Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 4(1): 1045, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493791

RESUMEN

Glycosylation is increasingly recognised as a common protein modification within bacterial proteomes. While great strides have been made in identifying species that contain glycosylation systems, our understanding of the proteins and sites targeted by these systems is far more limited. Within this work we explore the conservation of glycoproteins and glycosylation sites across the pan-Burkholderia glycoproteome. Using a multi-protease glycoproteomic approach, we generate high-confidence glycoproteomes in two widely utilized B. cenocepacia strains, K56-2 and H111. This resource reveals glycosylation occurs exclusively at Serine residues and that glycoproteins/glycosylation sites are highly conserved across B. cenocepacia isolates. This preference for glycosylation at Serine residues is observed across at least 9 Burkholderia glycoproteomes, supporting that Serine is the dominant residue targeted by PglL-mediated glycosylation across the Burkholderia genus. Combined, this work demonstrates that PglL enzymes of the Burkholderia genus are Serine-preferring oligosaccharyltransferases that target conserved and shared protein substrates.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/enzimología , Glicoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Glicosilación
2.
Nature ; 583(7817): 631-637, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32641830

RESUMEN

Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques1,2. Because previously described cytidine deaminases operate on single-stranded nucleic acids3, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria4. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases9,10.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.


Asunto(s)
Toxinas Bacterianas/metabolismo , Citidina Desaminasa/metabolismo , ADN Mitocondrial/genética , Edición Génica/métodos , Genes Mitocondriales/genética , Mitocondrias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Secuencia de Bases , Burkholderia cenocepacia/enzimología , Burkholderia cenocepacia/genética , Respiración de la Célula/genética , Citidina/metabolismo , Citidina Desaminasa/química , Citidina Desaminasa/genética , Genoma Mitocondrial/genética , Células HEK293 , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Mutación , Fosforilación Oxidativa , Ingeniería de Proteínas , ARN Guía de Kinetoplastida/genética , Especificidad por Sustrato , Sistemas de Secreción Tipo VI/metabolismo
3.
Chembiochem ; 21(11): 1587-1592, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-31945256

RESUMEN

Only a few natural products incorporating a diazeniumdiolate moiety have been isolated, and these compounds usually display a broad range of biological activities. Only recently has the first diazeniumdiolate natural product biosynthetic gene cluster been identified in Burkholderia cenocepacia H111, which produces the fungicide (-)-fragin and the signal molecule rac-valdiazen. In this study, l-valine was identified as the initial substrate of (-)-fragin biosynthesis with the aid of feeding experiments using isotopically labelled amino acid. The formation of the diazeniumdiolate was chemically studied with several proposed intermediates. Our results indicate that the functional group is formed during an early stage of the biosynthesis. Furthermore, an oxime compound was identified as a degradation product of (-)-fragin and was also observed in the crude extract of the wild-type strain. Moreover, a structure-activity relationship analysis revealed that each moiety of (-)-fragin is essential for its biological activity.


Asunto(s)
Antifúngicos/metabolismo , Compuestos Azo/metabolismo , Proteínas Bacterianas/metabolismo , Productos Biológicos/metabolismo , Burkholderia cenocepacia/enzimología , Genoma Bacteriano , Oxidorreductasas/metabolismo , Antifúngicos/química , Antifúngicos/farmacología , Compuestos Azo/química , Compuestos Azo/farmacología , Proteínas Bacterianas/genética , Productos Biológicos/química , Productos Biológicos/farmacología , Burkholderia cenocepacia/genética , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Oxidorreductasas/genética , Relación Estructura-Actividad , Especificidad por Sustrato , Valina/química , Valina/metabolismo
4.
Biochemistry ; 58(38): 3960-3970, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31469273

