Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 53(39): 6231-42, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25215658

RESUMEN

The acyl-homoserine lactone (AHL) autoinducer mediated quorum sensing regulates virulence in several pathogenic bacteria. The hallmark of an efficient quorum sensing system relies on the tight specificity in the signal generated by each bacterium. Since AHL signal specificity is derived from the acyl-chain of the acyl-ACP (ACP = acyl carrier protein) substrate, AHL synthase enzymes must recognize and react with the native acyl-ACP with high catalytic efficiency while keeping reaction rates with non-native acyl-ACPs low. The mechanism of acyl-ACP substrate recognition in these enzymes, however, remains elusive. In this study, we investigated differences in catalytic efficiencies for shorter and longer chain acyl-ACP substrates reacting with an octanoyl-homoserine lactone synthase Burkholderia mallei BmaI1. With the exception of two-carbon shorter hexanoyl-ACP, the catalytic efficiencies of butyryl-ACP, decanoyl-ACP, and octanoyl-CoA reacting with BmaI1 decreased by greater than 20-fold compared to the native octanoyl-ACP substrate. Furthermore, we also noticed kinetic cooperativity when BmaI1 reacted with non-native acyl-donor substrates. Our kinetic data suggest that non-native acyl-ACP substrates are unable to form a stable and productive BmaI1·acyl-ACP·SAM ternary complex and are thus effectively discriminated by the enzyme. These results offer insights into the molecular basis of substrate recognition for the BmaI1 enzyme.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/metabolismo , Ligasas/metabolismo , Proteínas Bacterianas/genética , Biocatálisis , Burkholderia mallei/enzimología , Burkholderia mallei/genética , Burkholderia mallei/metabolismo , Cromatografía Líquida de Alta Presión , Cinética , Ligasas/genética , Especificidad por Sustrato
2.
PLoS One ; 6(6): e21523, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21720554

RESUMEN

Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711), and B. mallei ATCC 23344 has one (bma1575). Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous D-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for D-alanine. During log phase growth without D-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine peritoneal macrophages.


Asunto(s)
Alanina Racemasa/genética , Antibacterianos/farmacología , Burkholderia mallei/enzimología , Burkholderia pseudomallei/enzimología , Mutación/genética , Alanina/farmacología , Alanina Racemasa/química , Secuencia de Aminoácidos , Animales , Burkholderia mallei/efectos de los fármacos , Burkholderia mallei/genética , Burkholderia mallei/ultraestructura , Burkholderia pseudomallei/efectos de los fármacos , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/ultraestructura , Eliminación de Gen , Genes Bacterianos/genética , Sitios Genéticos/genética , Marcadores Genéticos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/microbiología , Macrófagos Peritoneales/ultraestructura , Ratones , Viabilidad Microbiana/efectos de los fármacos , Datos de Secuencia Molecular , Ácido Peryódico/farmacología , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Alineación de Secuencia
3.
PLoS One ; 6(5): e19716, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21611119

RESUMEN

Yersinia pestis is a gram negative zoonotic pathogen responsible for causing bubonic and pneumonic plague in humans. The pathogen uses a type III secretion system (T3SS) to deliver virulence factors directly from bacterium into host mammalian cells. The system contains a single ATPase, YscN, necessary for delivery of virulence factors. In this work, we show that deletion of the catalytic domain of the yscN gene in Y. pestis CO92 attenuated the strain over three million-fold in the Swiss-Webster mouse model of bubonic plague. The result validates the YscN protein as a therapeutic target for plague. The catalytic domain of the YscN protein was made using recombinant methods and its ATPase activity was characterized in vitro. To identify candidate therapeutics, we tested computationally selected small molecules for inhibition of YscN ATPase activity. The best inhibitors had measured IC(50) values below 20 µM in an in vitro ATPase assay and were also found to inhibit the homologous BsaS protein from Burkholderia mallei animal-like T3SS at similar concentrations. Moreover, the compounds fully inhibited YopE secretion by attenuated Y. pestis in a bacterial cell culture and mammalian cells at µM concentrations. The data demonstrate the feasibility of targeting and inhibiting a critical protein transport ATPase of a bacterial virulence system. It is likely the same strategy could be applied to many other common human pathogens using type III secretion system, including enteropathogenic E. coli, Shigella flexneri, Salmonella typhimurium, and Burkholderia mallei/pseudomallei species.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Portadoras/antagonistas & inhibidores , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/farmacología , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Yersinia pestis/enzimología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia mallei/efectos de los fármacos , Burkholderia mallei/enzimología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dominio Catalítico , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Eliminación de Gen , Genes Bacterianos/genética , Células HeLa , Humanos , Hidrólisis/efectos de los fármacos , Concentración 50 Inhibidora , Cinética , Proteínas de Unión a Maltosa/metabolismo , Ratones , Modelos Moleculares , Peste/microbiología , Multimerización de Proteína/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Yersinia pestis/efectos de los fármacos , Yersinia pestis/genética , Yersinia pestis/patogenicidad
4.
Biochemistry ; 49(6): 1281-9, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20055482

RESUMEN

Enoyl-ACP reductases catalyze the final step in the elongation cycle of the bacterial fatty acid biosynthesis (FAS-II) pathway. At present, four distinct enoyl-ACP reductases have been identified, which are the products of the fabI, fabL, fabK, and fabV genes. The FabV enoyl-ACP reductase is the most recent member of this enzyme class and was originally identified in Vibrio cholerae by Cronan and co-workers [Massengo-Tiasse, R. P., and Cronan, J. E. (2008) Vibrio cholerae FabV defines a new class of enoyl-acyl carrier protein reductase. J. Biol. Chem. 283, 1308-1316]. In this work, a detailed kinetic analysis of the mechanism of the FabV enzyme from Burkholderia mallei (bmFabV) has been undertaken, which reveals that bmFabV catalyzes a sequential bi-bi mechanism with NADH binding first and NAD(+) dissociating last. The enzyme is a member of the short chain dehydrogenase/reductase superfamily in which the catalytic tyrosine (Y235) and lysine (K244) residues are organized in the consensus Tyr-(Xaa)(8)-Lys motif. The role of these active site residues has been investigated using site-directed mutagenesis which has shown that both Y235 and K244 are involved in acid-base chemistry during substrate reduction. Sequence alignment and site-directed mutagenesis also identify a second lysine in the active site (K245) that has an important role in binding of the enoyl substrate. Because of interests in developing inhibitors of bmFabV, a detailed analysis of the inhibition of the enzyme by triclosan has been conducted showing that triclosan is a competitive inhibitor with respect to NADH and an uncompetitive inhibitor with respect to the substrate 2-dodecenoyl-CoA (K(i) = 0.4 muM). In combination with fluorescence binding experiments, we conclude that triclosan binds to the enzyme-NAD(+) product complex which is in rapid and reversible equilibrium with other intermediates on the reaction pathway.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Burkholderia mallei/enzimología , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Enoil-ACP Reductasa (NADH)/química , Proteínas Bacterianas/genética , Burkholderia mallei/genética , Catálisis , Dominio Catalítico/efectos de los fármacos , Dominio Catalítico/genética , Enoil-ACP Reductasa (NADH)/genética , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Cinética , Mutagénesis Sitio-Dirigida , NAD/química , NAD/genética , NAD/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Especificidad por Sustrato/genética , Triclosán/metabolismo , Triclosán/farmacología
5.
Infect Immun ; 77(4): 1636-48, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19168747

RESUMEN

Burkholderia mallei, a category B biothreat agent, is a facultative intracellular pathogen that causes the zoonotic disease glanders. The B. mallei VirAG two-component regulatory system activates the transcription of approximately 60 genes, including a large virulence gene cluster encoding a type VI secretion system (T6SS). The B. mallei tssM gene encodes a putative ubiquitin-specific protease that is physically linked to, and transcriptionally coregulated with, the T6SS gene cluster. Mass spectrometry and immunoblot analysis demonstrated that TssM was secreted in a virAG-dependent manner in vitro. Surprisingly, the T6SS was found to be dispensable for the secretion of TssM. The C-terminal half of TssM, which contains Cys and His box motifs conserved in eukaryotic deubiquitinases, was purified and biochemically characterized. Recombinant TssM hydrolyzed multiple ubiquitinated substrates and the cysteine at position 102 was critical for enzymatic activity. The tssM gene was expressed within 1 h after uptake of B. mallei into RAW 264.7 murine macrophages, suggesting that the TssM deubiquitinase is produced in this intracellular niche. Although the physiological substrate(s) is currently unknown, the TssM deubiquitinase may provide B. mallei a selective advantage in the intracellular environment during infection.


