Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.160
Filtrar
1.
Theriogenology ; 223: 89-97, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38692038

RESUMEN

The present study investigates the distribution and dynamics of gonadotropin-releasing hormone I (GnRH I) and bradykinin in the air-breathing catfish, Heteropneustes fossilis, in relation to the reproductive cycle. Changes in bradykinin, bradykinin B2-receptor, and ovarian GnRH I regulation were demonstrated during the reproductive cycle. The localization of GnRH I, bradykinin, and their respective receptors in the ovaries was investigated by immunohistochemistry, while their levels were quantified by slot/western blot followed by densitometry. GnRH I and its receptor were mainly localized in the cytoplasm of oocytes during the early previtellogenic phase. However, as the follicles grew larger, immunoreactivity was observed in the granulosa and theca cells of the late previtellogenic follicles. The ovaries showed significantly higher expression of GnRH I protein and its receptor during the early to mid-previtellogenic phase, suggesting their involvement in follicular development. Bradykinin and bradykinin B2-receptor showed a distribution pattern similar to that of GnRH I and its receptor. This study further suggested the possibility that bradykinin regulates GnRH I synthesis in the ovary. Thus, we show that the catfish ovary has a GnRH-bradykinin system and plays a role in follicular development and oocyte maturation in H. fossilis.


Asunto(s)
Bradiquinina , Bagres , Hormona Liberadora de Gonadotropina , Ovario , Estaciones del Año , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Bagres/metabolismo , Ovario/metabolismo , Bradiquinina/metabolismo , Reproducción/fisiología , Receptores LHRH/metabolismo , Regulación de la Expresión Génica
2.
Eur J Pharmacol ; 971: 176556, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574840

RESUMEN

AIMS: Endothelial-mesenchymal transition (EndMT) is a crucial pathological process contributing to cardiac fibrosis. Bradykinin has been found to protect the heart against fibrosis. Whether bradykinin regulates EndMT has not been determined. MATERIALS AND METHODS: Rats were subjected to ligation of the left anterior descending coronary artery for 1 h and subsequent reperfusion to induce cardiac ischemia-reperfusion (IR) injury. Bradykinin (0.5 µg/h) was infused by an osmotic pump implanted subcutaneously at the onset of reperfusion. Fourteen days later, the functional, histological, and molecular analyses were performed to investigate the changes in cardiac fibrosis and EndMT. Human coronary artery endothelial cells were utilized to determine the molecular mechanisms in vitro. RESULTS: Bradykinin treatment improved cardiac function and decreased fibrosis following cardiac IR injury, accompanied by ameliorated EndMT and increased nitric oxide (NO) production. In vitro experiments found that bradykinin mitigated transforming growth factor ß1 (TGFß1)-induced EndMT. Significantly, the bradykinin B2 receptor antagonist or endothelial nitric oxide synthase inhibitor abolished the effects of bradykinin on EndMT inhibition, indicating that the bradykinin B2 receptor and NO might mediate the effects of bradykinin on EndMT inhibition. CONCLUSION: Bradykinin plays an essential role in the process of cardiac fibrosis. Bradykinin preserves the cellular signature of endothelial cells, preventing them from EndMT following cardiac IR injury, possibly mediated by bradykinin B2 receptor activation and NO production.


Asunto(s)
Cardiomiopatías , Daño por Reperfusión , Humanos , Ratas , Animales , Células Endoteliales , Bradiquinina/farmacología , Bradiquinina/metabolismo , Transición Endotelial-Mesenquimatosa , Cardiomiopatías/metabolismo , Receptores de Bradiquinina/metabolismo , Óxido Nítrico/metabolismo , Daño por Reperfusión/metabolismo , Fibrosis , Transición Epitelial-Mesenquimal
3.
Drug Dev Res ; 85(2): e22178, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528652

