RESUMEN
Isobutanol represents a promising second-generation biofuel. Saccharomyces cerevisiae can produce minor quantities of isobutanol as a byproduct. Increasing yeast tolerance to isobutanol is a crucial step toward achieving higher production levels. Previously, we discovered that expression of the srp40 gene could increase S. cerevisiae isobutanol tolerance. In this study, we explored the impact of overexpressing srp40 on isobutanol production. We used the CEN/ARS plasmid YCplac22-srp40 to overexpress srp40 in S. cerevisiae strain W303-1A. The resulting strain was named W303-1A-srp40. We subsequently performed metabolic engineering of isobutanol synthesis by overexpressing ILV2, ILV3 and ARO10 in W303-1 A-srp40. The resulting strain was named 303V2V3A10-22-srp40. Our findings revealed that, compared with the control strain, the 303V2V3A10-22-srp40 strain amplified isobutanol production by 50%. A transcriptome analysis revealed that upregulated genes associated with aminoacyl-tRNA biosynthesis or downregulated genes associated with phenylalanine, tyrosine, and tryptophan biosynthesis might yield increased isobutanol production in 303V2V3A10-22-srp40. Moreover, the decreases in the biosynthesis of amino acids and oxidative phosphorylation might play pivotal roles in the increased isobutanol tolerance of strain W303-1A-srp40. In summary, the overexpression of srp40 could increase isobutanol production and tolerance in S. cerevisiae. This study offers novel insights regarding strategies for increasing isobutanol production.
Asunto(s)
Butanoles , Ingeniería Metabólica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Butanoles/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ingeniería Metabólica/métodos , Regulación Fúngica de la Expresión Génica , Biocombustibles/microbiología , Plásmidos/genética , Perfilación de la Expresión Génica , FermentaciónRESUMEN
The astounding reactivity of tert-butoxides in transition metal-free coupling reactions is driving the scientific community towards a new era of environmental friendly, as well as cost-effective, transformation strategies. Transition metal-catalyzed coupling reactions generate hazardous wastes and require harsh reaction conditions, mostly at elevated temperature, which increases not only costs but also environmental concerns regarding the methodology. Tert-butoxide-catalyzed/mediated coupling reactions have several advantages and potential applications. They can form carbon-carbon, carbon-heteroatom, and heteroatom-heteroatom bonds under mild reaction conditions. Mechanistic insights into these reactions include both ionic and radical pathways, with the fate of the intermediates depending on the reaction conditions and/or additives used in the reactions. Among all of the known tert-butoxides, potassium tert-butoxide has pronounced applications in transition metal-free coupling reactions as compared to other tert-butoxides, such as sodium and lithium tert-butoxides, because of the higher electropositivity of potassium compared to sodium and lithium. Moreover, potassium tert-butoxide can act as a source of base, nucleophile and single electron donors in various important transformations. In this review, we provide an extensive overview and complete compilation of transition metal-free cross-coupling reactions catalyzed/promoted by tert-butoxides during the past 10 years.
Asunto(s)
Elementos de Transición , Catálisis , Elementos de Transición/química , Butanoles/química , Estructura MolecularRESUMEN
Cerebral blood flow and blood-brain barrier permeability assessment are crucial hemodynamic parameters to measure under neurological conditions. In conjunction with positron emission tomography (PET), oxygen-15-labeled water has emerged as a gold standard for measuring cerebral perfusion; however, at higher flow rates, [15O]water extraction becomes nonlinear. In such a scenario, freely diffusible [11C]butanol can provide a truer estimate. Radiosyntheses of [11C]butanol reported to date are protracted, are not automated, or require ethanol in the final formulation. By using a flow-based, captive solvent approach on a commercially available radiosynthesizer, we automated and reduced the synthesis time to 28 min. Forgoing cartridge-based purification for an aqueous high-performance liquid chromatography method, we obtained high purity [11C]butanol in ethanol-free phosphate buffered saline in sufficient yields for clinical PET studies. We here report our expedited, automated, and ethanol-free radiosynthesis of [11C]butanol along with preliminary imaging of a porcine subject.
Asunto(s)
Butanoles , Radioisótopos de Carbono , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Tomografía de Emisión de Positrones/métodos , Butanoles/química , Butanoles/síntesis química , Porcinos , Radiofármacos/síntesis química , Etanol/química , Encéfalo/diagnóstico por imagenRESUMEN
Bioconversion of abundant lactose-replete whey permeate to value-added chemicals holds promise for valorization of this expanding food processing waste. Efficient conversion of whey permeate-borne lactose requires adroit microbial engineering to direct carbon to the desired chemical. An engineered strain of Clostridium beijerinckii NCIMB 8052 (C. beijerinckii_mgsA+mgR) that produces 87% more butanol on lactose than the control strain was assessed for global transcriptomic changes. The results revealed broadly contrasting gene expression patterns in C. beijerinckii_mgsA+mgR relative to the control strain. These were characterized by widespread decreases in the abundance of mRNAs of Fe-S proteins in C. beijerinckii_mgsA+mgR, coupled with increased differential expression of lactose uptake and catabolic genes, iron uptake genes, two-component signal transduction and motility genes, and genes involved in the biosynthesis of vitamins B5 and B12, aromatic amino acids (particularly tryptophan), arginine, and pyrimidines. Conversely, the mRNA patterns suggest that the L-aspartate-dependent de novo biosynthesis of NAD as well as biosynthesis of lysine and asparagine and metabolism of glycine and threonine were likely down-regulated. Furthermore, genes involved in cysteine and methionine biosynthesis and metabolism, including cysteine desulfurase-a central player in Fe-S cluster biosynthesis-equally showed reductions in mRNA abundance. Genes involved in biosynthesis of capsular polysaccharides and stress response also showed reduced mRNA abundance in C. beijerinckii_mgsA+mgR. The results suggest that remodeling of cellular and metabolic networks in C. beijerinckii_mgsA+mgR to counter anticipated effects of methylglyoxal production from heterologous expression of methylglyoxal synthase led to enhanced growth and butanol production in C. beijerinckii_mgsA+mgR. IMPORTANCE: Biological production of commodity chemicals from abundant waste streams such as whey permeate represents an opportunity for decarbonizing chemical production. Whey permeate remains a vastly underutilized feedstock for bioproduction purposes. Thus, enhanced understanding of the cellular and metabolic repertoires of lactose-mediated production of chemicals such as butanol promises to identify new targets that can be fine tuned in recombinant and native microbial strains to engender stronger coupling of whey permeate-borne lactose to value-added chemicals. Our results highlight new genetic targets for future engineering of C. beijerinckii for improved butanol production on lactose and ultimately in whey permeate.
Asunto(s)
Clostridium beijerinckii , Lactosa , Transcriptoma , Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Clostridium beijerinckii/enzimología , Lactosa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clostridium/genética , Clostridium/metabolismo , Clostridium/enzimología , Ingeniería Metabólica , Butanoles/metabolismo , Suero Lácteo/metabolismoRESUMEN
Nanocrystalline Fe2O3-NiO composite catalysts were prepared using a sonication-assisted green preparation method. The prepared catalysts were characterized using different techniques, including thermal analyses (TGA/DTA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, surface area measurements (SBET), and scanning electron microscopy (SEM). The surface basicity of the prepared catalysts was measured using the temperature-programmed desorption of CO2 (CO2-TPD) as a highly acidic probe molecule. The catalytic activity of all the prepared catalysts was tested at a temperature range of 250-325 °C towards the dehydrogenation of 2-butanol to methyl-ethyl ketone (MEK), which is considered a promising fossil fuel alternative and has several industrial applications. The composite catalysts showed better catalytic activity compared to the pure oxides (i.e., Fe2O3 and NiO) due to the strong synergetic effect between the two oxides. Fe2O3 prevented the coke formation over the surface of NiO by the oxygen-scavenging effect of Fe, which promotes the oxidation of the carbonaceous species and increases the catalyst's resistance to deactivation. The effect of weight hourly space velocity (WHSV) on the catalytic activity was tested over a selected catalyst. In addition, the stability and durability of the catalyst were tested across four successive reaction cycles, demonstrating remarkable performance throughout all the reaction cycles.
Asunto(s)
Compuestos Férricos , Catálisis , Compuestos Férricos/química , Difracción de Rayos X , Níquel/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química , ButanolesRESUMEN
Chemicals are representative environmental factors that affect human health. Recently, external exposure to a chemical of rhododenol (RD) caused chemical leukoderma, an acquired patchy hypopigmentation, in about 20,000 Asian people. The development of a hazard assessment system for accurate determination of leukoderma-inducible chemicals is required for the prevention of such tragedies. Case studies in humans have shown 6 chemicals, including RD, with a constitutive leukoderma-inducible potency and 3 chemicals with a photosensitive but not a constitutive leukoderma-inducible potency. In this study, the 6 positive and 3 negative control chemicals with or without constitutive leukoderma-inducible potencies were investigated by our previously developed in vivo hazard assessment system using tail skin of mice. Based on the results of validation, this study aimed to develop an in vitro hazard assessment system to correctly determine chemicals with a constitutive leukoderma-inducible potency. As expected, external exposure to the 6 positive control chemicals, but not external exposure to the 3 negative control chemicals, resulted in development of constitutive leukoderma in mouse tail skin with a decreased level of skin melanin and decreased number of melanocytes. Moreover, the 6 positive and 3 negative control chemicals were correctly distinguished by the presence or absence of endoplasmic reticulum (ER) stress induction, but not by tyrosinase-dependent cell death or production of reactive oxygen species (ROS), in immortalized normal melanocytes. The hazard assessment system using tail skin could be a solid in vivo tool to reliably determine the chemical potency of a chemical for constitutive leukoderma induction. The hazard assessment system focusing on ER stress induction in normal melanocytes might be a novel and convenient in vitro tool for accurately evaluating chemicals with leukoderma-inducible potencies. Thus, this study contributed to environmentology through the development of a screening system for preventing an environmental factor-related disease.
Asunto(s)
Hipopigmentación , Animales , Ratones , Hipopigmentación/inducido químicamente , Medición de Riesgo , Melanocitos/efectos de los fármacos , Piel/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Melaninas , Humanos , Pruebas de Toxicidad/métodos , ButanolesRESUMEN
Anaerobic microbial fermentations provide high product yields and are a cornerstone of industrial bio-based processes. However, the need for redox balancing limits the array of fermentable substrate-product combinations. To overcome this limitation, here we design an aerobic fermentative metabolism that allows the introduction of selected respiratory modules. These can use oxygen to re-balance otherwise unbalanced fermentations, hence achieving controlled respiro-fermentative growth. Following this design, we engineer and characterize an obligate fermentative Escherichia coli strain that aerobically ferments glucose to stoichiometric amounts of lactate. We then re-integrate the quinone-dependent glycerol 3-phosphate dehydrogenase and demonstrate glycerol fermentation to lactate while selectively transferring the surplus of electrons to the respiratory chain. To showcase the potential of this fermentation mode, we direct fermentative flux from glycerol towards isobutanol production. In summary, our design permits using oxygen to selectively re-balance fermentations. This concept is an advance freeing highly efficient microbial fermentation from the limitations imposed by traditional redox balancing.
Asunto(s)
Escherichia coli , Fermentación , Glucosa , Glicerol , Ácido Láctico , Ingeniería Metabólica , Escherichia coli/metabolismo , Glicerol/metabolismo , Glucosa/metabolismo , Ingeniería Metabólica/métodos , Ácido Láctico/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Butanoles/metabolismo , AerobiosisRESUMEN
The objective of this study was to evaluate the effect of pretreatment and different technological conditions on the course of ABE fermentation of rye straw (RS) and the composition of volatile compounds in the distillates obtained. The highest concentration of ABE and butanol was obtained from the fermentation of pretreated rye straw by alkaline hydrolysis followed by detoxification and enzymatic hydrolysis. After 72 h of fermentation, the maximum butanol concentration, productivity, and yield from RS were 16.11 g/L, 0.224 g/L/h, and 0.402 g/g, respectively. Three different methods to produce butanol were tested: the two-step process (SHF), the simultaneous process (SSF), and simultaneous saccharification with ABE fermentation (consolidation SHF/SSF). The SHF/SSF process observed that ABE concentration (21.28 g/L) was higher than in the SSF (20.03 g/L) and lower compared with the SHF (22.21 g/L). The effect of the detoxification process and various ABE fermentation technologies on the composition of volatile compounds formed during fermentation and distillation were analyzed.
Asunto(s)
Butanoles , Fermentación , Secale , Compuestos Orgánicos Volátiles , Secale/química , Secale/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Butanoles/metabolismo , Hidrólisis , DestilaciónRESUMEN
Cyanobacteria are oxygen-evolving prokaryotes that can be engineered for biofuel production from solar energy, CO2, and water. Isobutanol (IB) has the potential to serve as an alternative fuel and important chemical feedstock. The research involves engineering Synechocystis sp. PCC 6803, for photosynthetic isobutanol production via the 2-keto-acid pathway and their cultivation in lab-scale photobioreactors. This synthetic pathway involves the heterologous expression of two enzymes, α-ketoisovalerate decarboxylase (Kivd) and alcohol dehydrogenase (Yqhd), under a strong light-inducible promotor, psbA2, known to show increased gene expression under high light. The use of psbA2 could be a valuable strategy for isobutanol production as economic scaling up demands the utilization of natural sunlight, which also provides very high light intensity at midday, facilitating increased production. The study reports isobutanol production from engineered strains containing both pathway genes and with only kivd. In shake flask studies, the highest isobutanol titre of 75â¯mgâ¯L-1 (12th day) was achieved from an engineered strain DM12 under optimized light intensity. DM12 was cultivated in a 2â¯L flat panel photobioreactor, resulting in a maximum isobutanol titre of 371.8â¯mgâ¯L-1 (10th day) with 2â¯% CO2 and 200 µmol photons m-2 s-1. Cultivation of DM12 in a photobioreactor under mimic diurnal sunlight demonstrated the highest productivity of 39â¯mgâ¯L-1 day-1 with the maximum titre of 308.5â¯mgâ¯L-1 (9th day). This work lays the foundation for sustainable, large-scale biobutanol production using solar energy.
Asunto(s)
Butanoles , Dióxido de Carbono , Fotosíntesis , Regiones Promotoras Genéticas , Luz Solar , Synechocystis , Butanoles/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis/genética , Synechocystis/genética , Synechocystis/metabolismo , Regiones Promotoras Genéticas/genética , Ingeniería Metabólica/métodos , Fotobiorreactores , Biocombustibles , Luz , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ingeniería Genética/métodosRESUMEN
Renewable and sustainable biofuel production, such as biobutanol, is becoming increasingly popular as a substitute for non-renewable and depleted petrol fuel. Many researchers have studied how to produce butanol cheaply by considering appropriate feedstock materials and bioprocess technologies. The production of biobutanol through acetone-butanol-ethanol (ABE) is highly sought after around the world because of its sustainable supply and lack of competition with food. The purpose of this study is to present the current biobutanol production research and to analyse the biobutanol research conducted during 2006 to 2023. The keyword used in this study is "Biobutanol," and the relevant data was extracted from the Web of Science database (WoS). According to the results, institutions and scholars from the People's Republic of China, the USA, and India have the highest number of cited papers across a broad spectrum of topics including acetone-butanol-ethanol (ABE) fermentation, biobutanol, various pretreatment techniques, and pervaporation. The success of biobutanol fermentation from biomass depends on the ability of the fermentation operation to match the microbial behaviour along with the appropriate bioprocessing strategies to improve the entire process to be suitable for industrial scale. Based on the review data, we will look at the biobutanol technologies and appropriate strategies that have been developed to improve biobutanol production from renewable biomass.
Asunto(s)
Biocombustibles , Butanoles , Fermentación , Butanoles/metabolismo , Etanol/metabolismo , Acetona , BiomasaRESUMEN
Clostridium acetobutylicum is a solventogenic, anaerobic, gram-positive bacterium that is commonly considered the model organism for studying acetone-butanol-ethanol fermentation. The need to produce these chemicals sustainably and with a minimal impact on the environment has revived the interest in research on this bacterium. The recent development of efficient genetic tools allows to better understand the physiology of this micro-organism, aiming at improving its fermentation capacities. Knowledge about gene essentiality would guide the future genetic editing strategies and support the understanding of crucial cellular functions in this bacterium. In this work, we applied a transposon insertion site sequencing method to generate large mutant libraries containing millions of independent mutants that allowed us to identify a core group of 418 essential genes needed for in vitro development. Future research on this significant biocatalyst will be guided by the data provided in this work, which will serve as a valuable resource for the community. IMPORTANCE: Clostridium acetobutylicum is a leading candidate to synthesize valuable compounds like three and four carbons alcohols. Its ability to convert carbohydrates into a mixture of acetone, butanol, and ethanol as well as other chemicals of interest upon genetic engineering makes it an advantageous organism for the valorization of lignocellulose-derived sugar mixtures. Since, genetic optimization depends on the fundamental insights supplied by accurate gene function assignment, gene essentiality analysis is of great interest as it can shed light on the function of many genes whose functions are still to be confirmed. The data obtained in this study will be of great value for the research community aiming to develop C. acetobutylicum as a platform organism for the production of chemicals of interest.
Asunto(s)
Acetona , Butanoles , Clostridium acetobutylicum , Etanol , Fermentación , Genes Esenciales , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Acetona/metabolismo , Etanol/metabolismo , Butanoles/metabolismo , Genes Esenciales/genéticaRESUMEN
D-1,2,4-butanetriol (BT) is a widely used fine chemical that can be manufactured by engineered Escherichia coli expressing heterologous pathways and using xylose as a substrate. The current study developed a glucose-xylose dual metabolic channel system in an engineered E. coli and Combinatorially optimized it using multiple strategies to promote BT production. The carbon catabolite repression effects were alleviated by deleting the gene ptsG that encodes the major glucose transporter IICBGlc and mutating the gene crp that encodes the catabolite repressor protein, thereby allowing C-fluxes of both glucose and xylose into their respective metabolic channels separately and simultaneously, which increased BT production by 33% compared with that of the original MJ133K-1 strain. Then, the branch metabolic pathways of intermediates in the BT channel were investigated, the transaminase HisC, the ketoreductases DlD, OLD, and IlvC, and the aldolase MhpE and YfaU were identified as the enzymes for the branched metabolism of 2-keto-3-deoxy-xylonate, deletion of the gene hisC increased BT titer by 21.7%. Furthermore, the relationship between BT synthesis and the intracellular NADPH level was examined, and deletion of the gene pntAB that encodes a transhydrogenase resulted in an 18.1% increase in BT production. The combination of the above approaches to optimize the metabolic network increased BT production by 47.5%, resulting in 2.67 g/L BT in 24 deep-well plates. This study provides insights into the BT biosynthesis pathway and demonstrates effective strategies to increase BT production, which will promote the industrialization of the biosynthesis of BT.
Asunto(s)
Escherichia coli , Glucosa , Ingeniería Metabólica , Xilosa , Escherichia coli/metabolismo , Escherichia coli/genética , Xilosa/metabolismo , Glucosa/metabolismo , Butanoles/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genéticaRESUMEN
Although the industrial production of butanol has been carried out for decades by bacteria of the Clostridium species, recent studies have shown the use of the yeast Saccharomyces cerevisiae as a promising alternative. While the production of n-butanol by this yeast is still very far from its tolerability (up to 2% butanol), the improvement in the tolerance can lead to an increase in butanol production. The aim of the present work was to evaluate the adaptive capacity of the laboratory strain X2180-1B and the Brazilian ethanol-producing strain CAT-1 when submitted to two strategies of adaptive laboratory Evolution (ALE) in butanol. The strains were submitted, in parallel, to ALE with successive passages or with UV irradiation, using 1% butanol as selection pressure. Despite initially showing greater tolerance to butanol, the CAT-1 strain did not show great improvements after being submitted to ALE. Already the laboratory strain X2180-1B showed an incredible increase in butanol tolerance, starting from a condition of inability to grow in 1% butanol, to the capacity to grow in this same condition. With emphasis on the X2180_n100#28 isolated colony that presented the highest maximum specific growth rate among all isolated colonies, we believe that this colony has good potential to be used as a model yeast for understanding the mechanisms that involve tolerance to alcohols and other inhibitory compounds.
Asunto(s)
Butanoles , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Butanoles/metabolismo , Fermentación , Etanol/metabolismo , Etanol/farmacología , 1-Butanol/metabolismo , Rayos Ultravioleta , Adaptación FisiológicaRESUMEN
Coexpressing multiple identical single guide RNAs (sgRNAs) in CRISPR-dependent engineering triggers genetic instability and phenotype loss. To provide sgRNA derivatives for efficient DNA digestion, we design a high-throughput digestion-activity-dependent positive screening strategy and astonishingly obtain functional nonrepetitive sgRNA mutants with up to 48 out of the 61 nucleotides mutated, and these nonrepetitive mutants completely lose canonical secondary sgRNA structure in simulation. Cas9-sgRNA complexes containing these noncanonical sgRNAs maintain wild-type level of digestion activities in vivo, indicating that the Cas9 protein is compatible with or is able to adjust the secondary structure of sgRNAs. Using these noncanonical sgRNAs, we achieve multiplex genetic engineering for gene knockout and base editing in microbial cell factories. Libraries of strains with rewired metabolism are constructed, and overproducers of isobutanol or 1,3-propanediol are identified by biosensor-based fluorescence-activated cell sorting (FACS). This work sheds light on the remarkable flexibility of the secondary structure of functional sgRNA.
Asunto(s)
Citometría de Flujo , ARN Guía de Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , Citometría de Flujo/métodos , Sistemas CRISPR-Cas/genética , Mutación/genética , Conformación de Ácido Nucleico , Ensayos Analíticos de Alto Rendimiento/métodos , Butanoles/metabolismo , Edición Génica/métodos , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genéticaAsunto(s)
Odorantes , Perfumes , Humanos , Perfumes/toxicidad , Perfumes/química , Medición de Riesgo , Animales , Determinación de Punto Final , Bases de Datos de Compuestos Químicos , Seguridad de Productos para el Consumidor , Pruebas de Toxicidad , Nivel sin Efectos Adversos Observados , Butanoles/toxicidad , Butanoles/químicaAsunto(s)
Odorantes , Pentanoles , Perfumes , Animales , Humanos , Butanoles/toxicidad , Butanoles/química , Seguridad de Productos para el Consumidor , Bases de Datos de Compuestos Químicos , Determinación de Punto Final , Nivel sin Efectos Adversos Observados , Perfumes/toxicidad , Perfumes/química , Medición de Riesgo , Pruebas de Toxicidad , Pentanoles/química , Pentanoles/toxicidadRESUMEN
To develop a cost-effective microbial cell factory for the production of biofuels and biochemicals, an understanding of tolerant mechanisms is vital for the construction of robust host strains. Here, we characterized a new function of a key metabolic transcription factor named Znf1 and its involvement in stress response in Saccharomyces cerevisiae to enhance tolerance to advanced biofuel, isobutanol. RNA-sequencing analysis of the wild-type versus the znf1Δ deletion strains in glucose revealed a new role for transcription factor Znf1 in the pentose phosphate pathway (PPP) and energy generation. The gene expression analysis confirmed that isobutanol induces an adaptive cell response, resulting in activation of ATP1-3 and COX6 expression. These genes were Znf1 targets that belong to the electron transport chain, important to produce ATPs. Znf1 also activated PPP genes, required for the generation of key amino acids, cellular metabolites, and maintenance of NADP/NADPH redox balance. In glucose, Znf1 also mediated the upregulation of valine biosynthetic genes of the Ehrlich pathway, namely ILV3, ILV5, and ARO10, associated with the generation of key intermediates for isobutanol production. Using S. cerevisiae knockout collection strains, cells with deleted transcriptional regulatory gene ZNF1 or its targets displayed hypersensitivity to isobutanol and acid inhibitors; in contrast, overexpression of ZNF1 enhanced cell survival. Thus, the transcription factor Znf1 functions in the maintenance of energy homeostasis and redox balance at various checkpoints of yeast metabolic pathways. It ensures the rapid unwiring of gene transcription in response to toxic products/by-products generated during biofuel production. Importantly, we provide a new approach to enhance strain tolerance during the conversion of glucose to biofuels.
