Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.991
Filtrar
1.
Aging (Albany NY) ; 16(9): 7961-7978, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38709282

RESUMEN

BACKGROUND: This study combined bioinformatics and experimental verification in a mouse model of intestinal ischemia-reperfusion injury (IRI) to explore the protection mechanism exerted by butyrate against IRI. METHODS: GeneCards, Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine and GSE190581 were used to explore the relationship between butyrate and IRI and aging. Protein-protein interaction networks involving butyrate and IRI were constructed via the STRING database, with hub gene analysis performed through Cytoscape. Functional enrichment analysis was conducted on intersection genes. A mouse model of IRI was established, followed by direct arterial injection of butyrate. The experiment comprised five groups: normal, sham, model, vehicle, low-dose butyrate, and high-dose butyrate. Intestinal tissue observation was done via transmission electron microscopy (TEM), histological examination via hematoxylin and eosin (H&E) staining, tight junction proteins detection via immunohistochemistry, and Western blot analysis of hub genes. Drug-target interactions were evaluated through molecular docking. RESULTS: Butyrate protected against IRI by targeting 458 genes, including HMGB1 and TLR4. Toll-like receptor pathway was implicated. Butyrate improved intestinal IRI by reducing mucosal damage, increasing tight junction proteins, and lowering levels of HMGB1, TLR4, and MyD88. Molecular docking showed strong binding energies between butyrate and HMGB1 (-3.7 kcal/mol) and TLR4 (-3.8 kcal/mol). CONCLUSIONS: According to bioinformatics predictions, butyrate mitigates IRI via multiple-target and multiple-channel mechanisms. The extent of IRI can be reduced by butyrate through the inhibition of the HMGB1-TLR4-MyD88 signaling pathway, which is related to senescence.


Asunto(s)
Butiratos , Proteína HMGB1 , Factor 88 de Diferenciación Mieloide , Daño por Reperfusión , Transducción de Señal , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Butiratos/farmacología , Masculino , Simulación del Acoplamiento Molecular , Intestinos/efectos de los fármacos , Intestinos/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Mapas de Interacción de Proteínas
2.
PLoS One ; 19(4): e0301532, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626052

RESUMEN

Physical exercise is known to modulate the intestinal microbiota composition and control the symptoms of metabolic syndrome. In this research, we intend to investigate and compare the effect of high-intensity interval and continuous endurance trainings (HIIT and CET) on cecal microbiota metabolites and inflammatory factors in diabetic rats. A number of Wistar rats were made diabetic by a high-fat diet and trained under two types of exercise protocols, HIIT and CET. After taking samples from the cecal tissue and serum of rats to reveal the effect of exercise, three microbial species from the Firmicute and Bacteroid phyla, which are the main types of intestinal microbes, and their metabolites include two short-chain fatty acids (SCFAs), butyrate and propionate and also, the inflammatory factors TLR4 and IL6 were analyzed through quantitative polymerase chain reaction (qPCR), high-performance liquid chromatography (HPLC), and Enzyme-linked immunosorbent assay (ELISA) methods. In general, exercise while increasing the representative of Firmicute has caused a relative reduction of Bacteroides and improved the concentration of SCFAs. In this regard, HIIT outperforms CET in up-regulating Akkermansia and Butyrivibrio expression, and butyrate and propionate metabolites concentration. Also, both exercises significantly reduced cecal expression of TLR4 and sera concentration of IL6 compared to the diabetic group, although the reduction rate was higher in the CET group than in HIIT. Our findings suggest that some symptoms of metabolic syndrome such as intestinal dysbiosis and the resulting metabolic disorders are better controlled by HIIT and inflammation by CET. Certainly, more extensive research on other contributing factors could help clarify the results.