RESUMEN

The wingless/integrase-1 (WNT) pathway involved in the pathogenesis of inflammatory airway diseases has recently generated considerable research interest. Montelukast, a leukotriene receptor antagonist, provides therapeutic benefits in allergic asthma involving eosinophils. We aimed to investigate the role of the WNT pathway in the therapeutic actions of montelukast (MT) in a mixed type of allergic-acute airway inflammation model induced by ovalbumin (OVA) and lipopolysaccharide (LPS) in mice. Female mice were sensitized with intraperitoneal OVA-Al(OH)3 administration in the initiation phase and intranasal OVA followed by LPS administration in the challenge phase. The mice were divided into eight groups: control, asthmatic, and control/asthmatic treated with XAV939 (inhibitor of the canonical WNT pathway), LGK-974 (inhibitor of the secretion of WNT ligands), or MT at different doses. The inhibition of the WNT pathway prevented tracheal 5-HT and bradykinin hyperreactivity, while only the inhibition of the canonical WNT pathway partially reduced 5-HT and bradykinin contractions compared to the inflammation group. Therefore, MT treatment hindered 5-HT and bradykinin hyperreactivity associated with airway inflammation. Furthermore, MT prevented the increases in the phosphorylated GSK-3ß and WNT5A levels, which had been induced by airway inflammation, in a dose-dependent manner. Conversely, the MT application caused a further increase in the fibronectin levels, while there was no significant alteration in the phosphorylation of the Smad-2 levels in the isolated lungs of the mice. The MT treatment reversed the increase in the mRNA expression levels of interleukin-17A. An increase in eosinophil and neutrophil counts was observed in bronchoalveolar lavage fluid samples obtained from the mice in the inflammation group, which was hampered by the MT treatment. The inhibition of the WNT pathway did not alter inflammatory cytokine expression or cell infiltration. The WNT pathway mediated the therapeutic effects of MT due to the inhibition of GSK-3ß phosphorylation as well as the reduction of WNT5A levels in a murine airway inflammation model.


Asunto(s)
Acetatos , Asma , Ciclopropanos , Lipopolisacáridos , Quinolinas , Sulfuros , Ratones , Femenino , Animales , Ovalbúmina , Vía de Señalización Wnt , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Serotonina/metabolismo , Bradiquinina/metabolismo , Asma/tratamiento farmacológico , Pulmón/metabolismo , Inflamación/metabolismo , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Citocinas/metabolismo
4.
Heart Fail Rev ; 29(3): 729-737, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38381277

RESUMEN

Heart failure (HF) is a pervasive clinical challenge characterized by compromised cardiac function and reduced quality of life. The kinin-kallikrein system (KSS), a multifaceted peptide cascade, has garnered substantial attention due to its potential role in HF. Through activation of B1 and/or B2 receptors and downstream signaling, kinins modulate various physiological processes, including inflammation, coagulation, pain, blood pressure control, and vascular permeability. Notably, aberrations in KKS components have been linked to HF risk. The elevation of vasodilatory bradykinin (BK) due to kallikrein activity reduces preload and afterload, while concurrently fostering sodium reabsorption inhibition. However, kallikrein's conversion of prorenin to renin leads to angiotensinsII upregulation, resulting in vasoconstriction and fluid retention, alongside increased immune cell activity that fuels inflammation and cardiac remodeling. Importantly, prolonged KKS activation resulting from volume overload and tissue stretch contributes to cardiac collagen loss. The conventional renin-angiotensin-aldosterone system (RAAS) inhibitors used in HF management may inadvertently intensify KKS activity, exacerbating collagen depletion and cardiac remodeling. It is crucial to balance the KKS's role in acute cardiac damage, which may temporarily enhance function and metabolic parameters against its detrimental long-term effects. Thus, KKS blockade emerges as a promising strategy to impede HF progression. By attenuating the link between immune system function and tissue damage, KKS inhibition can potentially reduce cardiac remodeling and alleviate HF symptoms. However, the nuanced roles of BK in various acute conditions necessitate further investigation into the sustained benefits of kallikrein inhibitors in patients with chronic HF.


Asunto(s)
Insuficiencia Cardíaca , Sistema Calicreína-Quinina , Calicreínas , Cininas , Sistema Renina-Angiotensina , Humanos , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Sistema Calicreína-Quinina/fisiología , Cininas/metabolismo , Calicreínas/metabolismo , Sistema Renina-Angiotensina/fisiología , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal , Bradiquinina/metabolismo
5.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397016

