Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Cell ; 187(14): 3504-3505, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996485

RESUMEN

Organisms experience a constantly changing environment and must adjust their development to maximize fitness. These "life histories" are fantastically diverse and have fascinated biologists for decades. Recent work published in Cell reveals the complex genetic mechanisms that drive life-history variation within and among species in the Brassicaceae plant family.


Asunto(s)
Reproducción , Brassicaceae/fisiología , Brassicaceae/genética , Ambiente
2.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928441

RESUMEN

Hybridization is common between invasive and native species and may produce more adaptive hybrids. The hybrid (Sphagneticola × guangdongensis) of Sphagneticola trilobata (an invasive species) and S. calendulacea (a native species) was found in South China. In this study, S. trilobata, S. calendulacea, and Sphagneticola × guangdongensis were used as research materials to explore their adaptability to flooding stress. Under flooding stress, the ethylene content and the expression of key enzyme genes related to ethylene synthesis in Sphagneticola × guangdongensis and S. calendulacea were significantly higher than those in S. trilobata. A large number of adventitious roots and aerenchyma were generated in Sphagneticola × guangdongensis and S. calendulacea. The contents of reactive oxygen species and malondialdehyde in Sphagneticola × guangdongensis and S. calendulacea were lower than those in S. trilobata, and the leaves of S. trilobata were the most severely damaged under flooding stress. The results indicate that hybridization catalyzed the tolerance of Sphagneticola × guangdongensis to flooding stress, and the responses of Sphagneticola × guangdongensis to flooding stress were more similar to that of its native parent. This suggests that hybridization with native relatives is an important way for invasive species to overcome environmental pressure and achieve invasion.


Asunto(s)
Inundaciones , Hibridación Genética , Especies Introducidas , Estrés Fisiológico , Adaptación Fisiológica/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Etilenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , China , Brassicaceae/genética , Brassicaceae/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
3.
Planta ; 260(1): 24, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858226

RESUMEN

MAIN CONCLUSION: The resurrection plant Boea hygrometrica selectively recruits and assembles drought-specific microbial communities across the plant-soil compartments, which may benefit plant growth and fitness under extreme drought conditions. Plant-associated microbes are essential for facilitating plant growth and fitness under drought stress. The resurrection plant Boea hygrometrica in natural habitats with seasonal rainfall can survive rapid desiccation, yet their interaction with microbiomes under drought conditions remains unexplored. This study examined the bacterial and fungal microbiome structure and drought response across plant-soil compartments of B. hygrometrica by high-throughput amplicon sequencing of 16S rRNA gene and internal transcribed spacer. Our results demonstrated that the diversity, composition, and functional profile of the microbial community varied considerably across the plant-soil compartments and were strongly affected by drought stress. Bacterial and fungal diversity was significantly reduced from soil to endosphere and belowground to aboveground compartments. The compartment-specific enrichment of the dominant bacteria phylum Cyanobacteriota and genus Methylorubrum in leaf endosphere, genera Pseudonocardia in rhizosphere soil and Actinoplanes in root endosphere, and fungal phylum Ascomycota in the aboveground compartments and genera Knufia in root endosphere and Cladosporium in leaf endosphere composed part of the core microbiota with corresponding enrichment of beneficial functions for plant growth and fitness. Moreover, the recruitment of dominant microbial genera Sphingosinicella and Plectosphaerella, Ceratobasidiaceae mycorrhizal fungi, and numerous plant growth-promoting bacteria involving nutrient supply and auxin regulation was observed in desiccated B. hygrometrica plants. Our results suggest that the stable assembled drought-specific microbial community of B. hygrometrica may contribute to plant survival under extreme environments and provide valuable microbial resources for the microbe-mediated drought tolerance enhancement in crops.