Asunto(s)
Burkholderia mallei/enzimología , Burkholderia mallei/patogenicidad , Endopeptidasas , Interacciones Huésped-Patógeno , Macrófagos/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia mallei/genética , Línea Celular , Cricetinae , Endopeptidasas/genética , Endopeptidasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Muermo/microbiología , Muermo/mortalidad , Macrófagos/enzimología , Mesocricetus/microbiología , Ratones , Proteasas Ubiquitina-Específicas
6.
Microb Pathog ; 45(3): 207-16, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18614331

RESUMEN

Burkholderia mallei is the etiologic agent of glanders in solipeds (horses, mules and donkeys), and incidentally in carnivores and humans. Little is known about the molecular mechanisms of B. mallei pathogenesis. The putative carboxy-terminal processing protease (CtpA) of B. mallei is a member of a novel family of endoproteases involved in the maturation of proteins destined for the cell envelope. All species and isolates of Burkholderia carry a highly conserved copy of ctpA. We studied the involvement of CtpA on growth, cell morphology, persistence, and pathogenicity of B. mallei. A sucrose-resistant strain of B. mallei was constructed by deleting a major portion of the sacB gene of the wild type strain ATCC 23344 by gene replacement, and designated as strain 23344DeltasacB. A portion of the ctpA gene (encoding CtpA) of strain 23344DeltasacB was deleted by gene replacement to generate strain 23344DeltasacBDeltactpA. In contrast to the wild type ATCC 23344 or the sacB mutant 23344DeltasacB, the ctpA mutant 23344DeltasacBDeltactpA displayed altered cell morphologies with partially or fully disintegrated cell envelopes. Furthermore, relative to the wild type, the ctpA mutant displayed slower growth in vitro and less ability to survive in J774.2 murine macrophages. The expression of mRNA of adtA, the gene downstream of ctpA was similar among the three strains suggesting that disruption of ctpA did not induce any polar effects. As with the wild type or the sacB mutant, the ctpA mutant exhibited a dose-dependent lethality when inoculated intraperitoneally into CD1 mice. The CD1 mice inoculated with a non-lethal dose of the ctpA mutant produced specific serum immunoglobulins IgG1 and IgG2a and were partially protected against challenge with wild type B. mallei ATCC 23344. These findings suggest that CtpA regulates in vitro growth, cell morphology and intracellular survival of B. mallei, and a ctpA mutant protects CD1 mice against glanders.


Asunto(s)
Proteínas Bacterianas/genética , Burkholderia mallei/enzimología , Burkholderia mallei/patogenicidad , Endopeptidasas/genética , Muermo/microbiología , Eliminación de Secuencia , Animales , Anticuerpos Antibacterianos/sangre , Proteínas Bacterianas/metabolismo , Burkholderia mallei/genética , Burkholderia mallei/inmunología , Línea Celular , Endopeptidasas/metabolismo , Femenino , Muermo/inmunología , Inmunoglobulina G/sangre , Macrófagos/microbiología , Ratones , Ratones Endogámicos
7.
J Am Chem Soc ; 130(6): 1918-31, 2008 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-18205354