RESUMEN

The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the coagulation system is not fully understood. SARS-CoV-2 penetrates cells through angiotensin-converting enzyme 2 (ACE2) receptors, leading to its downregulation. Des-arginine9-bradykinin (DA9B) is degraded by ACE2 and causes vasodilation and increased vascular permeability. Furthermore, DA9B is associated with impaired platelet function. Therefore, the aim of this study was to evaluate the effects of DA9B on platelet function and coagulopathy in critically ill coronavirus disease 2019 (COVID-19) patients. In total, 29 polymerase-positive SARS-CoV-2 patients admitted to the intensive care unit of the University Hospital of Giessen and 29 healthy controls were included. Blood samples were taken, and platelet impedance aggregometry and rotational thromboelastometry were performed. Enzyme-linked immunosorbent assays measured the concentrations of DA9B, bradykinin, and angiotensin 2. Significantly increased concentrations of DA9B and angiotensin 2 were found in the COVID-19 patients. A negative effect of DA9B on platelet function and intrinsic coagulation was also found. A sub-analysis of moderate and severe acute respiratory distress syndrome patients revealed a negative association between DA9B and platelet counts and fibrinogen levels. DA9B provokes inhibitory effects on the intrinsic coagulation system in COVID-19 patients. This negative feedback seems reasonable as bradykinin, which is transformed to DA9B, is released after contact activation. Nevertheless, further studies are needed to confirm our findings.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Bradiquinina/farmacología , Bradiquinina/metabolismo , Enzima Convertidora de Angiotensina 2 , Enfermedad Crítica , Angiotensinas
6.
Acta Neuropsychiatr ; 36(3): 129-138, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38178717

RESUMEN

Bradykinin (BK), a well-studied mediator of physiological and pathological processes in the peripheral system, has garnered less attention regarding its function in the central nervous system, particularly in behavioural regulation. This review delves into the historical progression of research focused on the behavioural effects of BK and other drugs that act via similar mechanisms to provide new insights into the pathophysiology and pharmacotherapy of psychiatric disorders. Evidence from experiments with animal models indicates that BK modulates defensive reactions associated with panic symptoms and the response to acute stressors. The mechanisms are not entirely understood but point to complex interactions with other neurotransmitter systems, such as opioids, and intracellular signalling cascades. By addressing the existing research gaps in this field, we present new proposals for future research endeavours to foster a new era of investigation regarding BK's role in emotional regulation. Implications for psychiatry, chiefly for panic and depressive disorders are also discussed.


Asunto(s)
Bradiquinina , Sistema Nervioso Central , Humanos , Animales , Bradiquinina/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Trastorno de Pánico/metabolismo , Trastornos Mentales/metabolismo , Trastornos Mentales/tratamiento farmacológico , Trastorno Depresivo/metabolismo , Trastorno Depresivo/tratamiento farmacológico
7.
Pain ; 165(1): 202-215, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703419

RESUMEN

ABSTRACT: Bradykinin is a peptide implicated in inflammatory pain in both humans and rodents. In rodent sensory neurons, activation of B1 and B2 bradykinin receptors induces neuronal hyperexcitability. Recent evidence suggests that human and rodent dorsal root ganglia (DRG), which contain the cell bodies of sensory neurons, differ in the expression and function of key GPCRs and ion channels; whether bradykinin receptor expression and function are conserved across species has not been studied in depth. In this study, we used human DRG tissue from organ donors to provide a detailed characterization of bradykinin receptor expression and bradykinin-induced changes in the excitability of human sensory neurons. We found that B2 and, to a lesser extent, B1 receptors are expressed by human DRG neurons and satellite glial cells. B2 receptors were enriched in the nociceptor subpopulation. Using patch-clamp electrophysiology, we found that acute bradykinin increases the excitability of human sensory neurons, whereas prolonged exposure to bradykinin decreases neuronal excitability in a subpopulation of human DRG neurons. Finally, our analyses suggest that donor's history of chronic pain and age may be predictors of higher B1 receptor expression in human DRG neurons. Together, these results indicate that acute bradykinin-induced hyperexcitability, first identified in rodents, is conserved in humans and provide further evidence supporting bradykinin signaling as a potential therapeutic target for treating pain in humans.


