium plants infected with Panicum mosaic virus (PMV) alone or in mixed infections with its satellite virus (SPMV) were used for high-throughput, paired-end RNA sequencing. Here, using gene attributes of ∼5,655 intronless genes, ∼13,302 constitutively spliced, and ∼7,564 alternatively spliced genes, we analyzed the influence of genomic features on splicing incidence and AS frequency. In Brachypodium, gene length, coding sequence length, and exon and intron number were positively correlated to splicing incidence and AS frequency. In contrast, exon length and the percentage composition of GC (%GC) content were inversely correlated with splicing incidence and AS frequency. Although gene expression status had little correlation with splicing occurrence per se, it negatively correlated to AS frequency: i.e., genes with ≥5 alternatively spliced transcripts were significantly less expressed compared to genes encoding <5 alternative transcripts. Further gene set enrichment analysis uncovered unique functional relationships among nonspliced, constitutively spliced and alternatively spliced genes.


Asunto(s)
Empalme Alternativo , Brachypodium/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Virus del Mosaico , Enfermedades de las Plantas/genética , Brachypodium/virología , ADN de Plantas , Exones , Genómica , Intrones , Enfermedades de las Plantas/virología , Virus Satélites , Análisis de Secuencia de ARN
9.
Plant Signal Behav ; 10(8): e1042641, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26179847

RESUMEN

In eukaryotes alternative splicing (AS) influences transcriptome and proteome diversity. The mechanism and the genetic components mediating AS during plant-virus interactions are not known. Using RNA sequencing approaches, we recently analyzed the global AS changes occurring in Brachypodium distachyon (Brachypodium) during infections of Panicum mosaic virus (PMV) and its satellite virus (SPMV). We reported AS of defense-related genes including receptor-like kinases, NB-LRR proteins and transcription factors. Strikingly, multiple spliceosome components are themselves alternatively spliced during PMV and SPMV infections. Here, we analyzed the temporal splicing patterns of a splicing factor, Bd-SCL33, following infection of Brachypodium with 6 additional viruses in diverse genera. Our results reveal both dynamic and conserved expression patterns of Bd-SCL33 splice variants during virus infection, and implicate Bd-SCL33 function in response to biotic stresses.


Asunto(s)
Empalme Alternativo , Brachypodium/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Virus de Plantas , Transcriptoma , Brachypodium/virología , Enfermedades de las Plantas/virología , Virus Satélites , Análisis de Secuencia de ARN , Empalmosomas
11.
Plant Cell ; 27(1): 71-85, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25634987

RESUMEN

In eukaryotes, alternative splicing (AS) promotes transcriptome and proteome diversity. The extent of genome-wide AS changes occurring during a plant-microbe interaction is largely unknown. Here, using high-throughput, paired-end RNA sequencing, we generated an isoform-level spliceome map of Brachypodium distachyon infected with Panicum mosaic virus and its satellite virus. Overall, we detected ∼44,443 transcripts in B. distachyon, ∼30% more than those annotated in the reference genome. Expression of ∼28,900 transcripts was ≥2 fragments per kilobase of transcript per million mapped fragments, and ∼42% of multi-exonic genes were alternatively spliced. Comparative analysis of AS patterns in B. distachyon, rice (Oryza sativa), maize (Zea mays), sorghum (Sorghum bicolor), Arabidopsis thaliana, potato (Solanum tuberosum), Medicago truncatula, and poplar (Populus trichocarpa) revealed conserved ratios of the AS types between monocots and dicots. Virus infection quantitatively altered AS events in Brachypodium with little effect on the AS ratios. We discovered AS events for >100 immune-related genes encoding receptor-like kinases, NB-LRR resistance proteins, transcription factors, RNA silencing, and splicing-associated proteins. Cloning and molecular characterization of SCL33, a serine/arginine-rich splicing factor, identified multiple novel intron-retaining splice variants that are developmentally regulated and modulated during virus infection. B. distachyon SCL33 splicing patterns are also strikingly conserved compared with a distant Arabidopsis SCL33 ortholog. This analysis provides new insights into AS landscapes conserved among monocots and dicots and uncovered AS events in plant defense-related genes.