Asunto(s)
Sequías , Microbiota , Microbiología del Suelo , Microbiota/genética , Estrés Fisiológico , Bacterias/genética , Bacterias/clasificación , Raíces de Plantas/microbiología , Raíces de Plantas/genética , ARN Ribosómico 16S/genética , Hongos/fisiología , Hongos/genética , Rizosfera , Brassicaceae/microbiología , Brassicaceae/genética , Brassicaceae/fisiología , Hojas de la Planta/microbiología , Hojas de la Planta/genética
4.
Curr Biol ; 34(13): 2893-2906.e3, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38876102

RESUMEN

Secondary dormancy is an adaptive trait that increases reproductive success by aligning seed germination with permissive conditions for seedling establishment. Aethionema arabicum is an annual plant and member of the Brassicaceae that grows in environments characterized by hot and dry summers. Aethionema arabicum seeds may germinate in early spring when seedling establishment is permissible. We demonstrate that long-day light regimes induce secondary dormancy in the seeds of Aethionema arabicum (CYP accession), repressing germination in summer when seedling establishment is riskier. Characterization of mutants screened for defective secondary dormancy demonstrated that RGL2 mediates repression of genes involved in gibberellin (GA) signaling. Exposure to high temperature alleviates secondary dormancy, restoring germination potential. These data are consistent with the hypothesis that long-day-induced secondary dormancy and its alleviation by high temperatures may be part of an adaptive response limiting germination to conditions permissive for seedling establishment in spring and autumn.


Asunto(s)
Brassicaceae , Germinación , Latencia en las Plantas , Semillas , Semillas/crecimiento & desarrollo , Semillas/fisiología , Brassicaceae/fisiología , Fotoperiodo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Giberelinas/metabolismo , Estaciones del Año , Plantones/crecimiento & desarrollo , Plantones/fisiología , Adaptación Fisiológica
5.
Nat Plants ; 10(6): 1018-1026, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38806655

RESUMEN

The endosperm is a reproductive tissue supporting embryo development. In most flowering plants, the initial divisions of endosperm nuclei are not succeeded by cellularization; this process occurs only after a specific number of mitotic cycles have taken place. The timing of cellularization significantly influences seed viability and size. Previous research implicated auxin as a key factor in initiating nuclear divisions and determining the timing of cellularization. Here we uncover the involvement of a family of clustered auxin response factors (cARFs) as dosage-sensitive regulators of endosperm cellularization. cARFs, maternally expressed and paternally silenced, are shown to induce cellularization, thereby restricting seed growth. Our findings align with the predictions of the parental conflict theory, suggesting that cARFs represent major molecular targets in this conflict. We further demonstrate a recurring amplification of cARFs in the Brassicaceae, suggesting an evolutionary response to parental conflict by reinforcing maternal control over endosperm cellularization. Our study highlights that antagonistic parental control on endosperm cellularization converges on auxin biosynthesis and signalling.


Asunto(s)
Arabidopsis , Endospermo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Endospermo/metabolismo , Endospermo/genética , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Brassicaceae/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo
6.
Cell ; 187(13): 3319-3337.e18, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38810645

RESUMEN

The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.


Asunto(s)
Brassicaceae , Flores , Regulación de la Expresión Génica de las Plantas , Brassicaceae/genética , Brassicaceae/fisiología , Productos Agrícolas/genética , Flores/genética , Flores/fisiología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Fenómenos Fisiológicos de las Plantas , Mapeo Cromosómico , Mutación
7.
Plant Cell Physiol ; 65(7): 1160-1172, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38590036

RESUMEN

Endoplasmic reticulum (ER)-derived organelles, ER bodies, participate in the defense against herbivores in Brassicaceae plants. ER bodies accumulate ß-glucosidases, which hydrolyze specialized thioglucosides known as glucosinolates to generate bioactive substances. In Arabidopsis thaliana, the leaf ER (LER) bodies are formed in large pavement cells, which are found in the petioles, margins and blades of rosette leaves. However, the regulatory mechanisms involved in establishing large pavement cells are unknown. Here, we show that the ARABIDOPSIS THALIANA MERISTEM L1 LAYER (ATML1) transcription factor regulates the formation of LER bodies in large pavement cells of rosette leaves. Overexpression of ATML1 enhanced the expression of LER body-related genes and the number of LER body-containing large pavement cells, whereas its knock-out resulted in opposite effects. ATML1 enhances endoreduplication and cell size through LOSS OF GIANT CELLS FROM ORGANS (LGO). Although the overexpression and knock-out of LGO affected the appearance of large pavement cells in Arabidopsis, the effect on LER body-related gene expression and LER body formation was weak. LER body-containing large pavement cells were also found in Eutrema salsugineum, another Brassicaceae species. Our results demonstrate that ATML1 establishes large pavement cells to induce LER body formation in Brassicaceae plants and thereby possibly contribute to the defense against herbivores.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/citología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Diferenciación Celular , Brassicaceae/genética , Brassicaceae/citología , Brassicaceae/metabolismo , Brassicaceae/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente , Endorreduplicación
8.
Nat Ecol Evol ; 8(6): 1129-1139, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38637692

RESUMEN

Self-incompatibility and recurrent transitions to self-compatibility have shaped the extant mating systems underlying the nonrandom mating critical for speciation in angiosperms. Linkage between self-incompatibility and speciation is illustrated by the shared pollen rejection pathway between self-incompatibility and interspecific unilateral incompatibility (UI) in the Brassicaceae. However, the pollen discrimination system that activates this shared pathway for heterospecific pollen rejection remains unknown. Here we show that Stigma UI3.1, the genetically identified stigma determinant of UI in Arabidopsis lyrata × Arabidopsis arenosa crosses, encodes the S-locus-related glycoprotein 1 (SLR1). Heterologous expression of A. lyrata or Capsella grandiflora SLR1 confers on some Arabidopsis thaliana accessions the ability to discriminate against heterospecific pollen. Acquisition of this ability also requires a functional S-locus receptor kinase (SRK), whose ligand-induced dimerization activates the self-pollen rejection pathway in the stigma. SLR1 interacts with SRK and interferes with SRK homomer formation. We propose a pollen discrimination system based on competition between basal or ligand-induced SLR1-SRK and SRK-SRK complex formation. The resulting SRK homomer levels would be sensed by the common pollen rejection pathway, allowing discrimination among conspecific self- and cross-pollen as well as heterospecific pollen. Our results establish a mechanistic link at the pollen recognition phase between self-incompatibility and interspecific incompatibility.


Asunto(s)
Arabidopsis , Polen , Arabidopsis/genética , Arabidopsis/fisiología , Brassicaceae/genética , Brassicaceae/fisiología , Autoincompatibilidad en las Plantas con Flores , Polinización , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Capsella/genética
9.
New Phytol ; 243(1): 58-71, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38655662

RESUMEN

Climate change is simultaneously increasing carbon dioxide concentrations ([CO2]) and temperature. These factors could interact to influence plant physiology and performance. Alternatively, increased [CO2] may offset costs associated with elevated temperatures. Furthermore, the interaction between elevated temperature and [CO2] may differentially affect populations from along an elevational gradient and disrupt local adaptation. We conducted a multifactorial growth chamber experiment to examine the interactive effects of temperature and [CO2] on fitness and ecophysiology of diverse accessions of Boechera stricta (Brassicaceae) sourced from a broad elevational gradient in Colorado. We tested whether increased [CO2] would enhance photosynthesis across accessions, and whether warmer conditions would depress the fitness of high-elevation accessions owing to steep reductions in temperature with increasing elevation in this system. Elevational clines in [CO2] are not as evident, making it challenging to predict how locally adapted ecotypes will respond to elevated [CO2]. This experiment revealed that elevated [CO2] increased photosynthesis and intrinsic water use efficiency across all accessions. However, these instantaneous responses to treatments did not translate to changes in fitness. Instead, increased temperatures reduced the probability of reproduction for all accessions. Elevated [CO2] and increased temperatures interacted to shift the adaptive landscape, favoring lower elevation accessions for the probability of survival and fecundity. Our results suggest that elevated temperatures and [CO2] associated with climate change could have severe negative consequences, especially for high-elevation populations.