Asunto(s)
Bradiquinina , Receptores de Bradiquinina , Humanos , Bradiquinina/metabolismo , Ganglios Espinales/metabolismo , Nociceptores/metabolismo , Dolor , Receptores de Bradiquinina/metabolismo , Células Receptoras Sensoriales/metabolismo
8.
J Allergy Clin Immunol Pract ; 12(4): 911-918, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38142864

RESUMEN

Hereditary angioedema (HAE) is typically caused by a deficiency of the protease inhibitor C1 inhibitor (C1INH). The absence of C1INH activity on plasma kallikrein and factor XIIa leads to overproduction of the vasoactive peptide bradykinin, with resulting angioedema. As the primary site of C1INH and prekallikrein production, the liver is recognized as an important therapeutic target in HAE, leading to the development of hepatic-focused treatment strategies such as GalNAc-conjugated antisense technology and gene modification. This report reviews currently available data on hepatic-focused interventions for HAE that have advanced into human trials. Donidalorsen is an investigational GalNAc3-conjugated antisense oligonucleotide that binds to prekallikrein mRNA in the liver and reduces the expression of prekallikrein. Phase 2 data with subcutaneous donidalorsen demonstrated a significant reduction in HAE attack rate compared with placebo. Phase 3 trials are underway. ADX-324 is a GalNAc3-conjugated short-interfering RNA being investigated in HAE. BMN 331 is an investigational AAV5-based gene therapy vector that expresses wild-type human C1INH and is targeted to hepatocytes. A single intravenous dose of BMN 331 is intended to replace the defective SERPING1 gene and enable patients to produce functional C1INH. A first-in-human phase 1/2 study is ongoing with BMN 331. NTLA-2002 is an investigational in vivo clustered regularly interspaced short palindromic repeats/Cas9-based therapy designed to knock out the prekallikrein-coding KLKB1 gene in hepatocytes; a phase 1/2 study is ongoing. Findings from these and other ongoing studies are highly anticipated with the expectation of expanding the array of treatment options in HAE.


Asunto(s)
Angioedemas Hereditarios , Humanos , Angioedemas Hereditarios/genética , Angioedemas Hereditarios/prevención & control , Bradiquinina/uso terapéutico , Bradiquinina/metabolismo , Proteína Inhibidora del Complemento C1/uso terapéutico , Hígado/metabolismo , Precalicreína
9.
Brain Res ; 1822: 148669, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37951562

RESUMEN

Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.


Asunto(s)
Barrera Hematoencefálica , Bradiquinina , Adhesión Celular , Malaria Cerebral , Malaria Falciparum , Plasmodium falciparum , Humanos , Bradiquinina/metabolismo , Adhesión Celular/fisiología , Medios de Cultivo Condicionados/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Eritrocitos/parasitología , Malaria Cerebral/metabolismo , Malaria Cerebral/parasitología , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Monocitos/fisiología , Plasmodium falciparum/fisiología , Barrera Hematoencefálica/fisiopatología
10.
Vascul Pharmacol ; 153: 107231, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37730143

RESUMEN

Göttingen Minipigs (GM) are used as an important preclinical model for cardiovascular safety pharmacology and for evaluation of cardiovascular drug targets. To improve the translational value of the GM model, the current study represents a basic characterization of vascular responses to endothelial regulators and sympathetic, parasympathetic, and sensory neurotransmitters in different anatomical origins. The aim of the current comparative and descriptive study is to use myography to characterize the vasomotor responses of coronary artery isolated from GM and compare the responses to those obtained from parallel studies using cerebral and mesenteric arteries. The selected agonists for sympathetic (norepinephrine), parasympathetic (carbachol), sensory (calcitonin gene-related peptide, CGRP), and endothelial pathways (endothelin-1, ET-1, and bradykinin) were used for comparison. Further, the robust nature of the vasomotor responses was evaluated after 24 h of cold storage of vascular tissue mimicking the situation under which human biopsies are often kept before experiments or grafting is feasible. Results show that bradykinin and CGRP consistently dilated, and endothelin consistently contracted artery segments from coronary, cerebral, and mesenteric origin. By comparison, norepinephrine and carbachol, had responses that varied with the anatomical source of the tissues. To support the basic characterization of GM vasomotor responses, we demonstrated the presence of mRNA encoding selected vascular receptors (CGRP- and ETA-receptors) in fresh artery segments. In conclusion, the vasomotor responses of isolated coronary, cerebral, and mesenteric arteries to selected agonists of endothelial, sympathetic, parasympathetic, and sensory pathways are different and the phenotypes are similar to sporadic human findings.