Asunto(s)
Diabetes Mellitus Experimental , Entrenamiento de Intervalos de Alta Intensidad , Síndrome Metabólico , Microbiota , Ratas , Animales , Dieta Alta en Grasa/efectos adversos , Ratas Wistar , Propionatos/farmacología , Interleucina-6/farmacología , Receptor Toll-Like 4 , Ácidos Grasos Volátiles/metabolismo , Butiratos/farmacología , Entrenamiento de Intervalos de Alta Intensidad/métodos
3.
Biochem Pharmacol ; 224: 116203, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615919

RESUMEN

Acute kidney injury (AKI) is common in hospitalized patients and increases short-term and long-term mortality. Treatment options for AKI are limited. Gut microbiota products such as the short-chain fatty acid butyrate have anti-inflammatory actions that may protect tissues, including the kidney, from injury. However, the molecular mechanisms of tissue protection by butyrate are poorly understood. Treatment with oral butyrate for two weeks prior to folic acid-induced AKI and during AKI improved kidney function and decreased tubular injury and kidney inflammation while stopping butyrate before AKI was not protective. Continuous butyrate preserved the expression of kidney protective factors such as Klotho, PGC-1α and Nlrp6 which were otherwise downregulated. In cultured tubular cells, butyrate blunted the maladaptive tubular cell response to a proinflammatory milieu, preserving the expression of kidney protective factors. Kidney protection afforded by this continuous butyrate schedule was confirmed in a second model of nephrotoxic AKI, cisplatin nephrotoxicity, where the expression of kidney protective factors was also preserved. To assess the contribution of preservation of kidney protective factors to kidney resilience, recombinant Klotho was administered to mice with cisplatin-AKI and shown to preserve the expression of PGC-1α and Nlrp6, decrease kidney inflammation and protect from AKI. In conclusion, butyrate promotes kidney resilience to AKI and decreases inflammation by preventing the downregulation of kidney protective genes such as Klotho. This information may be relevant to optimize antibiotic management during hospitalization.


Asunto(s)
Lesión Renal Aguda , Butiratos , Ratones Endogámicos C57BL , Animales , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Ratones , Butiratos/farmacología , Masculino , Humanos , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Cisplatino/toxicidad , Cisplatino/efectos adversos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Proteínas Klotho
4.
Biochem Biophys Res Commun ; 714: 149967, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38669752

RESUMEN

Butyrate and other Short-chain fatty acids (SCFAs) are microbial metabolites from Bacteroides and Clostridium species that may suppress type 2 inflammation. However, the mechanisms of SCFAs in the nasal sinuses are not fully understood. We aimed to clarify the in vitro and in vivo roles of SCFAs in eosinophilic chronic rhinosinusitis (ECRS) pathophysiology. We investigated whether SCFAs induced changes in type 2 cytokines, IgE, and apoptosis and the roles of GPR41, GPR43, and histone deacetylase. Analysis of the control subjects demonstrated that butyrate of SCFAs effectively inhibited type 2 cytokine production in PBMCs, ILC2s, and CD4+ T cells and IgE production in CD19+ B cells. In annexin V analysis, butyrate also induced late apoptosis of PBMCs. The butyrate-induced inhibition of type 2 cytokines appeared involved in histone deacetylase inhibition but not in GPR41 or GPR43. In an analysis of ECRS in humans, butyrate inhibited type 2 cytokine production in PBMCs and nasal polyp-derived cells. The butyrate concentration in nasal lavage fluid was significantly decreased in ECRS patients compared to controls and non-ECRS patients. Our findings confirm that butyrate can inhibit type 2 inflammation and may be a potential therapeutic target for ECRS.