RESUMEN

Arginine deiminase (ADI) catalyzes the hydrolytic conversion of L-arginine to ammonia and L-citrulline as part of the energy-producing L-arginine degradation pathway. The chemical mechanism for ADI catalysis involves initial formation and subsequent hydrolysis of a Cys-alkylthiouronium ion intermediate. The structure of the Pseudomonas aeruginosa ADI-(L-arginine) complex guided the design of arginine analogs that might react with the ADIs to form inactive covalent adducts during catalytic turnover. One such candidate is L-canavanine, in which an N-methylene of L-arginine is replaced by an N-O. This substance was shown to be a slow substrate-producing O-ureido-L-homoserine. An in depth kinetic and mass spectrometric analysis of P. aeruginosa ADI inhibition by L-canavanine showed that two competing pathways are followed that branch at the Cys-alkylthiouronium ion intermediate. One pathway leads to direct formation of O-ureido-L-homoserine via a reactive thiouronium intermediate. The other pathway leads to an inactive form of the enzyme, which was shown by chemical model and mass spectrometric studies to be a Cys-alkylisothiourea adduct. This adduct undergoes slow hydrolysis to form O-ureido-L-homoserine and regenerated enzyme. In contrast, kinetic and mass spectrometric investigations demonstrate that the Cys-alkylthiouronium ion intermediate formed in the reaction of L-canavanine with Bacillus cereus ADI partitions between the product forming pathway (O-ureido-L-homoserine and free enzyme) and an inactivation pathway that leads to a stable Cys-alkylthiocarbamate adduct. The ADIs from Escherichia coli, Burkholderia mallei, and Giardia intestinalis were examined in order to demonstrate the generality of the L-canavanine slow substrate inhibition and to distinguish the kinetic behavior that defines the irreversible inhibition observed with the B. cereus ADI from the time controlled inhibition observed with the P. aeruginosa, E. coli, B. mallei, and G. intestinalis ADIs.


Asunto(s)
Canavanina/farmacología , Inhibidores Enzimáticos/farmacología , Hidrolasas/antagonistas & inhibidores , Animales , Bacillus cereus/enzimología , Burkholderia mallei/enzimología , Canavanina/química , Catálisis , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Giardia lamblia/enzimología , Hidrolasas/química , Hidrólisis , Cinética , Conformación Molecular , Pseudomonas aeruginosa/enzimología , Estereoisomerismo
8.
Trans R Soc Trop Med Hyg ; 102 Suppl 1: S127-33, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19121674

RESUMEN

Burkholderia mallei, the aetiological agent of glanders disease, is a Gram-negative facultative intracellular bacterium. Despite numerous studies, the detailed mechanism of its pathogenesis is almost unknown. The presence of a type III secretion system (TTSS) is one of the known mechanisms associated with virulence. An intact TTSS indicates that B. mallei is able to secrete proteins in response to different environmental conditions, which could play an important role in pathogenesis. Therefore, characterization of the TTSS and identification of the secreted proteins associated with bacterial pathogenesis could provide crucial information for the development of a candidate vaccine. In the current study, we used an enzymatic reporter system to establish some of the conditions enabling TTS. Construction of the TTSS bopA mutant revealed that BopA is important for B. mallei invasion and intracellular survival. Overall, our study elucidates how BopA can aid in the optimization of TTS and defines the function of TTS effectors in bacterial intracellular survival and invasion.


Asunto(s)
Proteínas Bacterianas/fisiología , Burkholderia mallei/patogenicidad , Genes Bacterianos/fisiología , Genoma Bacteriano/genética , Muermo/microbiología , Animales , Proteínas Bacterianas/genética , Bioterrorismo , Burkholderia mallei/enzimología , Burkholderia mallei/crecimiento & desarrollo , Línea Celular , Supervivencia Celular , Escherichia coli/crecimiento & desarrollo , Escherichia coli/patogenicidad , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano/inmunología , Muermo/inmunología , Humanos , Macrófagos/microbiología , Plásmidos/genética
10.
Artículo en Ruso | MEDLINE | ID: mdl-16028525

RESUMEN

Criteria for the evaluation of the plasmocoagulase activity of natural isolates and mutant strains of the causative agents of glanders and melioidosis were worked out, which made it possible to subdivide them by this sign into pathogens with high, moderate and low activity. Plasmocoagulase produced by pathogenic Burkholderia was shown to be a thermolabile enzyme, comparatively stable with respect to the action of such chemico-biological agents as hydrogen peroxide and chloramine.


Asunto(s)
Burkholderia mallei/enzimología , Burkholderia pseudomallei/enzimología , Coagulasa/metabolismo , Muermo/microbiología , Melioidosis/microbiología , Animales , Burkholderia mallei/patogenicidad , Burkholderia pseudomallei/patogenicidad , Cloraminas/farmacología , Estabilidad de Enzimas , Muermo/sangre , Humanos , Peróxido de Hidrógeno/farmacología , Melioidosis/sangre , Especificidad por Sustrato , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...