Asunto(s)
Bradiquinina , Péptido Relacionado con Gen de Calcitonina , Porcinos , Animales , Humanos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/farmacología , Porcinos Enanos/metabolismo , Bradiquinina/farmacología , Bradiquinina/metabolismo , Carbacol/metabolismo , Músculo Liso Vascular/metabolismo , Norepinefrina/farmacología , Norepinefrina/metabolismo , Arterias Mesentéricas/metabolismo , Vasodilatación
11.
Stem Cell Rev Rep ; 19(7): 2481-2496, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37535186

RESUMEN

BACKGROUND: Protection of cardiac function following myocardial infarction was largely enhanced by bradykinin-pretreated cardiac-specific c-kit+ (BK-c-kit+) cells, even without significant engraftment, indicating that paracrine actions of BK-c-kit+ cells play a pivotal role in angiogenesis. Nevertheless, the active components of the paracrine actions of BK-c-kit+ cells and the underlying mechanisms remain unknown. This study aimed to define the active components of exosomes from BK-c-kit+ cells and elucidate their underlying protective mechanisms. METHODS: Matrigel tube formation assay, cell cycle, and mobility in human umbilical vein endothelial cells (HUVECs) and hindlimb ischemia (HLI) in mice were applied to determine the angiogenic effect of condition medium (CM) and exosomes. Proteome profiler, microRNA sponge, Due-luciferase assay, microRNA-sequencing, qRT-PCR, and Western blot were used to determine the underlying mechanism of the angiogenic effect of exosomes from BK-c-kit+. RESULTS: As a result, BK-c-kit+ CM and exosomes promoted tube formation in HUVECs and the repair of HLI in mice. Angiogenesis-related proteomic profiling and microRNA sequencing revealed highly enriched miR-3059-5p as a key angiogenic component of BK-c-kit+ exosomes. Meanwhile, loss- and gain-of-function experiments revealed that the promotion of angiogenesis by miR-3059-5p was mainly through suppression of TNFSF15-inhibited effects on vascular tube formation, cell proliferation and cell migration. Moreover, enhanced angiogenesis of miR-3059-5p-inhibited TNFSF15 has been associated with Akt/Erk1/2/Smad2/3-modulated signaling pathway. CONCLUSION: Our results demonstrated a novel finding that BK-c-kit+ cells enrich exosomal miR-3059-5p to suppress TNFSF15 and promote angiogenesis against hindlimb ischemia in mice.


Asunto(s)
Bradiquinina , MicroARNs , Humanos , Ratones , Animales , Bradiquinina/metabolismo , Proteómica , Neovascularización Fisiológica/genética , MicroARNs/genética , MicroARNs/metabolismo , Isquemia/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Miembro Posterior/metabolismo , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
12.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569559

RESUMEN

Neurologic manifestations have been occasionally described in patients with bradykinin-mediated angioedema. The existing literature is currently limited to case series and case reports mainly described in the hereditary forms (HAE) concerning central nervous system (CNS) involvement. On the contrary, very little is known about peripheral and autonomic nervous system manifestations. CNS involvement in HAE may present with symptoms including severe headaches, visual disturbance, seizures, and various focal and generalized deficits. In addition, a stroke-like clinical picture may present in HAE patients. In turn, some drugs used in patients with cardiovascular and neurologic disorders, such as recombinant tissue plasminogen activator (r-tPA) and angiotensin-converting enzyme inhibitors (ACEI), may produce medication-induced angioedema, resulting in a diagnostic challenge. Finally, most patients with HAE have higher levels of psychological distress, anxiety, and depression. With this review, we aimed to provide an organized and detailed analysis of the existing literature on neurologic and psychiatric manifestations of HAE to shed light on these potentially invalidating symptoms and lay the foundation for further personalized diagnostic pathways for patients affected by this protean disease.


Asunto(s)
Angioedema , Angioedemas Hereditarios , Humanos , Angioedemas Hereditarios/diagnóstico , Bradiquinina/metabolismo , Activador de Tejido Plasminógeno , Angioedema/etiología , Angioedema/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina
13.
Immunol Allergy Clin North Am ; 43(3): 513-532, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37394257

RESUMEN

Angioedema is a well-recognized and potentially lethal complication of angiotensin-converting enzyme inhibitor (ACEi) therapy. In ACEi-induced angioedema, bradykinin accumulates due to a decrease in its metabolism by ACE, the enzyme that is primarily responsible for this function. The action of bradykinin at bradykinin type 2 receptors leads to increased vascular permeability and the accumulation of fluid in the subcutaneous and submucosal space. Patients with ACEi-induced angioedema are at risk for airway compromise because of the tendency for the face, lips, tongue, and airway structures to be affected. The emergency physician should focus on airway evaluation and management when treating patients with ACEi-induced angioedema.