Asunto(s)
Butiratos , Citocinas , Receptores de Superficie Celular , Receptores Acoplados a Proteínas G , Rinitis , Sinusitis , Humanos , Sinusitis/tratamiento farmacológico , Sinusitis/metabolismo , Sinusitis/inmunología , Sinusitis/patología , Butiratos/farmacología , Enfermedad Crónica , Rinitis/tratamiento farmacológico , Rinitis/metabolismo , Rinitis/inmunología , Rinitis/patología , Citocinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Masculino , Adulto , Apoptosis/efectos de los fármacos , Femenino , Persona de Mediana Edad , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inmunoglobulina E/inmunología , Eosinofilia/tratamiento farmacológico , Eosinofilia/metabolismo , Eosinofilia/patología , Eosinofilia/inmunología , Pólipos Nasales/tratamiento farmacológico , Pólipos Nasales/metabolismo , Pólipos Nasales/patología , Pólipos Nasales/inmunología , Células Cultivadas , Rinosinusitis
5.
J Am Heart Assoc ; 13(9): e033744, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38686853

RESUMEN

BACKGROUND: The heart can metabolize the microbiota-derived short-chain fatty acid butyrate. Butyrate may have beneficial effects in heart failure, but the underlying mechanisms are unknown. We tested the hypothesis that butyrate elevates cardiac output by mechanisms involving direct stimulation of cardiac contractility and vasorelaxation in rats. METHODS AND RESULTS: We examined the effects of butyrate on (1) in vivo hemodynamics using parallel echocardiographic and invasive blood pressure measurements, (2) isolated perfused hearts in Langendorff systems under physiological conditions and after ischemia and reperfusion, and (3) isolated coronary arteries mounted in isometric wire myographs. We tested Na-butyrate added to injection solutions or physiological buffers and compared its effects with equimolar doses of NaCl. Butyrate at plasma concentrations of 0.56 mM increased cardiac output by 48.8±14.9%, stroke volume by 38.5±12.1%, and left ventricular ejection fraction by 39.6±6.2%, and lowered systemic vascular resistance by 33.5±6.4% without affecting blood pressure or heart rate in vivo. In the range between 0.1 and 5 mM, butyrate increased left ventricular systolic pressure by up to 23.7±3.4% in isolated perfused hearts and by 9.4±2.9% following ischemia and reperfusion, while reducing myocardial infarct size by 81.7±16.9%. Butyrate relaxed isolated coronary septal arteries concentration dependently with an EC50=0.57 mM (95% CI, 0.23-1.44). CONCLUSIONS: We conclude that butyrate elevates cardiac output through mechanisms involving increased cardiac contractility and vasorelaxation. This effect of butyrate was not associated with adverse myocardial injury in damaged hearts exposed to ischemia and reperfusion.


Asunto(s)
Butiratos , Cardiotónicos , Contracción Miocárdica , Vasodilatación , Vasodilatadores , Función Ventricular Izquierda , Animales , Masculino , Contracción Miocárdica/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Cardiotónicos/farmacología , Butiratos/farmacología , Vasodilatadores/farmacología , Preparación de Corazón Aislado , Ratas , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Gasto Cardíaco/efectos de los fármacos , Volumen Sistólico/efectos de los fármacos , Ratas Wistar , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/fisiopatología , Relación Dosis-Respuesta a Droga , Modelos Animales de Enfermedad , Ratas Sprague-Dawley
6.
Neurochem Int ; 176: 105745, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641025

RESUMEN

Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.


Asunto(s)
Butiratos , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Animales , Butiratos/uso terapéutico , Butiratos/farmacología , Butiratos/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Probióticos/uso terapéutico
7.
PLoS One ; 19(4): e0299198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635661

RESUMEN

Herpesviruses have two distinct life cycle stages, latency and lytic replication. Epstein-Barr virus (EBV), a gamma-herpesvirus, establishes latency in vivo and in cultured cells. Cell lines harboring latent EBV can be induced into the lytic cycle by treatment with chemical inducing agents. In the Burkitt lymphoma cell line HH514-16 the viral lytic cycle is triggered by butyrate, a histone deacetylase (HDAC) inhibitor. Butyrate also alters expression of thousands of cellular genes. However, valproic acid (VPA), another HDAC inhibitor with global effects on cellular gene expression blocks EBV lytic gene expression in Burkitt lymphoma cell lines. Valpromide (VPM), an amide derivative of VPA, is not an HDAC inhibitor, but like VPA blocks induction of the EBV lytic cycle. VPA and VPM are the first examples of inhibitors of initial stages of lytic reactivation. We compared the effects of VPA and VPM, alone and in combination with butyrate, on host cellular gene expression using whole transcriptome analysis (RNA-seq). Gene expression was analyzed 6 h after addition of the compounds, a time before the first EBV lytic transcripts are detected. The results address two alternative, yet possibly complementary, mechanisms for regulation of EBV lytic reactivation. First, cellular genes that were up- or down-regulated by butyrate, but no longer altered in the presence of VPA or VPM, represent genes that correlated with EBV lytic reactivation. Second, genes regulated similarly by VPA and VPM in the absence and presence of butyrate are candidates for suppressors of EBV reactivation. Two genes upregulated by the lytic cycle inhibitors, CHAC1 and SLC7A11, are related to redox status and the iron-dependent cell death pathway ferroptosis. This study generates new hypotheses for control of the latency to lytic cycle switch of EBV and provides the first description of effects of the anti-convulsant drug VPM on global human cellular gene expression.


Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Ácido Valproico/análogos & derivados , Humanos , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/genética , Herpesvirus Humano 4/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/metabolismo , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Activación Viral , Perfilación de la Expresión Génica , Butiratos/farmacología
8.
Physiol Genomics ; 56(6): 426-435, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557279

RESUMEN

Short-chain fatty acids (SCFAs) produced by the gut bacteria have been associated with cardiovascular dysfunction in humans and rodents. However, studies exploring effects of SCFAs on cardiovascular parameters in the zebrafish, an increasingly popular model in cardiovascular research, remain limited. Here, we performed fecal bacterial 16S sequencing and gas chromatography/mass spectrometry (GC-MS) to determine the composition and abundance of gut microbiota and SCFAs in adult zebrafish. Following this, the acute effects of major SCFAs on heart rate and vascular tone were measured in anesthetized zebrafish larvae using fecal concentrations of butyrate, acetate, and propionate. Finally, we investigated if coincubation with butyrate may lessen the effects of angiotensin II (ANG II) and phenylephrine (PE) on vascular tone in anesthetized zebrafish larvae. We found that the abundance in Proteobacteria, Firmicutes, and Fusobacteria phyla in the adult zebrafish resembled those reported in rodents and humans. SCFA levels with highest concentration of acetate (27.43 µM), followed by butyrate (2.19 µM) and propionate (1.65 µM) were observed in the fecal samples of adult zebrafish. Immersion in butyrate and acetate produced a ∼20% decrease in heart rate (HR), respectively, with no observed effects of propionate. Butyrate alone also produced an ∼25% decrease in the cross-sectional width of the dorsal aorta (DA) at 60 min (*P < 0.05), suggesting compensatory vasoconstriction, with no effects of either acetate or propionate. In addition, butyrate significantly alleviated the decrease in DA cross-sectional width produced by both ANG II and PE. We demonstrate the potential for zebrafish in investigation of host-microbiota interactions in cardiovascular health.NEW & NOTEWORTHY We highlight the presence of a core gut microbiota and demonstrate in vivo short-chain fatty acid production in adult zebrafish. In addition, we show cardio-beneficial vasoactive and chronotropic properties of butyrate, and chronotropic properties of acetate in anesthetized zebrafish larvae.


Asunto(s)
Ácidos Grasos Volátiles , Heces , Microbioma Gastrointestinal , Frecuencia Cardíaca , Larva , Pez Cebra , Animales , Pez Cebra/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Heces/microbiología , Butiratos/metabolismo , Butiratos/farmacología , Angiotensina II/metabolismo , Angiotensina II/farmacología , Bacterias/efectos de los fármacos , Fenilefrina/farmacología , Acetatos/farmacología , Acetatos/metabolismo , ARN Ribosómico 16S/genética
9.
J Toxicol Sci ; 49(4): 151-161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556352

RESUMEN

Alpha-glycosyl isoquercitrin (AGIQ) is composed of isoquercitrin and its glucosylated derivatives and has many biological activities, including anti-inflammatory, antioxidant, and anti-cancer properties. However, the effect of AGIQ administered orally on gut microbiota composition remains unclear. The objective of this study was to evaluate the effect of AGIQ on the gut microbiota of animals in different dose groups. Male rats and mice received different doses of AGIQ (1.5%, 3%, or 5% w/v) in diet for carcinogenic or chronic toxicity studies (rasH2 mice: 6 months; Sprague-Dawley rats: 12 months). Male minipigs received 100, 300, or 1000 mg/kg/day for 28 days. Fecal samples were collected from the different animal species and analyzed using 16S-rRNA gene sequencing. No significant changes were observed in alpha and beta diversity of the gut microbiota. Characteristic bacteria that responded to AGIQ were identified in each animal species, and, interestingly, Kineothrix alysoides, a butyrate-producing bacterium, was commonly detected in all three species, suggesting that it may be related to the biological activities of AGIQ. AGIQ selectively modulated the number of beneficial butyrate-producing commensal bacterium beneficial bacteria without changing the diversity of gut microbiota, which further supports the safe use of AGIQ in food products.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Quercetina/análogos & derivados , Ratas , Ratones , Animales , Masculino , Porcinos , Ratas Sprague-Dawley , Porcinos Enanos , Bacterias/genética , Administración Oral , Butiratos/farmacología , ARN Ribosómico 16S
10.
J Oral Sci ; 66(2): 125-129, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38494703

RESUMEN

PURPOSE: Bacterial cells in mature dental plaque produce a high concentration of short-chain fatty acids (SCFAs) such as butyrate and propionate. SCFA-treatment on human gingival epithelial Ca9-22 cells induced cell death. However, the exact mechanism underlying cell death remains unclear. In this study, the relationship between reactive oxygen species (ROS) and autophagy induction during SCFA-induced cell death was examined. METHODS: Human gingival epithelial Ca9-22 cells were treated with butyrate or propionate to induce cell death and the number of dead cells were measured using SYTOX-green dye. A siRNA for ATG5 and N-acetylcysteine (NAC) were used for autophagy reduction and ROS-scavenging, respectively. Release of damage-associated molecular patterns (DAMPs) such as Sin3A-associated protein 130 (SAP130) and high-mobility group box 1 (HMGB1) were detected using western blot. RESULTS: Reducing autophagy significantly suppressed SCFA-induced Ca9-22 cell death. ROS generation was observed upon SCFA treatment, and scavenging ROS with NAC decreased cell death. NAC also reduced the SCFA-induced increase in microtubule-associated protein 1 light chain 3B (LC3B)-I and LC3B-II, and mitigated the release of DAMPs. CONCLUSION: The findings suggest that ROS generation is necessary for autophagy, which is required for SCFA-induced cell death and accompanying DAMP release.


Asunto(s)
Butiratos , Propionatos , Humanos , Butiratos/farmacología , Propionatos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ácidos Grasos Volátiles/farmacología , Autofagia/fisiología
11.
Aging (Albany NY) ; 16(6): 4980-4999, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38517358

