Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 7(1): 2385, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28539614

RESUMEN

A potential strategy to cure HIV-1 infection is to use latency reversing agents (LRAs) to eliminate latent reservoirs established in resting CD4+ T (rCD4+) cells. As no drug has been shown to be completely effective, finding new drugs and combinations are of increasing importance. We studied the effect of Maraviroc (MVC), a CCR5 antagonist that activates NF-κB, on HIV-1 replication from latency. HIV-1-latency models based on CCL19 or IL7 treatment, before HIV-1 infection were used. Latently infected primary rCD4+ or central memory T cells were stimulated with MVC alone or in combination with Bryostatin-1, a PKC agonist known to reverse HIV-1 latency. MVC 5 µM and 0.31 µM were chosen for further studies although other concentrations of MVC also increased HIV-1 replication. MVC was as efficient as Bryostatin-1 in reactivating X4 and R5-tropic HIV-1. However, the combination of MVC and Bryostatin-1 was antagonistic, probably because Bryostatin-1 reduced CCR5 expression levels. Although HIV-1 reactivation had the same tendency in both latency models, statistical significance was only achieved in IL7-treated cells. These data suggest that MVC should be regarded as a new LRA with potency similar as Bryostatin-1. Further studies are required to describe the synergistic effect of MVC with other LRAs.


Asunto(s)
Brioestatinas/farmacología , Antagonistas de los Receptores CCR5/farmacología , VIH-1/efectos de los fármacos , Interacciones Huésped-Patógeno , Maraviroc/farmacología , Latencia del Virus/efectos de los fármacos , Brioestatinas/antagonistas & inhibidores , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Proliferación Celular/efectos de los fármacos , Quimiocina CCL19/farmacología , Regulación de la Expresión Génica , VIH-1/genética , VIH-1/metabolismo , Humanos , Interleucina-7/farmacología , FN-kappa B/genética , FN-kappa B/metabolismo , Cultivo Primario de Células , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Transducción de Señal , Replicación Viral/efectos de los fármacos
2.
Biochem Pharmacol ; 120: 15-21, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27664855

RESUMEN

Previously, we reported that salicylate-based analogs of bryostatin protect cells from chikungunya virus (CHIKV)-induced cell death. Interestingly, 'capping' the hydroxyl group at C26 of a lead bryostatin analog, a position known to be crucial for binding to and modulation of protein kinase C (PKC), did not abrogate the anti-CHIKV activity of the scaffold, putatively indicating the involvement of a pathway independent of PKC. The work detailed in this study demonstrates that salicylate-derived analog 1 and two capped analogs (2 and 3) are not merely cytoprotective compounds, but act as selective and specific inhibitors of CHIKV replication. Further, a detailed comparative analysis of the effect of the non-capped versus the two capped analogs revealed that compound 1 acts both at early and late stages in the chikungunya virus replication cycle, while the capped analogs only interfere with a later stage process. Co-dosing with the PKC inhibitors sotrastaurin and Gö6976 counteracts the antiviral activity of compound 1 without affecting that of capped analogs 2 and 3, providing further evidence that the latter elicit their anti-CHIKV activity independently of PKC. Remarkably, treatment of CHIKV-infected cells with a combination of compound 1 and a capped analog resulted in a pronounced synergistic antiviral effect. Thus, these salicylate-based bryostatin analogs can inhibit CHIKV replication through a novel, yet still elusive, non-PKC dependent pathway.


Asunto(s)
Antivirales/farmacología , Brioestatinas/farmacología , Virus Chikungunya/efectos de los fármacos , Diseño de Fármacos , Proteína Quinasa C/metabolismo , Proteínas Virales/metabolismo , Acetilación , Animales , Antivirales/agonistas , Antivirales/antagonistas & inhibidores , Antivirales/química , Brioestatinas/agonistas , Brioestatinas/antagonistas & inhibidores , Brioestatinas/química , Carbazoles/química , Carbazoles/farmacología , Línea Celular , Virus Chikungunya/crecimiento & desarrollo , Virus Chikungunya/metabolismo , Chlorocebus aethiops , Sinergismo Farmacológico , Regulación Viral de la Expresión Génica/efectos de los fármacos , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Metilación , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/química , Proteína Quinasa C/genética , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirroles/química , Pirroles/farmacología , Quinazolinas/química , Quinazolinas/farmacología , Virus de los Bosques Semliki/efectos de los fármacos , Virus de los Bosques Semliki/crecimiento & desarrollo , Virus de los Bosques Semliki/metabolismo , Virus Sindbis/efectos de los fármacos , Virus Sindbis/crecimiento & desarrollo , Virus Sindbis/metabolismo , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...