Asunto(s)
Angioedema , Inhibidores de la Enzima Convertidora de Angiotensina , Humanos , Inhibidores de la Enzima Convertidora de Angiotensina/efectos adversos , Bradiquinina/uso terapéutico , Bradiquinina/metabolismo , Angioedema/diagnóstico , Angioedema/etiología , Angioedema/terapia
14.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511409

RESUMEN

Bradykinin (BK) metabolism and its receptors play a central role in drug-induced angioedema (AE) without urticaria through increased vascular permeability. Many cardiovascular and diabetic drugs may cause BK-mediated AE. Angiotensin-converting enzyme inhibitors (ACEIs) and neprilysin inhibitors impair BK catabolism. Dipeptidyl peptidase-IV (DPP-IV) inhibitors reduce the breakdown of BK and substance P (SP). Moreover, angiotensin receptor blockers, thrombolytic agents, and statins may also induce BK-mediated AE. Understanding pathophysiological mechanisms is crucial for preventing and treating drug-induced AE.


Asunto(s)
Angioedema , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Angioedema/inducido químicamente , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina/efectos adversos , Bradiquinina/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/efectos adversos , Fibrinolíticos/uso terapéutico
15.
Inflamm Res ; 72(8): 1583-1601, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37464053

RESUMEN

OBJECTIVE AND DESIGN: After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. Bradykinin (BK) reduces fibrosis in renal and cardiac damage models through the B2 receptor. The B1 receptor expression is induced by damage, and blocking of the kallikrein-kinin system seems to affect the progression of muscular dystrophy. We hypothesized that both kinin B1 and B2 receptors could play a differential role after traumatic muscle injury, and the lack of the B1 receptor could produce more cellular and molecular substrates for myogenesis and fewer substrates for fibrosis, leading to better muscle healing. MATERIAL AND METHODS: To test this hypothesis, tibialis anterior muscles of kinin receptor knockout animals were subjected to traumatic injury. Myogenesis, angiogenesis, fibrosis, and muscle functioning were evaluated. RESULTS: Injured B1KO mice showed a faster healing progression of the injured area with a larger amount of central nucleated fiber post-injury when compared to control mice. In addition, they exhibited higher neovasculogenic capacity, maintaining optimal tissue perfusion for the post-injury phase; had higher amounts of myogenic markers with less inflammatory infiltrate and tissue destruction. This was followed by higher amounts of SMAD7 and lower amounts of p-SMAD2/3, which resulted in less fibrosis. In contrast, B2KO and B1B2KO mice showed more severe tissue destruction and excessive fibrosis. B1KO animals had better results in post-injury functional tests compared to control animals. CONCLUSIONS: We demonstrate that injured skeletal muscle tissues have a better repair capacity with less fibrosis in the presence of B2 receptor and absence of B1 receptor, including better performances in functional tests.


Asunto(s)
Receptor de Bradiquinina B1 , Receptor de Bradiquinina B2 , Ratones , Animales , Receptor de Bradiquinina B2/genética , Receptor de Bradiquinina B1/genética , Bradiquinina/metabolismo , Bradiquinina/farmacología , Músculo Esquelético , Fibrosis , Regeneración , Receptores de Bradiquinina
16.
J Trauma Acute Care Surg ; 95(4): 558-564, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37314576