RESUMEN

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGR), in most organisms, catalyzes the four-electron reduction of the thioester (S)-HMG-CoA to the primary alcohol (R)-mevalonate, utilizing NADPH as the hydride donor. In some organisms, including the opportunistic lung pathogen Burkholderia cenocepacia, it catalyzes the reverse reaction, utilizing NAD+ as a hydride acceptor in the oxidation of mevalonate. B. cenocepacia HMGR has been previously shown to exist as an ensemble of multiple non-additive oligomeric states, each with different levels of enzymatic activity, suggesting that the enzyme exhibits characteristics of the morpheein model of allostery. We have characterized a number of factors, including pH, substrate concentration, and enzyme concentration, that modulate the structural transitions that influence the interconversion among the multiple oligomers. We have also determined the crystal structure of B. cenocepacia HMGR in the hexameric state bound to coenzyme A and ADP. This hexameric assembly provides important clues about how the transition among oligomers might occur, and why B. cenocepacia HMGR, unique among characterized HMGRs, exhibits morpheein-like behavior.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/enzimología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Estructura Cuaternaria de Proteína , Adenosina Trifosfato/química , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Coenzima A/química , Cristalografía por Rayos X , Pruebas de Enzimas , Hidroximetilglutaril-CoA Reductasas/química , Hidroximetilglutaril-CoA Reductasas/aislamiento & purificación , Simulación de Dinámica Molecular , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
5.
Chembiochem ; 20(23): 2936-2948, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31233657

RESUMEN

4-Amino-4-deoxy-l-arabinopyranose (Ara4N) residues have been linked to antibiotic resistance due to reduction of the negative charge in the lipid A and core regions of the bacterial lipopolysaccharide (LPS). To study the enzymatic transfer of Ara4N onto lipid A, which is catalysed by the ArnT transferase, we chemically synthesised a series of anomeric phosphodiester-linked lipid Ara4N derivatives containing linear aliphatic chains as well as E- and Z-configured monoterpene units. Coupling reactions were based on sugar-derived H-phosphonates, followed by oxidation and global deprotection. The enzymatic Ara4N transfer was performed in vitro with crude membranes from a deep-rough mutant from Escherichia coli as acceptor. Product formation was detected by TLC and LC-ESI-QTOF mass spectrometry. Out of seven analogues tested, only the α-neryl derivative was accepted by the Burkholderia cenocepacia ArnT protein, leading to substitution of the Kdo2 -lipid A acceptor and thus affording evidence that ArnT is an inverting glycosyl transferase that requires the Z-configured double bond next to the anomeric phosphate moiety. This approach provides an easily accessible donor substrate for biochemical studies relating to modifications of bacterial LPS that modulate antibiotic resistance and immune recognition.


Asunto(s)
Amino Azúcares/química , Proteínas Bacterianas/química , Lípido A/química , Pentosiltransferasa/química , Amino Azúcares/síntesis química , Burkholderia cenocepacia/enzimología , Pruebas de Enzimas , Escherichia coli/química , Organofosfatos/síntesis química , Organofosfatos/química , Organofosfonatos/síntesis química , Organofosfonatos/química , Especificidad por Sustrato
6.
Int J Biol Macromol ; 122: 914-923, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445665

RESUMEN

Biocatalysis in presence of organic solvents has numerous industrially attractive advantages in comparison to traditional aqueous solvents. In some cases, the presence of organic molecules such as methanol in the processes such as enzymatic production of biodiesel is inevitable. However, enzyme inactivation and/or instability in organic solvents limits such biotechnological processes. Although it was found that some enzymes are more and others are less tolerant against organic solvents, the structural basis of such differences is relatively unknown. In this work, using molecular dynamics simulations, we have investigated the structural behavior of enzymes with completely different structural architecture including lipase, laccase and lysozyme in the presence of methanol as polar and hexane as non-polar organic solvents. In agreement with the previous experimental observations, simulations showed that lipase is more tolerant against both polar and non-polar organic solvents. It is found that lipase has high stability in pure hexane even higher than that obtained in the aqueous solvent. In contrast, laccase shows better stability in the aqueous conditions. To obtain general mechanism of enzyme inactivation in the presence of methanol and hexane, we have treated lysozyme as model enzyme in the different percentages of these solvents in long MD simulations. It is found that lysozyme is completely denatured at high concentration- of methanol, but it remains native at low concentration of this solvent. Interestingly, the concentration-dependence structural behavior of enzyme was completely different in the presence of hexane. It was obtained that low concentrations of hexane may impose more instability on the enzyme conformation than higher percentages. Results also showed that presence of water is determining factor in the enzyme stability at high concentrations of hexane. Pure hexane may also lead to the surface denaturation of the enzymes. Both methanol and hexane denaturation mechanisms were initiated by diffusion of organic solvent in hydrophobic core. However, enzyme denaturation in hexane was continued by a collapse of hydrophobic core and entering hexane molecules to the core, but in methanol it was completed by decomposition of the secondary structures. In both cases it was found that beta structures are more prone to destabilize than helix structures. This may be a reason for obtained results about lower stability of laccase with ß-barrel architecture than lipase with multiple helixes at it surface. In total, by our extensive structural data, it was found that the forces which stabilize tertiary structure have pivotal role in enzyme tolerance against both polar and non-polar organic solvents.


Asunto(s)
Lipasa/química , Simulación de Dinámica Molecular , Solventes/farmacología , Burkholderia cenocepacia/enzimología , Dominio Catalítico/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Trametes/enzimología
7.
Chem Commun (Camb) ; 54(75): 10630-10633, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30178799
8.
Appl Biochem Biotechnol ; 184(4): 1319-1331, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29022160

RESUMEN

(R)-3, 5-Bis(trifluoromethyl)phenyl ethanol is a key chiral intermediate for the synthesis of aprepitant. Through a genome mining approach, an NADPH-dependent short-chain dehydrogenases derived from Burkholderia cenocepacia (Bc-SDR) was discovered with excellent anti-Prelog's stereoselectivity of reducing 3, 5-bis(trifluoromethyl) acetophenone. The enzyme with 247 amino acids was successfully expressed in Escherichia coli and the molecular weight was about 26 kDa. Optimization of reaction conditions showed that the optimum temperature and pH of the enzyme was 25 °C and pH 7.0, respectively. Strong enhancement of enzyme activity was observed in the presence of 1 mM Mn2+. In addition, Bc-SDR exhibited (R)-selective enantioselectivity toward acetophenone derivatives, which makes it a potential catalyst for obtaining aromatic chiral alcohols as useful blocks in pharmaceutical applications.


Asunto(s)
Acetofenonas/metabolismo , Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/genética , Escherichia coli/metabolismo , Hidrocarburos Fluorados/metabolismo , Oxidorreductasas/metabolismo , Proteínas Bacterianas/genética , Burkholderia cenocepacia/enzimología , Escherichia coli/genética , Oxidorreductasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
PLoS One ; 11(11): e0167350, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27898711

RESUMEN

The greatest obstacle for the treatment of cystic fibrosis patients infected with the Burkholderia species is their intrinsic antibiotic resistance. For this reason, there is a need to develop new effective compounds. Glutamate racemase, an essential enzyme for the biosynthesis of the bacterial cell wall, is an excellent candidate target for the design of new antibacterial drugs. To this aim, we recombinantly produced and characterized glutamate racemase from Burkholderia cenocepacia J2315. From the screening of an in-house library of compounds, two Zn (II) and Mn (III) 1,3,5-triazapentadienate complexes were found to efficiently inhibit the glutamate racemase activity with IC50 values of 35.3 and 10.0 µM, respectively. Using multiple biochemical approaches, the metal complexes have been shown to affect the enzyme activity by binding to the enzyme-substrate complex and promoting the formation of an inhibited dimeric form of the enzyme. Our results corroborate the value of glutamate racemase as a good target for the development of novel inhibitors against Burkholderia.


Asunto(s)
Isomerasas de Aminoácido/antagonistas & inhibidores , Isomerasas de Aminoácido/metabolismo , Burkholderia cenocepacia/enzimología , Complejos de Coordinación/farmacología , Inhibidores Enzimáticos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Infecciones por Burkholderia/microbiología , Burkholderia cenocepacia/efectos de los fármacos , Burkholderia cenocepacia/aislamiento & purificación , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Sistemas de Liberación de Medicamentos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Concentración 50 Inhibidora , Cinética , Manganeso/química , Pruebas de Sensibilidad Microbiana , Unión Proteica , Estabilidad Proteica , Zinc/química
10.
Sci Rep ; 6: 32487, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27580679

RESUMEN

Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Burkholderia cenocepacia/efectos de los fármacos , Dicetopiperazinas/farmacología , Inhibidores Enzimáticos/farmacología , Ligasas/antagonistas & inhibidores , Percepción de Quorum/efectos de los fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/antagonistas & inhibidores , 4-Butirolactona/biosíntesis , 4-Butirolactona/genética , Animales , Antibacterianos/síntesis química , Biopelículas/crecimiento & desarrollo , Burkholderia cenocepacia/enzimología , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/patogenicidad , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/microbiología , Supervivencia Celular/efectos de los fármacos , Clonación Molecular , Dicetopiperazinas/síntesis química , Inhibidores Enzimáticos/síntesis química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HeLa , Humanos , Ligasas/genética , Ligasas/metabolismo , Percepción de Quorum/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Virulencia
11.
Cell Host Microbe ; 19(5): 664-74, 2016 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-27133449

RESUMEN

Burkholderia cenocepacia is an opportunistic pathogen of the cystic fibrosis lung that elicits a strong inflammatory response. B. cenocepacia employs a type VI secretion system (T6SS) to survive in macrophages by disarming Rho-type GTPases, causing actin cytoskeletal defects. Here, we identified TecA, a non-VgrG T6SS effector responsible for actin disruption. TecA and other bacterial homologs bear a cysteine protease-like catalytic triad, which inactivates Rho GTPases by deamidating a conserved asparagine in the GTPase switch-I region. RhoA deamidation induces caspase-1 inflammasome activation, which is mediated by the familial Mediterranean fever disease protein Pyrin. In mouse infection, the deamidase activity of TecA is necessary and sufficient for B. cenocepacia-triggered lung inflammation and also protects mice from lethal B. cenocepacia infection. Therefore, Burkholderia TecA is a T6SS effector that modifies a eukaryotic target through an asparagine deamidase activity, which in turn elicits host cell death and inflammation through activation of the Pyrin inflammasome.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Burkholderia/enzimología , Infecciones por Burkholderia/inmunología , Burkholderia cenocepacia/inmunología , Inflamasomas/metabolismo , Pirina/inmunología , Proteínas de Unión al GTP rho/inmunología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Animales , Infecciones por Burkholderia/metabolismo , Burkholderia cenocepacia/enzimología , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Caspasa 1/metabolismo , Línea Celular , Células HEK293 , Humanos , Inflamación/enzimología , Inflamación/inmunología , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Neumonía/enzimología , Neumonía/inmunología , Pirina/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
12.
Antimicrob Agents Chemother ; 60(4): 2516-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26787686

RESUMEN

The treatment ofStenotrophomonas maltophiliainfection with ß-lactam antibiotics leads to increased release of outer membrane vesicles (OMVs), which are packed with two chromosomally encoded ß-lactamases. Here, we show that these ß-lactamase-packed OMVs are capable of establishing extracellular ß-lactam degradation. We also show that they dramatically increase the apparent MICs of imipenem and ticarcillin for the cohabituating speciesPseudomonas aeruginosaandBurkholderia cenocepacia.


Asunto(s)
Burkholderia cenocepacia/genética , Vesículas Extracelulares/enzimología , Pseudomonas aeruginosa/genética , Stenotrophomonas maltophilia/genética , Resistencia betalactámica/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Burkholderia cenocepacia/efectos de los fármacos , Burkholderia cenocepacia/enzimología , Membrana Celular/química , Conjugación Genética , Vesículas Extracelulares/química , Expresión Génica , Transferencia de Gen Horizontal , Hidrólisis , Imipenem/farmacología , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Stenotrophomonas maltophilia/efectos de los fármacos , Stenotrophomonas maltophilia/enzimología , Ticarcilina/farmacología , beta-Lactamasas/genética
13.
Glycobiology ; 26(3): 286-300, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26515403

RESUMEN

ArnT is a glycosyltransferase that catalyzes the addition of 4-amino-4-deoxy-l-arabinose (l-Ara4N) to the lipid A moiety of the lipopolysaccharide. This is a critical modification enabling bacteria to resist killing by antimicrobial peptides. ArnT is an integral inner membrane protein consisting of 13 predicted transmembrane helices and a large periplasmic C-terminal domain. We report here the identification of a functional motif with a canonical consensus sequence DEXRYAX(5)MX(3)GXWX(9)YFEKPX(4)W spanning the first periplasmic loop, which is highly conserved in all ArnT proteins examined. Site-directed mutagenesis demonstrated the contribution of this motif in ArnT function, suggesting that these proteins have a common mechanism. We also demonstrate that the Burkholderia cenocepacia and Salmonella enterica serovar Typhimurium ArnT C-terminal domain is required for polymyxin B resistance in vivo. Deletion of the C-terminal domain in B. cenocepacia ArnT resulted in a protein with significantly reduced in vitro binding to a lipid A fluorescent substrate and unable to catalyze lipid A modification with l-Ara4N. An in silico predicted structural model of ArnT strongly resembled the tertiary structure of Campylobacter lari PglB, a bacterial oligosaccharyltransferase involved in protein N-glycosylation. Therefore, distantly related oligosaccharyltransferases from ArnT and PglB families operating on lipid and polypeptide substrates, respectively, share unexpected structural similarity that could not be predicted from direct amino acid sequence comparisons. We propose that lipid A and protein glycosylation enzymes share a conserved catalytic mechanism despite their evolutionary divergence.


Asunto(s)
Amino Azúcares/química , Hexosiltransferasas/química , Lipopolisacáridos/metabolismo , Secuencias de Aminoácidos/genética , Amino Azúcares/genética , Amino Azúcares/metabolismo , Arabinosa/química , Arabinosa/metabolismo , Burkholderia cenocepacia/enzimología , Escherichia coli/enzimología , Glicosilación , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Lípido A/química , Lípido A/metabolismo , Lipopolisacáridos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Salmonella enterica/enzimología
14.
Genetika ; 51(8): 864-72, 2015 Aug.
Artículo en Ruso | MEDLINE | ID: mdl-26601485

RESUMEN

To study the role of Quorum Sensing (QS) regulation in the control of the cellular processes of Burkholderia cenocepacia 370, plasmid pME6863 was transferred into its cells. The plasmid contains a heterologous gene encoding for AiiA N-acyl-homoserine lactonase, which degrades the signaling molecules of the QS system of N-acyl-homoserine lactones (AHL). An absence or reduction of AHL in the culture was revealed with the biosensors Chromobacterium violaceum CV026 and Agrobacterium tumifaciens NT1/pZLR4, respectively. The presence of the aiiA gene, which was cloned from Bacillus sp. A24 in the cells of B. cenocepacia 370, resulted in a lack of hemolytic activity, which reduced the extracellular proteolytic activity and decreased the cells' ability to migration in swarms on the surface of the agar medium. The introduction of the aiiA gene did not affect lipase activity, fatty acids synthesis, HCN synthesis, or biofilm formation. Hydrogen peroxide was shown to stimulate biofilm formation by B. cenocepacia 370 in concentrations that inhibited or weakly suppressed bacterial growth. The introduction of the aiiA gene into the cells did not eliminate this effect but it did reduce it.


Asunto(s)
Acil-Butirolactonas/metabolismo , Burkholderia cenocepacia/genética , Hidrolasas de Éster Carboxílico/genética , Percepción de Quorum/genética , Agrobacterium/genética , Bacillus/enzimología , Bacillus/genética , Biopelículas/crecimiento & desarrollo , Técnicas Biosensibles , Burkholderia cenocepacia/enzimología , Burkholderia cenocepacia/crecimiento & desarrollo , Hidrolasas de Éster Carboxílico/metabolismo , Movimiento Celular/genética , Chromobacterium/genética
15.
Appl Environ Microbiol ; 81(24): 8469-77, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26431972

RESUMEN

The nitrilase-mediated pathway has significant advantages in the production of optically pure aromatic α-hydroxy carboxylic acids. However, low enantioselectivity and activity are observed on hydrolyzing o-chloromandelonitrile to produce optically pure (R)-o-chloromandelic acid. In the present study, a protein engineering approach was successfully used to enhance the performance of nitrilase obtained from Burkholderia cenocepacia strain J2315 (BCJ2315) in hydrolyzing o-chloromandelonitrile. Four hot spots (T49, I113, Y199, and T310) responsible for the enantioselectivity and activity of BCJ2315 were identified by random mutagenesis. An effective double mutant (I113M/Y199G [encoding the replacement of I with M at position 113 and Y with G at position 199]), which demonstrated remarkably enhanced enantioselectivity (99.1% enantiomeric excess [ee] compared to 89.2% ee for the wild type) and relative activity (360% of the wild type), was created by two rounds of site saturation mutagenesis, first at each of the four hot spots and subsequently at position 199 for combination with the selected beneficial mutation I113M. Notably, this mutant also demonstrated dramatically enhanced enantioselectivity and activity toward other mandelonitrile derivatives and, thus, broadened the substrate scope of this nitrilase. Using an ethyl acetate-water (1:9) biphasic system, o-chloromandelonitrile (500 mM) was completely hydrolyzed in 3 h by this mutant with a small amount of biocatalyst (10 g/liter wet cells), resulting in a high concentration of (R)-o-chloromandelic acid with 98.7% ee, to our knowledge the highest ever reported. This result highlights a promising method for industrial production of optically pure (R)-o-chloromandelic acid. Insight into the source of enantioselectivity and activity was gained by homology modeling and molecular docking experiments.


Asunto(s)
Aminohidrolasas/genética , Reactores Biológicos/microbiología , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Ácidos Mandélicos/metabolismo , Ingeniería de Proteínas/métodos , Aminohidrolasas/metabolismo , Burkholderia cenocepacia/enzimología , Química Farmacéutica/métodos , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato
16.
Genome Biol ; 16: 88, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25924720

RESUMEN

BACKGROUND: Protein domains display a range of structural diversity, with numerous additions and deletions of secondary structural elements between related domains. We have observed a small number of cases of surprising large-scale deletions of core elements of structural domains. We propose a new concept called domain atrophy, where protein domains lose a significant number of core structural elements. RESULTS: Here, we implement a new pipeline to systematically identify new cases of domain atrophy across all known protein sequences. The output of this pipeline was carefully checked by hand, which filtered out partial domain instances that were unlikely to represent true domain atrophy due to misannotations or un-annotated sequence fragments. We identify 75 cases of domain atrophy, of which eight cases are found in a three-dimensional protein structure and 67 cases have been inferred based on mapping to a known homologous structure. Domains with structural variations include ancient folds such as the TIM-barrel and Rossmann folds. Most of these domains are observed to show structural loss that does not affect their functional sites. CONCLUSION: Our analysis has significantly increased the known cases of domain atrophy. We discuss specific instances of domain atrophy and see that there has often been a compensatory mechanism that helps to maintain the stability of the partial domain. Our study indicates that although domain atrophy is an extremely rare phenomenon, protein domains under certain circumstances can tolerate extreme mutations giving rise to partial, but functional, domains.


Asunto(s)
Proteínas Bacterianas/genética , Eliminación de Gen , Genes Bacterianos , Luciferasas/genética , Oxidorreductasas/genética , Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/enzimología , Burkholderia cenocepacia/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cryptococcus/enzimología , Cryptococcus/genética , Escherichia coli/enzimología , Escherichia coli/genética , Evolución Molecular , Humanos , Lactobacillus/enzimología , Lactobacillus/genética , Luciferasas/metabolismo , Modelos Moleculares , Oxidorreductasas/metabolismo , Photobacterium/enzimología , Photobacterium/genética , Filogenia , Estructura Terciaria de Proteína , Pyrococcus furiosus/enzimología , Pyrococcus furiosus/genética , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética
17.
Biochem J ; 462(3): 581-9, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24942958

RESUMEN

Tryptophan is an important precursor for chemical entities that ultimately support the biosynthesis of key metabolites. The second stage of tryptophan catabolism is catalysed by kynurenine formamidase, an enzyme that is different between eukaryotes and prokaryotes. In the present study, we characterize the catalytic properties and present the crystal structures of three bacterial kynurenine formamidases. The structures reveal a new amidase protein fold, a highly organized and distinctive binuclear Zn2+ catalytic centre in a confined, hydrophobic and relatively rigid active site. The structure of a complex with 2-aminoacetophenone delineates aspects of molecular recognition extending to the observation that the substrate itself may be conformationally restricted to assist binding in the confined space of the active site and for subsequent processing. The cations occupy a crowded environment, and, unlike most Zn2+-dependent enzymes, there is little scope to increase co-ordination number during catalysis. We propose that the presence of a bridging water/hydroxide ligand in conjunction with the placement of an active site histidine supports a distinctive amidation mechanism.


Asunto(s)
Arilformamidasa/química , Zinc/metabolismo , Arilformamidasa/metabolismo , Bacillus anthracis/enzimología , Biocatálisis , Burkholderia cenocepacia/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Cinética , Conformación Proteica , Pseudomonas aeruginosa/enzimología
18.
Glycobiology ; 24(6): 564-76, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24688094

RESUMEN

The cell wall peptidoglycan (PG) of Burkholderia cenocepacia, an opportunistic pathogen, has not yet been characterized. However, the B. cenocepacia genome contains homologs of genes encoding PG biosynthetic functions in other bacteria. PG biosynthesis involves the formation of the undecaprenyl-pyrophosphate-linked N-acetyl glucosamine-N-acetyl muramic acid-pentapeptide, known as lipid II, which is built on the cytosolic face of the cell membrane. Lipid II is then translocated across the membrane and its glycopeptide moiety becomes incorporated into the growing cell wall mesh; this translocation step is critical to PG synthesis. We have investigated candidate flippase homologs of the MurJ family in B. cenocepacia. Our results show that BCAL2764, herein referred to as murJBc, is indispensable for viability. Viable B. cenocepacia could only be obtained through a conditional mutagenesis strategy by placing murJBc under the control of a rhamnose-inducible promoter. Under rhamnose depletion, the conditional strain stopped growing and individual cells displayed morphological abnormalities consistent with a defect in PG synthesis. Bacterial cells unable to express MurJBc underwent cell lysis, while partial MurJBc depletion sensitized the mutant to the action of ß-lactam antibiotics. Depletion of MurJBc caused accumulation of PG precursors consistent with the notion that this protein plays a role in lipid II flipping to the periplasmic compartment. Reciprocal complementation experiments of conditional murJ mutants in B. cenocepacia and Escherichia coli with plasmids expressing MurJ from each strain indicated that MurJBc and MurJEc are functional homologs. Together, our results are consistent with the notion that MurJBc is a PG lipid II flippase in B. cenocepacia.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Peptidoglicano/biosíntesis , Proteínas Bacterianas/genética , Burkholderia cenocepacia/enzimología , Burkholderia cenocepacia/genética , Pared Celular/química , Escherichia coli/genética , Escherichia coli/metabolismo , Viabilidad Microbiana/genética , Homología de Secuencia de Aminoácido , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo
19.
Mol Microbiol ; 92(1): 116-37, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24673753

RESUMEN

Bacteria of the Burkholderia cepacia complex (Bcc) are pathogens of humans, plants, and animals. Burkholderia cenocepacia is one of the most common Bcc species infecting cystic fibrosis (CF) patients and its carriage is associated with poor prognosis. In this study, we characterized a general O-linked protein glycosylation system in B. cenocepacia K56-2. The PglLBc O-oligosaccharyltransferase (O-OTase), encoded by the cloned gene bcal0960, was shown to be capable of transferring a heptasaccharide from the Campylobacter jejuni N-glycosylation system to a Neisseria meningitides-derived acceptor protein in an Escherichia coli background, indicating that the enzyme has relaxed specificities for both the sugar donor and protein acceptor. In B cenocepacia K56-2, PglLBc is responsible for the glycosylation of 23 proteins involved in diverse cellular processes. Mass spectrometry analysis revealed that these proteins are modified with a trisaccharide HexNAc-HexNAc-Hex, which is unrelated to the O-antigen biosynthetic process. The glycosylation sites that were identified existed within regions of low complexity, rich in serine, alanine, and proline. Disruption of bcal0960 abolished glycosylation and resulted in reduced swimming motility and attenuated virulence towards both plant and insect model organisms. This study demonstrates the first example of post-translational modification in Bcc with implications for pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/fisiología , Burkholderia cenocepacia/patogenicidad , Genes Bacterianos , Transferasas/metabolismo , Burkholderia cenocepacia/enzimología , Glicoproteínas/metabolismo , Glicosilación , Espectrometría de Masas , Antígenos O/metabolismo , Filogenia , Procesamiento Proteico-Postraduccional , Trisacáridos/metabolismo
20.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 279-89, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24531462

RESUMEN

A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Šresolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB_REDO were coupled with model-map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn2+-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn2+, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1' recognition subsite that suggests specificity towards an acidic substrate.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia cenocepacia/química , Carboxipeptidasas/química , Zinc/química , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Biocatálisis , Burkholderia cenocepacia/enzimología , Carboxipeptidasas/genética , Dominio Catalítico , Cationes Bivalentes , Bovinos , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidad por Sustrato , Sincrotrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...