RESUMEN

BACKGROUND: Modulated by differences in genetic and environmental factors, laboratory mice often show progressive weight gain, eventually leading to obesity and metabolic dyshomeostasis. Since the geroneuroprotector CMS121 has a positive effect on energy metabolism in a mouse model of type 2 diabetes, we investigated the potential of CMS121 to counteract the metabolic changes observed during the ageing process of wild type mice. METHODS: Control or CMS121-containing diets were supplied ad libitum for 6 months, and mice were sacrificed at the age of 7 months. Blood, adipose tissue, and liver were analyzed for glucose, lipids, and protein markers of energy metabolism. RESULTS: The CMS121 diet induced a 40% decrease in body weight gain and improved both glucose and lipid indexes. Lower levels of hepatic caspase 1, caspase 3, and NOX4 were observed with CMS121 indicating a lower liver inflammatory status. Adipose tissue from CMS121-treated mice showed increased levels of the transcription factors Nrf1 and TFAM, as well as markers of mitochondrial electron transport complexes, levels of GLUT4 and a higher resting metabolic rate. Metabolomic analysis revealed elevated plasma concentrations of short chain acylcarnitines and butyrate metabolites in mice treated with CMS121. CONCLUSIONS: The diminished de novo lipogenesis, which is associated with increased acetyl-CoA, acylcarnitine, and butyrate metabolite levels, could contribute to safeguarding not only the peripheral system but also the aging brain. By mimicking the effects of ketogenic diets, CMS121 holds promise for metabolic diseases such as obesity and diabetes, since these diets are hard to follow over the long term.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratones , Animales , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Hígado/metabolismo , Glucosa/metabolismo , Envejecimiento , Butiratos/metabolismo , Butiratos/farmacología , Dieta Alta en Grasa
12.
Food Chem Toxicol ; 187: 114605, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537869

RESUMEN

The gut microbiota should be included in the scientific processes of risk assessment of food additives. Xylitol is a sweetener that shows low digestibility and intestinal absorption, implying that a high proportion of consumed xylitol could reach the colonic microbiota. The present study has evaluated the dose-dependent effects of xylitol intake on the composition and the metabolic activity of the child gut-microbiota. The study was conducted in a dynamic simulator of the colonic microbiota (BFBL Gut Simulator) inoculated with a child pooled faecal sample and supplemented three times per day, for 7 days, with increasing xylitol concentrations (1 g/L, 3 g/L and 5 g/L). Sequencing of 16S rRNA gene amplicons and group-specific quantitative PCR indicated a xylitol dose-response effect on the abundance of Lachnospiraceae, particularly the genera Blautia, Anaerostipes and Roseburia. The microbial changes observed with xylitol corresponded with a dose-dependant effect on the butyrate concentration that, in parallel, favoured an increase in epithelial integrity of Caco-2 cells. The study represents a detailed observation of the bacterial taxa that are the main contributors to the metabolism of xylitol by the child gut microbiota and the results could be relevant in the risk assessment re-evaluation of xylitol as a sweetener.


Asunto(s)
Microbioma Gastrointestinal , Niño , Humanos , Xilitol/farmacología , Xilitol/metabolismo , Aditivos Alimentarios/farmacología , Aditivos Alimentarios/análisis , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Células CACO-2 , Butiratos/farmacología , Edulcorantes/farmacología , Edulcorantes/análisis
13.
Int J Oncol ; 64(4)2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38426581

RESUMEN

Cancer is one of the leading causes of mortality worldwide. The etiology of cancer has not been fully elucidated yet, and further enhancements are necessary to optimize therapeutic efficacy. Butyrate, a short­chain fatty acid, is generated through gut microbial fermentation of dietary fiber. Studies have unveiled the relevance of butyrate in malignant neoplasms, and a comprehensive understanding of its role in cancer is imperative for realizing its full potential in oncological treatment. Its full antineoplastic effects via the activation of G protein­coupled receptors and the inhibition of histone deacetylases have been also confirmed. However, the underlying mechanistic details remain unclear. The present study aimed to review the involvement of butyrate in carcinogenesis and its molecular mechanisms, with a particular emphasis on its association with the efficacy of tumor immunotherapy, as well as discussing relevant clinical studies on butyrate as a therapeutic target for neoplastic diseases to provide new insights into cancer treatment.