RESUMEN

BACKGROUND: Hemorrhage accounts for 40% of the preventable death following severe injury. Activation of systemic coagulation produces bradykinin (BK), which may cause leak from the plasma to the extravascular space and to the tissues, which is part of the complex pathophysiology of trauma-induced end-organ injury. We hypothesize that BK, released during activation of coagulation in severe injury, induces pulmonary alveolar leak. METHODS: Isolated neutrophils (PMNs) were pretreated with a specific BK receptor B2 antagonist HOE-140/icatibant and BK priming of the PMN oxidase was completed. Rats underwent tissue injury/hemorrhagic shock (TI/HS), TI/icatibant/HS, and controls (no injury). Evans blue dye was instilled, and the percentage leak from the plasma to the lung was calculated from the bronchoalveolar lavage fluid (BALF). CINC-1 and total protein were measured in the BALF, and myeloperoxidase was quantified in lung tissue. RESULTS: The BK receptor B2 antagonist HOE140/icatibant inhibited (85.0 ± 5.3%) BK priming of the PMN oxidase ( p < 0.05). The TI/HS model caused activation of coagulation by increasing plasma thrombin-antithrombin complexes ( p < 0.05). Versus controls, the TI/HS rats had significant pulmonary alveolar leak: 1.46 ± 0.21% versus 0.36 ± 0.10% ( p = 0.001) and increased total protein and CINC-1 in the BALF ( p < 0.05). Icatibant given after the TI significantly inhibited lung leak and the increase in CINC-1 in the BALF from TI/icatibant/HS rats versus TI/HS ( p < 0.002 and p < 0.05) but not the total protein. There was no PMN sequestration in the lungs. Conclusions: This mixed injury model caused systemic activation of hemostasis and pulmonary alveolar leak likely due to BK release. CONCLUSION: This mixed injury model caused systemic activation of hemostasis and pulmonary alveolar leak likely due to BK release. LEVEL OF EVIDENCE: Original Article, Basic Science.


Asunto(s)
Bradiquinina , Choque Hemorrágico , Ratas , Animales , Bradiquinina/farmacología , Bradiquinina/metabolismo , Choque Hemorrágico/complicaciones , Roedores/metabolismo , Pulmón/metabolismo , Líquido del Lavado Bronquioalveolar
17.
Hypertens Res ; 46(8): 1949-1960, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37258626

RESUMEN

We detect the antihypertensive effects of maximakinin (MK) on renal hypertensive rats (RHRs) and further research the influence of MK on vascular smooth muscle cells (VSMCs) to explore its hypotensive mechanism. The effects of MK on arterial blood pressure were observed in RHRs. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to detect the effect of MK on VSMC viability. Western blot and flow cytometry were used to investigate the influence of MK on intracellular Ca2+ levels and protein expression changes in VSMCs. In addition, specific protein inhibitors were applied to confirm the involvement of Ca2+-related signaling pathways induced by MK in VSMCs. MK showed a more significant antihypertensive effect than bradykinin in RHRs. MK significantly decreased intracellular Ca2+ concentrations. Furthermore, MK significantly induced the phosphorylation of signaling molecules, including extracellular signal-regulated kinase 1/2 (ERK1/2), P38, AMP-activated protein kinase (AMPK) and Akt in VSMCs. Moreover, only ERK1/2 inhibitor U0126 and AMPK inhibitor Compound C completely restored the decreased intracellular Ca2+ level induced by MK, and further research demonstrated that AMPK functioned upstream of ERK1/2 following exposure to MK. Finally, HOE-140, an inhibitor of the bradykinin B2 receptors (B2Rs), was applied to investigate the potential targets of MK in VSMCs. HOE-140 significantly blocked the AMPK/ERK1/2 pathway induced by MK, suggesting that the B2Rs might play an important role in MK-induced AMPK and ERK1/2 activation. MK significantly reduces blood pressure in RHRs. MK exerts its antihypertensive effect by activating the B2Rs and downstream AMPK/ERK1/2 pathways, leading to significantly reduced Ca2+ levels in VSMCs.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Músculo Liso Vascular , Ratas , Animales , Músculo Liso Vascular/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Sistema de Señalización de MAP Quinasas , Antihipertensivos/farmacología , Bradiquinina/farmacología , Bradiquinina/metabolismo , Células Cultivadas , Transducción de Señal , Fosforilación , Miocitos del Músculo Liso/metabolismo
18.
Biochem Biophys Res Commun ; 660: 35-42, 2023 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-37060829

RESUMEN

The cardioprotective mechanisms of bradykinin-(1-9) in myocardial infarction were unclear. We investigated the effect of bradykinin-(1-9) on cardiac function, fibrosis, and autophagy induced by myocardial infarction and identified the mechanisms involved. To investigate the cardioprotective effect of bradykinin-(1-9), various doses of bradykinin-(1-9), its B2 receptor blocker HOE140, or their combination were administered to rats via subcutaneous osmotic minipump implantation before myocardial infarction. After 2 days, myocardial infarction was induced by ligation of the left anterior descending coronary artery. After 2 weeks, echocardiographic measurements and euthanasia were performed. Bradykinin-(1-9) treatment attenuated left ventricular dysfunction, fibrosis, and autophagy in rats with myocardial infarction, which was partially reversed by HOE140 administration. Moreover, the downregulatory effect of bradykinin-(1-9) on autophagy was partially reversed by combination with the PI3K inhibitor LY294002. Thus, bradykinin-(1-9) inhibits myocardial infarction-induced cardiomyocyte autophagy by upregulating the PI3K/Akt pathway.