Asunto(s)
Empalme Alternativo/genética , Brachypodium/genética , Brachypodium/virología , Virus de Plantas/patogenicidad , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Oryza/genética , Oryza/virología , Proteínas de Plantas/genética , Sorghum/genética , Sorghum/virología
12.
Mol Plant Microbe Interact ; 27(11): 1277-90, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25296115

RESUMEN

Viral diseases cause significant losses in global agricultural production, yet little is known about grass antiviral defense mechanisms. We previously reported on host immune responses triggered by Panicum mosaic virus (PMV) and its satellite virus (SPMV) in the model C3 grass Brachypodium distachyon. To aid comparative analyses of C3 and C4 grass antiviral defenses, here, we establish B. distachyon and Setaria viridis (a C4 grass) as compatible hosts for seven grass-infecting viruses, including PMV and SPMV, Brome mosaic virus, Barley stripe mosaic virus, Maize mild mottle virus, Sorghum yellow banding virus, Wheat streak mosaic virus (WSMV), and Foxtail mosaic virus (FoMV). Etiological and molecular characterization of the fourteen grass-virus pathosystems showed evidence for conserved crosstalk among salicylic acid (SA), jasmonic acid, and ethylene pathways in B. distachyon and S. viridis. Strikingly, expression of PHYTOALEXIN DEFICIENT4, an upstream modulator of SA signaling, was consistently suppressed during most virus infections in B. distachyon and S. viridis. Hierarchical clustering analyses further identified unique antiviral responses triggered by two morphologically similar viruses, FoMV and WSMV, and uncovered other host-dependent effects. Together, the results of this study establish B. distachyon and S. viridis as models for the analysis of plant-virus interactions and provide the first framework for conserved and unique features of C3 and C4 grass antiviral defenses.


Asunto(s)
Brachypodium/inmunología , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Virus de Plantas/fisiología , Setaria (Planta)/inmunología , Brachypodium/virología , Análisis por Conglomerados , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Oxilipinas/metabolismo , Filogenia , Enfermedades de las Plantas/virología , Ácido Salicílico/metabolismo , Virus Satélites/fisiología , Setaria (Planta)/virología , Transducción de Señal , Especificidad de la Especie
13.
J Biotechnol ; 168(1): 7-14, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23954326

RESUMEN

Both genome-wide transcriptomic surveys of the mRNA expression profiles and virus-induced gene silencing-based molecular studies of target gene during virus-plant interaction involve the precise estimation of the transcript abundance. Quantitative real-time PCR (qPCR) is the most widely adopted technique for mRNA quantification. In order to obtain reliable quantification of transcripts, identification of the best reference genes forms the basis of the preliminary work. Nevertheless, the stability of internal controls in virus-infected monocots needs to be fully explored. In this work, the suitability of ten housekeeping genes (ACT, EF1α, FBOX, GAPDH, GTPB, PP2A, SAND, TUBß, UBC18 and UK) for potential use as reference genes in qPCR were investigated in five different monocot plants (Brachypodium, barley, sorghum, wheat and maize) under infection with different viruses including Barley stripe mosaic virus (BSMV), Brome mosaic virus (BMV), Rice black-streaked dwarf virus (RBSDV) and Sugarcane mosaic virus (SCMV). By using three different algorithms, the most appropriate reference genes or their combinations were identified for different experimental sets and their effectiveness for the normalisation of expression studies were further validated by quantitative analysis of a well-studied PR-1 gene. These results facilitate the selection of desirable reference genes for more accurate gene expression studies in virus-infected monocots.


Asunto(s)
Proteínas de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Brachypodium/genética , Brachypodium/virología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Hordeum/genética , Hordeum/virología , Sorghum/genética , Sorghum/virología , Triticum/genética , Triticum/virología , Zea mays/genética , Zea mays/virología
14.
Plant Cell ; 25(5): 1489-505, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23709626

RESUMEN

Plants respond to pathogens using elaborate networks of genetic interactions. Recently, significant progress has been made in understanding RNA silencing and how viruses counter this apparently ubiquitous antiviral defense. In addition, plants also induce hypersensitive and systemic acquired resistance responses, which together limit the virus to infected cells and impart resistance to the noninfected tissues. Molecular processes such as the ubiquitin proteasome system and DNA methylation are also critical to antiviral defenses. Here, we provide a summary and update of advances in plant antiviral immune responses, beyond RNA silencing mechanisms-advances that went relatively unnoticed in the realm of RNA silencing and nonviral immune responses. We also document the rise of Brachypodium and Setaria species as model grasses to study antiviral responses in Poaceae, aspects that have been relatively understudied, despite grasses being the primary source of our calories, as well as animal feed, forage, recreation, and biofuel needs in the 21st century. Finally, we outline critical gaps, future prospects, and considerations central to studying plant antiviral immunity. To promote an integrated model of plant immunity, we discuss analogous viral and nonviral immune concepts and propose working definitions of viral effectors, effector-triggered immunity, and viral pathogen-triggered immunity.


Asunto(s)
Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Proteínas de Plantas/inmunología , Virus de Plantas/inmunología , Brachypodium/genética , Brachypodium/inmunología , Brachypodium/virología , Metilación de ADN/genética , Metilación de ADN/inmunología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/inmunología , Modelos Inmunológicos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Virus de Plantas/clasificación , Virus de Plantas/fisiología , Setaria (Planta)/genética , Setaria (Planta)/inmunología , Setaria (Planta)/virología
15.
Plant Physiol ; 160(3): 1432-52, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22961132

RESUMEN

Panicum mosaic virus (PMV) and its satellite virus (SPMV) together infect several small grain crops, biofuel, and forage and turf grasses. Here, we establish the emerging monocot model Brachypodium (Brachypodium distachyon) as an alternate host to study PMV- and SPMV-host interactions and viral synergism. Infection of Brachypodium with PMV+SPMV induced chlorosis and necrosis of leaves, reduced seed set, caused stunting, and lowered biomass, more than PMV alone. Toward gaining a molecular understanding of PMV- and SPMV-affected host processes, we used a custom-designed microarray and analyzed global changes in gene expression of PMV- and PMV+SPMV-infected plants. PMV infection by itself modulated expression of putative genes functioning in carbon metabolism, photosynthesis, metabolite transport, protein modification, cell wall remodeling, and cell death. Many of these genes were additively altered in a coinfection with PMV+SPMV and correlated to the exacerbated symptoms of PMV+SPMV coinfected plants. PMV+SPMV coinfection also uniquely altered expression of certain genes, including transcription and splicing factors. Among the host defenses commonly affected in PMV and PMV+SPMV coinfections, expression of an antiviral RNA silencing component, SILENCING DEFECTIVE3, was suppressed. Several salicylic acid signaling components, such as pathogenesis-related genes and WRKY transcription factors, were up-regulated. By contrast, several genes in jasmonic acid and ethylene responses were down-regulated. Strikingly, numerous protein kinases, including several classes of receptor-like kinases, were misexpressed. Taken together, our results identified distinctly altered immune responses in monocot antiviral defenses and provide insights into monocot viral synergism.


Asunto(s)
Brachypodium/virología , Interacciones Huésped-Patógeno , Virus del Mosaico/fisiología , Enfermedades de las Plantas/virología , Virus Satélites/fisiología , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Regulación hacia Abajo/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Interacciones Huésped-Patógeno/genética , Modelos Biológicos , Oxilipinas/metabolismo , Filogenia , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Análisis de Secuencia de Proteína , Transducción de Señal/genética , Factores de Tiempo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transcriptoma/genética
16.
J Gen Virol ; 93(Pt 12): 2729-2739, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22971826

RESUMEN

Barley stripe mosaic virus North Dakota 18 (ND18), Beijing (BJ), Xinjiang (XJ), Type (TY) and CV21 strains are unable to infect the Brachypodium distachyon Bd3-1 inbred line, which harbours a resistance gene designated Bsr1, but the Norwich (NW) strain is virulent on Bd3-1. Analysis of ND18 and NW genomic RNA reassortants and RNAß mutants demonstrates that two amino acids within the helicase motif of the triple gene block 1 (TGB1) movement protein have major effects on their Bd3-1 phenotypes. Resistance to ND18 correlates with an arginine residue at TGB1 position 390 (R(390)) and a threonine at position 392 (T(392)), whereas the virulent NW strain contains lysines (K) at both positions. ND18 TGB1 R390K ((ND)TGB1(R390K)) and (ND)TGB1(T392K) single substitutions, and an (ND)TGB1(R390K,T392K) double mutation resulted in systemic infections of Bd3-1. Reciprocal (ND)TGB1 substitutions into (NW)TGB1 ((NW)TGB1(K390R) and (NW)TGB1(K392T)) failed to affect virulence, implying that K(390) and K(392) compensate for each other. In contrast, an (NW)TGB1(K390R,K392T) double mutant exhibited limited vascular movement in Bd3-1, but developed prominent necrotic streaks that spread from secondary leaf veins. This phenotype, combined with the appearance of necrotic spots in certain ND18 mutants, and necrosis and rapid wilting of Bd3-1 plants after BJ strain ((BJ)TGB1(K390,T392)) inoculations, show that Bd3-1 Bsr1 resistance is elicited by the TGB1 protein and suggest that it involves a hypersensitive response.


Asunto(s)
Brachypodium/genética , Brachypodium/virología , Hordeum/virología , Virus del Mosaico/genética , Virus del Mosaico/patogenicidad , Proteínas de Movimiento Viral en Plantas/genética , Proteínas de Unión al ARN/genética , Proteínas no Estructurales Virales/genética , Secuencia de Aminoácidos , Genes de Plantas , Datos de Secuencia Molecular , Virus del Mosaico/clasificación , Virus del Mosaico/fisiología , Mutagénesis Sitio-Dirigida , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Proteínas de Movimiento Viral en Plantas/fisiología , Proteínas de Unión al ARN/fisiología , Homología de Secuencia de Aminoácido , Proteínas no Estructurales Virales/fisiología , Virulencia/genética , Virulencia/fisiología
17.
PLoS One ; 7(6): e38333, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22675544

RESUMEN

The ND18 strain of Barley stripe mosaic virus (BSMV) infects several lines of Brachypodium distachyon, a recently developed model system for genomics research in cereals. Among the inbred lines tested, Bd3-1 is highly resistant at 20 to 25 °C, whereas Bd21 is susceptible and infection results in an intense mosaic phenotype accompanied by high levels of replicating virus. We generated an F(6:7) recombinant inbred line (RIL) population from a cross between Bd3-1 and Bd21 and used the RILs, and an F(2) population of a second Bd21 × Bd3-1 cross to evaluate the inheritance of resistance. The results indicate that resistance segregates as expected for a single dominant gene, which we have designated Barley stripe mosaic virus resistance 1 (Bsr1). We constructed a genetic linkage map of the RIL population using SNP markers to map this gene to within 705 Kb of the distal end of the top of chromosome 3. Additional CAPS and Indel markers were used to fine map Bsr1 to a 23 Kb interval containing five putative genes. Our study demonstrates the power of using RILs to rapidly map the genetic determinants of BSMV resistance in Brachypodium. Moreover, the RILs and their associated genetic map, when combined with the complete genomic sequence of Brachypodium, provide new resources for genetic analyses of many other traits.


Asunto(s)
Brachypodium/genética , Brachypodium/virología , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Virus del Mosaico/fisiología , Mapeo Físico de Cromosoma/métodos , Enfermedades de las Plantas/virología , Rotura Cromosómica , Segregación Cromosómica/genética , Cromosomas de las Plantas/genética , Ligamiento Genético , Marcadores Genéticos , Genotipo , Geografía , Hordeum/virología , Mutación INDEL/genética , Endogamia , Modelos Biológicos , Fenotipo , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Recombinación Genética/genética , Temperatura , Turquía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...