Asunto(s)
Brassicaceae , Dióxido de Carbono , Fotosíntesis , Temperatura , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Brassicaceae/fisiología , Aptitud Genética , Altitud , Agua , Colorado , Cambio Climático , Reproducción
10.
Methods Mol Biol ; 2787: 39-53, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656480

RESUMEN

The study of natural variations in photosynthesis in the Brassicaceae family offers the possibility of identifying mechanisms to enhance photosynthetic efficiency in crop plants. Indeed, this family, and particularly its tribe Brassiceae, has been shown to harbor species that have a higher-than-expected photosynthetic efficiency, possibly as a result of a complex evolutionary history. Over the past two decades, methods have been developed to measure photosynthetic efficiency based on chlorophyll fluorescence. Chlorophyll fluorescence measurements are performed with special cameras, such as the FluorCams, which can be included in robotic systems to create high-throughput phenotyping platforms. While these platforms have so far demonstrated high efficiency in measuring small model species like Arabidopsis thaliana, they have the drawback of limited adaptability to accommodate different plant sizes. As a result, the range of species that can be analyzed is restricted. This chapter presents our approach to analyze the photosynthetic parameters: ϕPSII and Fv/Fm for a panel of Brassicaceae species, including a high-photosynthesis species, Hirschfeldia incana, and the adaptations to the phenotyping platform that are required to accommodate this varied group of plants.


Asunto(s)
Brassicaceae , Clorofila , Fotosíntesis , Brassicaceae/fisiología , Brassicaceae/metabolismo , Brassicaceae/genética , Clorofila/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Fenotipo , Fluorescencia
11.
Plant Cell ; 36(7): 2465-2490, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513609

RESUMEN

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.


Asunto(s)
Brassicaceae , Frutas , Regulación de la Expresión Génica de las Plantas , Germinación , Semillas , Temperatura , Germinación/genética , Germinación/fisiología , Semillas/genética , Semillas/fisiología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Brassicaceae/genética , Brassicaceae/fisiología , Brassicaceae/metabolismo , Frutas/genética , Frutas/fisiología , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma/genética , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Ácido Abscísico/metabolismo
12.
Plant J ; 116(3): 921-941, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37609706

RESUMEN

Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its lifecycle under multiple environmental stresses, including high salinity. Yet, the key physiological and structural traits underlying its stress-adapted lifestyle are unknown along with trade-offs when surviving salt stress at the expense of growth and reproduction. We aimed to identify the influential adaptive trait responses that lead to stress-resilient and uncompromised growth across developmental stages when treated with salt at levels known to inhibit growth in Arabidopsis and most crops. Its resilient growth was promoted by traits that synergistically allowed primary root growth in seedlings, the expansion of xylem vessels across the root-shoot continuum, and a high capacity to maintain tissue water levels by developing thicker succulent leaves while enabling photosynthesis during salt stress. A successful transition from vegetative to reproductive phase was initiated by salt-induced early flowering, resulting in viable seeds. Self-fertilization in salt-induced early flowering was dependent upon filament elongation in flowers otherwise aborted in the absence of salt during comparable plant ages. The maintenance of leaf water status promoting growth, and early flowering to ensure reproductive success in a changing environment, were among the most influential traits that contributed to the extremophytic lifestyle of S. parvula.


Asunto(s)
Arabidopsis , Brassicaceae , Brassicaceae/fisiología , Arabidopsis/fisiología , Flores , Estrés Salino , Estrés Fisiológico , Agua
13.
PLoS One ; 18(1): e0280246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36652493

RESUMEN

Annexins (Anns) play an important role in plant development, growth and responses to various stresses. Although Ann genes have been characterized in some plants, their role in adaptation mechanisms and tolerance to environmental stresses have not been studied in extremophile plants. In this study, Ann genes in Schrenkiella parvula and Eutrema salsugineum were identified using a genome-wide method and phylogenetic relationships, subcellular distribution, gene structures, conserved residues and motifs and also promoter prediction have been studied through bioinformatics analysis. We identified ten and eight encoding putative Ann genes in S. parvula and E. salsugineum genome respectively, which were divided into six subfamilies according to phylogenetic relationships. By observing conservation in gene structures and protein motifs we found that the majority of Ann members in two extremophile plants are similar. Furthermore, promoter analysis revealed a greater number of GATA, Dof, bHLH and NAC transcription factor binding sites, as well as ABRE, ABRE3a, ABRE4, MYB and Myc cis-acting elements in compare to Arabidopsis thaliana. To gain additional insight into the putative roles of candidate Ann genes, the expression of SpAnn1, SpAnn2 and SpAnn6 in S. parvula was studied in response to salt stress, which indicated that their expression level in shoot increased. Similarly, salt stress induced expression of EsAnn1, 5 and 7, in roots and EsAnn1, 2 and 5 in leaves of E. salsugineum. Our comparative analysis implies that both halophytes have different regulatory mechanisms compared to A. thaliana and suggest SpAnn2 gene play important roles in mediating salt stress.


Asunto(s)
Arabidopsis , Brassicaceae , Filogenia , Tolerancia a la Sal/genética , Brassicaceae/fisiología , Arabidopsis/metabolismo , Estrés Salino/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Am J Bot ; 109(11): 1939-1961, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36371714

RESUMEN

Model systems in biology expand the research capacity of individuals and the community. Closely related to Arabidopsis, the genus Boechera has emerged as an important ecological model owing to the ability to integrate across molecular, functional, and eco-evolutionary approaches. Boechera species are broadly distributed in relatively undisturbed habitats predominantly in western North America and provide one of the few experimental systems for identification of ecologically important genes through genome-wide association studies and investigations of selection with plants in their native habitats. The ecologically, evolutionarily, and agriculturally important trait of apomixis (asexual reproduction via seeds) is common in the genus, and field experiments suggest that abiotic and biotic environments shape the evolution of sex. To date, population genetic studies have focused on the widespread species B. stricta, detailing population divergence and demographic history. Molecular and ecological studies show that balancing selection maintains genetic variation in ~10% of the genome, and ecological trade-offs contribute to complex trait variation for herbivore resistance, flowering phenology, and drought tolerance. Microbiome analyses have shown that host genotypes influence leaf and root microbiome composition, and the soil microbiome influences flowering phenology and natural selection. Furthermore, Boechera offers numerous opportunities for investigating biological responses to global change. In B. stricta, climate change has induced a shift of >2 weeks in the timing of first flowering since the 1970s, altered patterns of natural selection, generated maladaptation in previously locally-adapted populations, and disrupted life history trade-offs. Here we review resources and results for this eco-evolutionary model system and discuss future research directions.


Asunto(s)
Apomixis , Arabidopsis , Brassicaceae , Estudio de Asociación del Genoma Completo , Brassicaceae/fisiología , Selección Genética , Fenotipo , Arabidopsis/genética
15.
Sci Total Environ ; 838(Pt 2): 155899, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35569660

RESUMEN

Biscutella laevigata is the strongest known thallium (Tl) hyperaccumulator plant species. However, little is known about the ecophysiological processes leading to root uptake and translocation of Tl in this species, and the interactions between Tl and its chemical analogue potassium (K). Biscutella laevigata was subjected to hydroponics experimentation in which it was exposed to Tl and K, and it was investigated in a rhizobox experiment. Laboratory-based micro-X-ray fluorescence spectroscopy (µ-XRF) was used to reveal the Tl distribution in the roots and leaves, while synchrotron-based µ-XRF was utilised to reveal elemental distribution in the seed. The results show that in the seed Tl was mainly localised in the endosperm and cotyledons. In mature plants, Tl was highest in the intermediate leaves (16,100 µg g-1), while it was one order of magnitude lower in the stem and roots. Potassium did not inhibit or enhance Tl uptake in B.laevigata. At the organ level, Tl was localised in the blade and margins of the leaves. Roots foraged for Tl and cycled Tl across roots growing in the control soils. Biscutella laevigata has ostensibly evolved specialised mechanisms to tolerate high Tl concentrations in its shoots. The lack of interactions and competition between Tl and K suggests that it is unlikely that Tl is taken up via K channels, but high affinity Tl transporters remain to be identified in this species. Thallium is not only highly toxic but also a valuable metal and Tl phytoextraction using B. laevigata should be explored.


Asunto(s)
Brassicaceae , Contaminantes del Suelo , Brassicaceae/fisiología , Plantas , Potasio , Suelo , Talio
16.
Physiol Plant ; 174(2): e13653, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35187664

RESUMEN

Overexpression of the vacuolar sugar transporter TST1 in Arabidopsis leads to higher seed lipid levels and higher total seed yield per plant. However, effects on fruit biomass have not been observed in crop plants like melon, strawberry, cotton, apple, or tomato with increased tonoplast sugar transporter (TST) activity. Thus, it was unclear whether overexpression of TST in selected crops might lead to increased fruit yield, as observed in Arabidopsis. Here, we report that constitutive overexpression of TST1 from sugar beet in the important crop species Camelina sativa (false flax) resembles the seed characteristics observed for Arabidopsis upon increased TST activity. These effects go along with a stimulation of sugar export from source leaves and not only provoke optimised seed properties like higher lipid levels and increased overall seed yield per plant, but also modify the root architecture of BvTST1 overexpressing Camelina lines. Such mutants grew longer primary roots and showed an increased number of lateral roots, especially when developed under conditions of limited water supply. These changes in root properties result in a stabilisation of total seed yield under drought conditions. In summary, we demonstrate that increased vacuolar TST activity may lead to optimised yield of an oil-seed crop species with high levels of healthy ω3 fatty acids in storage lipids. Moreover, since BvTST1 overexpressing Camelina mutants, in addition, exhibit optimised yield under limited water availability, we might devise a strategy to create crops with improved tolerance against drought, representing one of the most challenging environmental cues today and in future.


Asunto(s)
Arabidopsis , Beta vulgaris , Brassicaceae , Arabidopsis/genética , Beta vulgaris/genética , Brassicaceae/fisiología , Carbohidratos , Productos Agrícolas , Lípidos , Plantas Modificadas Genéticamente , Semillas/genética , Azúcares
17.
Trends Plant Sci ; 27(5): 472-487, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34848142

RESUMEN

Self-incompatibility (SI) is a mechanism that many plant families employ to prevent self-fertilization. In the Brassicaceae, the S-haplotype-specific interaction of the pollen-borne ligand, and a stigma-specific receptor protein kinase triggers a signaling cascade that culminates in the rejection of self-pollen. While the upstream molecular components at the receptor level of the signaling pathway have been extensively studied, the intracellular responses beyond receptor activation were not as well understood. Recent research has uncovered several key molecules and signaling events that operate in concert for the manifestation of the self-incompatible responses in Brassicaceae stigmas. Here, we review the recent discoveries in both the compatible and self-incompatible pathways and provide new perspectives on the early stages of Brassicaceae pollen-pistil interactions.


Asunto(s)
Brassicaceae , Brassicaceae/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/fisiología , Polinización , Proteínas Quinasas/metabolismo , Transducción de Señal
18.
Plant Physiol ; 186(4): 2137-2151, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618102

RESUMEN

When growing in search for light, plants can experience continuous or occasional shading by other plants. Plant proximity causes a decrease in the ratio of R to far-red light (low R:FR) due to the preferential absorbance of R light and reflection of FR light by photosynthetic tissues of neighboring plants. This signal is often perceived before actual shading causes a reduction in photosynthetically active radiation (low PAR). Here, we investigated how several Brassicaceae species from different habitats respond to low R:FR and low PAR in terms of elongation, photosynthesis, and photoacclimation. Shade-tolerant plants such as hairy bittercress (Cardamine hirsuta) displayed a good adaptation to low PAR but a poor or null response to low R:FR exposure. In contrast, shade-avoider species, such as Arabidopsis (Arabidopsis thaliana), showed a weak photosynthetic performance under low PAR but they strongly elongated when exposed to low R:FR. These responses could be genetically uncoupled. Most interestingly, exposure to low R:FR of shade-avoider (but not shade-tolerant) plants improved their photoacclimation to low PAR by triggering changes in photosynthesis-related gene expression, pigment accumulation, and chloroplast ultrastructure. These results indicate that low R:FR signaling unleashes molecular, metabolic, and developmental responses that allow shade-avoider plants (including most crops) to adjust their photosynthetic capacity in anticipation of eventual shading by nearby plants.


Asunto(s)
Aclimatación , Brassicaceae/fisiología , Luz , Brassicaceae/efectos de la radiación , Especificidad de la Especie
19.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34649989

RESUMEN

Deserts exert strong selection pressures on plants, but the underlying genomic drivers of ecological adaptation and subsequent speciation remain largely unknown. Here, we generated de novo genome assemblies and conducted population genomic analyses of the psammophytic genus Pugionium (Brassicaceae). Our results indicated that this bispecific genus had undergone an allopolyploid event, and the two parental genomes were derived from two ancestral lineages with different chromosome numbers and structures. The postpolyploid expansion of gene families related to abiotic stress responses and lignin biosynthesis facilitated environmental adaptations of the genus to desert habitats. Population genomic analyses of both species further revealed their recent divergence with continuous gene flow, and the most divergent regions were found to be centered on three highly structurally reshuffled chromosomes. Genes under selection in these regions, which were mainly located in one of the two subgenomes, contributed greatly to the interspecific divergence in microhabitat adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Brassicaceae/genética , Ecosistema , Especiación Genética , Genoma de Planta , Brassicaceae/clasificación , Brassicaceae/fisiología , Filogenia , Poliploidía
20.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576106

RESUMEN

We investigated low-temperature plasma effects on two Brassicaceae seeds (A. thaliana and C. sativa) using dielectric barrier discharge in air. Comparisons of plasma treatments on seeds showed distinct responses on germination rate and speed. Optimal treatment time giving optimal germination is 15 min for A. thaliana with 85% increase compared to control after 48 h of germination and 1 min for C. sativa with 75% increase compared to control after 32 h of germination. Such germination increases are associated with morphological changes shown by SEM of seed surface. For better understanding at the biochemical level, seed surfaces were analyzed using gas chromatography-mass spectrometry which underlined changes of lipidic composition. For both treated seeds, there is a decrease of saturated (palmitic and stearic) fatty acids while treated C. sativa showed a decrease of unsaturated (oleic and linoleic) acids and treated A. thaliana an increase of unsaturated ones. Such lipid changes, specifically a decrease of hydrophobic saturated fatty acids, are coherent with the other analyses (SEM, water uptake and contact angle). Moreover, an increase in A. thaliana of unsaturated acids (very reactive) probably neutralizes plasma RONS effects thus needing longer plasma exposure time (15 min) to reach optimal germination. For C. sativa, 1 min is enough because unsaturated linoleic acid becomes lower in treated C. sativa (1.2 × 107) compared to treated A. thaliana (3.7 × 107).


Asunto(s)
Aire , Arabidopsis/fisiología , Brassicaceae/fisiología , Electricidad , Gases em Plasma/farmacología , Semillas/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/ultraestructura , Brassicaceae/efectos de los fármacos , Brassicaceae/ultraestructura , Ácidos Grasos/metabolismo , Germinación/efectos de los fármacos , Lipidómica , Permeabilidad , Semillas/anatomía & histología , Semillas/ultraestructura , Factores de Tiempo , Agua , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...