Asunto(s)
Infarto del Miocardio , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Bradiquinina/farmacología , Bradiquinina/metabolismo , Fosfatidilinositol 3-Quinasas , Infarto del Miocardio/metabolismo , Autofagia , Fibrosis
19.
Nitric Oxide ; 132: 15-26, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736618

RESUMEN

Spatial confinement and temporal regulation of signaling by nitric oxide (NO) and reactive oxygen species (ROS) occurs in cancer cells. Signaling mediated by NO and ROS was investigated in two sub clones of the murine melanoma B16F10-Nex2 cell line, Nex10C and Nex8H treated or not with bradykinin (BK). The sub clone Nex10C, similar to primary site cells, has a low capacity for colonizing the lungs, whereas the sub clone Nex8H, similar to metastatic cells, corresponds to a highly invasive melanoma. BK-treated Nex10C cells exhibited a transient increase in NO and an inhibition in basal O2- levels. Inhibition of endogenous NO production by l-NAME resulted in detectable levels of O2-. l-NAME promoted Rac1 activation and enhanced Rac1-PI3K association. l-NAME in the absence of BK resulted in Nex10C cell migration and invasion, suggesting that NO is a negative regulator of O2- mediated cell migration and cell invasion. BK-treated Nex8H cells sustained endogenous NO production through the activation of NOS3. NO activated Rac1 and promoted Rac1-PI3K association. NO stimulated cell migration and cell invasion through a signaling axis involving Ras, Rac1 and PI3K. In conclusion, a role for O2- and NO as positive regulators of Rac1-PI3K signaling associated with cell migration and cell invasion is proposed respectively for Nex10C and Nex8H murine melanoma cells.


Asunto(s)
Bradiquinina , Melanoma , Ratones , Animales , Bradiquinina/farmacología , Bradiquinina/metabolismo , Superóxidos , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Movimiento Celular
20.
J Photochem Photobiol B ; 239: 112648, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36641883

RESUMEN

Cancer molecular imaging using specific probes designed to identify target proteins in cancer is a powerful tool to guide therapeutic selection, patient management, and follow-up. We demonstrated that icatibant may be used as a targeting probe for the significantly upregulated bradykinin B2R in colorectal cancer (CRC). Icatibant-based probes with high affinity towards bradykinin B2R were identified. The near-infrared (NIR) fluorescent dye conjugate MPA-PEG3-k-Icatibant and radioconjugate [99mTc]Tc-HYNIC-PEG4-Icatibant exhibited favourable selective and specific uptake in tumours when the subcutaneous and orthotopic colorectal tumour-bearing mouse models were imaged using NIR fluorescence imaging and Single-Photon Emission Computed Tomography-Computed Tomography (SPECT-CT), respectively. The tracer of [99mTc]Tc-HYNIC-PEG4-Icatibant accumulated in tumours according to biodistribution studies and peaked at 4 h with an uptake value of 3.41 ± 0.27%ID/g in HT29 tumour-bearing nude mice following intravenous injection (i.v.). The tumour-to-colorectal signal ratios were 5.03 ± 0.37, 15.45 ± 0.32, 13.58 ± 1.19 and 11.33 ± 1.73 1, 2, 4 and 6 h after tail-veil injection, respectively. Overall, in the wake of rapid and precise tumour delineation and penetration characteristics, icatibant-based probes represent promising high-contrast molecular imaging probes for the detection of bradykinin B2R.


Asunto(s)
Bradiquinina , Neoplasias Colorrectales , Receptores de Bradiquinina , Tomografía Computarizada de Emisión de Fotón Único , Animales , Ratones , Bradiquinina/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/metabolismo , Ligandos , Ratones Desnudos , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tomografía Computarizada por Rayos X , Receptores de Bradiquinina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA