Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 385: 121571, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31753663

RESUMEN

Aniline is a major environmental pollutant of serious concern due to its toxicity. Although microbial metabolism of aniline is well-studied, its toxic effects and physiological responses of microorganisms to aniline are largely unexplored. Rubrivivax benzoatilyticus JA2, an aniline non-degrading bacterium, tolerates high concentrations of aniline and produces extracellular polymeric substance(EPS). Surprisingly, strain JA2 forms EPS only when exposed to aniline and other toxic compounds like organic solvents and heavy metals indicating that EPS formation is coupled to cell toxicity. Further, extensive reanalysis of the previous proteomic data of aniline exposed cells revealed up-regulation of envelope stress response(ESR) proteins such as periplasmic protein folding, envelope integrity, transmembrane complex, and cell-wall remodelling proteins. In silico analysis and molecular modeling of three highly up-regulated proteins revealed that these proteins were homologous to CpxARP proteins of ESR signalling pathway. Furthermore, EPS formation to known ESR activators(Triton-X-100, EDTA) suggests that envelope stress possibly regulating the EPS production. The present study suggests that aniline triggers envelope stress; to counter this strain JA2 activates ESR pathway and EPS production. Our study revealed the hitherto unknown toxic effects of aniline as an acute envelope stressor thus toxicity of aniline may be more profound to life-forms than previously thought.


Asunto(s)
Compuestos de Anilina/toxicidad , Burkholderiales/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Matriz Extracelular de Sustancias Poliméricas/efectos de los fármacos , Estrés Oxidativo , Burkholderiales/metabolismo , Transducción de Señal
2.
mBio ; 9(6)2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459190

RESUMEN

Silver (Ag+) and copper (Cu+) ions have been used for centuries in industry, as well as antimicrobial agents in agriculture and health care. Nowadays, Ag+ is also widely used in the field of nanotechnology. Yet, the underlying mechanisms driving toxicity of Ag+ ions in vivo are poorly characterized. It is well known that exposure to excess metal impairs the photosynthetic apparatus of plants and algae. Here, we show that the light-harvesting complex II (LH2) is the primary target of Ag+ and Cu+ exposure in the purple bacterium Rubrivivax gelatinosus Ag+ and Cu+ specifically inactivate the 800-nm absorbing bacteriochlorophyll a (B800), while Ni2+ or Cd2+ treatment had no effect. This was further supported by analyses of CuSO4- or AgNO3-treated membrane proteins. Indeed, this treatment induced changes in the LH2 absorption spectrum related to the disruption of the interaction of B800 molecules with the LH2 protein. This caused the release of B800 molecules and subsequently impacted the spectral properties of the carotenoids within the 850-nm absorbing LH2. Moreover, previous studies have suggested that Ag+ can affect the respiratory chain in mitochondria and bacteria. Our data demonstrated that exposure to Ag+, both in vivo and in vitro, caused a decrease of cytochrome c oxidase and succinate dehydrogenase activities. Ag+ inhibition of these respiratory complexes was also observed in Escherichia coli, but not in Bacillus subtilisIMPORTANCE The use of metal ions represents a serious threat to the environment and to all living organisms because of the acute toxicity of these ions. Nowadays, silver nanoparticles are one of the most widely used nanoparticles in various industrial and health applications. The antimicrobial effect of nanoparticles is in part related to the released Ag+ ions and their ability to interact with bacterial membranes. Here, we identify, both in vitro and in vivo, specific targets of Ag+ ions within the membrane of bacteria. This include complexes involved in photosynthesis, but also complexes involved in respiration.


Asunto(s)
Burkholderiales/efectos de los fármacos , Cobre/farmacología , Complejos de Proteína Captadores de Luz/metabolismo , Proteínas de la Membrana/metabolismo , Fotosíntesis/efectos de los fármacos , Plata/farmacología , Bacterioclorofila A/antagonistas & inhibidores , Burkholderiales/fisiología , Carotenoides/metabolismo , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Complejos de Proteína Captadores de Luz/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Succinato Deshidrogenasa/antagonistas & inhibidores
3.
Microb Biotechnol ; 10(4): 789-803, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28169492

RESUMEN

Bacteria of the genus Thiomonas are found ubiquitously in arsenic contaminated waters such as acid mine drainage (AMD), where they contribute to the precipitation and the natural bioremediation of arsenic. In these environments, these bacteria have developed a large range of resistance strategies among which the capacity to form particular biofilm structures. The biofilm formation is one of the most ubiquitous adaptive response observed in prokaryotes to various stresses, such as those induced in the presence of toxic compounds. This study focused on the process of biofilm formation in three Thiomonas strains (CB1, CB2 and CB3) isolated from the same AMD. The results obtained here show that these bacteria are all capable of forming biofilms, but the architecture and the kinetics of formation of these biofilms differ depending on whether arsenite is present in the environment and from one strain to another. Indeed, two strains favoured biofilm formation, whereas one favoured motility in the presence of arsenite. To identify the underlying mechanisms, the patterns of expression of some genes possibly involved in the process of biofilm formation were investigated in Thiomonas sp. CB2 in the presence and absence of arsenite, using a transcriptomic approach (RNA-seq). The findings obtained here shed interesting light on how the formation of biofilms, and the motility processes contribute to the adaptation of Thiomonas strains to extreme environments.


Asunto(s)
Arsenitos/metabolismo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Burkholderiales/efectos de los fármacos , Burkholderiales/fisiología , Contaminantes Ambientales/metabolismo , Locomoción/efectos de los fármacos , Burkholderiales/genética , Farmacorresistencia Bacteriana , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...