Asunto(s)
Adenosina Trifosfato , Butanoles , Regulación Fúngica de la Expresión Génica , Vía de Pentosa Fosfato , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vía de Pentosa Fosfato/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Butanoles/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Adenosina Trifosfato/metabolismo , Glucosa/metabolismo , BiocombustiblesRESUMEN
Microbial factories lacking the ability of dynamically regulating the pathway enzymes overexpression, according to in situ metabolite concentrations, are suboptimal, especially when the metabolic intermediates are competed by growth and chemical production. The production of higher alcohols (HAs), which hijacks the amino acids (AAs) from protein biosynthesis, minimizes the intracellular concentration of AAs and thus inhibits the host growth. To balance the resource allocation and maintain stable AA flux, this work utilizes AA-responsive transcriptional attenuator ivbL and HA-responsive transcriptional activator BmoR to establish a concentration recognition-based auto-dynamic regulation system (CRUISE). This system ultimately maintains the intracellular homeostasis of AA and maximizes the production of HA. It is demonstrated that ivbL-driven enzymes overexpression can dynamically regulate the AA-to-HA conversion while BmoR-driven enzymes overexpression can accelerate the AA biosynthesis during the HA production in a feedback activation mode. The AA flux in biosynthesis and conversion pathways is balanced via the intracellular AA concentration, which is vice versa stabilized by the competition between AA biosynthesis and conversion. The CRUISE, further aided by scaffold-based self-assembly, enables 40.4 g L-1 of isobutanol production in a bioreactor. Taken together, CRUISE realizes robust HA production and sheds new light on the dynamic flux control during the process of chemical production.
Asunto(s)
Alcoholes , Alcoholes/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Ingeniería Metabólica/métodos , Aminoácidos/metabolismo , Butanoles/metabolismoRESUMEN
OBJECTIVES: The objective of this study was to investigate the effects of medium composition on CO fermentation by Clostridium carboxidivorans. The focus was to reduce the medium cost preserving acceptable levels of solvent production. METHODS: Yeast extract (YE) concentration was set in the range of 0-3 g/L. Different reducing agents were investigated, including cysteine-HCl 0.6 g/L, pure cysteine 0.6 g/L, sodium sulphide (Na2S) 0.6 g/L, cysteine-sodium sulphide 0.6 g/L and cysteine-sodium sulphide 0.72 g/L. The concentration of the metal solution was decreased down to 25 % of the standard value. Fermentation tests were also carried out with and without tungsten or selenium. RESULTS: The results demonstrated that under optimized conditions, namely yeast extract (YE) concentration set at 1 g/L, pure cysteine as the reducing agent and trace metal concentration reduced to 75 % of the standard value, reasonable solvent production was achieved in less than 150 h. Under these operating conditions, the production levels were found to be 1.39 g/L of ethanol and 0.27 g/L of butanol. Furthermore, the study revealed that selenium was not necessary for C. carboxidivorans fermentation, whereas the presence of tungsten played a crucial role in both cell growth and solvent production. CONCLUSIONS: The optimization of the medium composition in CO fermentation by Clostridium carboxidivorans is crucial for cost-effective solvent production. Tuning the yeast extract (YE) concentration, using pure cysteine as the reducing agent and reducing trace metal concentration contribute to reasonable solvent production within a relatively short fermentation period. Tungsten is essential for cell growth and solvent production, while selenium is not required.
Asunto(s)
Reactores Biológicos , Clostridium , Medios de Cultivo , Fermentación , Clostridium/metabolismo , Clostridium/crecimiento & desarrollo , Medios de Cultivo/química , Reactores Biológicos/microbiología , Monóxido de Carbono/metabolismo , Etanol/metabolismo , Selenio/metabolismo , Butanoles/metabolismo , Tungsteno/metabolismoRESUMEN
1,2,4-Butanetriol serves as a precursor in the manufacture of diverse pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. The study involved further modifications to an engineered Candida tropicalis strain, aimed at improving the production efficiency of 1,2,4-butanetriol. Faced with the issue of xylonate accumulation due to the low activity of heterologous xylonate dehydratase, we modulated iron metabolism at the transcriptional level to boost intracellular iron ion availability, thus enhancing the enzyme activity by 2.2-fold. Addressing the NADPH shortfall encountered during 1,2,4-butanetriol biosynthesis, we overexpressed pivotal genes in the NADPH regeneration pathway, achieving a 1,2,4-butanetriol yield of 3.2 g/L. The introduction of calcium carbonate to maintain pH balance led to an increased yield of 4 g/L, marking a 111% improvement over the baseline strain. Finally, the use of corncob hydrolysate as a substrate culminated in 1,2,4-butanetriol production of 3.42 g/L, thereby identifying a novel host for the conversion of corncob hydrolysate to 1,2,4-butanetriol.