Asunto(s)
Antineoplásicos , Butiratos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Butiratos/farmacología , Butiratos/uso terapéutico , Fibras de la Dieta , Receptores Acoplados a Proteínas G , Neoplasias/tratamiento farmacológico
14.
JCI Insight ; 9(3)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329121

RESUMEN

Aging-related abnormalities in gut microbiota are associated with cognitive decline, depression, and anxiety, but underlying mechanisms remain unstudied. Here, our study demonstrated that transplanting old gut microbiota to young mice induced inflammation in the gut and brain coupled with cognitive decline, depression, and anxiety. We observed diminished mucin formation and increased gut permeability ("leaky gut") with a reduction in beneficial metabolites like butyrate because of decline in butyrate-producing bacteria in the aged gut microbiota. This led to suppressed expression of butyrate receptors, free fatty acid receptors 2 and 3 (FFAR2/3). Administering butyrate alleviated inflammation, restored mucin expression and gut barriers, and corrected brain dysfunction. Furthermore, young mice with intestine-specific loss of FFAR2/3 exhibited gut and brain abnormalities akin to those in older mice. Our results demonstrate that reduced butyrate-producing bacteria in aged gut microbiota result in low butyrate levels and reduced FFAR2/3 signaling, leading to suppressed mucin formation that increases gut permeability, inflammation, and brain abnormalities. These findings underscore the significance of butyrate-FFAR2/3 agonism as a potential strategy to mitigate aged gut microbiota-induced detrimental effects on gut and brain health in older adults.


Asunto(s)
Butiratos , Microbioma Gastrointestinal , Ratones , Animales , Butiratos/metabolismo , Butiratos/farmacología , Inflamación , Encéfalo/metabolismo , Envejecimiento , Mucinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
15.
Cell Rep ; 43(3): 113846, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38412097

RESUMEN

The radioresistant signature of colorectal cancer (CRC) hampers the clinical utility of radiotherapy. Here, we find that fecal microbiota transplantation (FMT) potentiates the tumoricidal effects of radiation and degrades the intertwined adverse events in azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC mice. FMT cumulates Roseburia intestinalis (R. intestinalis) in the gastrointestinal tract. Oral gavage of R. intestinalis assembles at the CRC site and synthetizes butyrate, sensitizing CRC to radiation and alleviating intestinal toxicity in primary and CRC hepatic metastasis mouse models. R. intestinalis-derived butyrate activates OR51E1, a G-protein-coupled receptor overexpressing in patients with rectal cancer, facilitating radiogenic autophagy in CRC cells. OR51E1 shows a positive correlation with RALB in clinical rectal cancer tissues and CRC mouse model. Blockage of OR51E1/RALB signaling restrains butyrate-elicited autophagy in irradiated CRC cells. Our findings highlight that the gut commensal bacteria R. intestinalis motivates radiation-induced autophagy to accelerate CRC cell death through the butyrate/OR51E1/RALB axis and provide a promising radiosensitizer for CRC in a pre-clinical setting.


Asunto(s)
Neoplasias Colorrectales , Neoplasias del Recto , Humanos , Animales , Ratones , Butiratos/farmacología , Clostridiales , Azoximetano/toxicidad , Neoplasias Colorrectales/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G
16.
J Nutr Biochem ; 127: 109590, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311045

RESUMEN

The role of the muscle circadian clock in regulating oxidative metabolism exerts a significant influence on whole-body energy metabolism; however, research on the connection between the muscle circadian clock and obesity is limited. Moreover, there is a lack of studies demonstrating the regulatory effects of dietary butyrate on muscle circadian clock and the resulting antiobesity effects. This study aimed to investigate the impacts of dietary butyrate on metabolic and microbiome alterations and muscle circadian clock in a diet-induced obesity model. Male Sprague-Dawley rats were fed a high-fat diet with or without butyrate. Gut microbiota and serum metabolome were analyzed, and molecular changes were examined using tissues and a cell line. Further correlation analysis was performed on butyrate-induced results. Butyrate supplementation reduced weight gain, even with increased food intake. Gut microbiome analysis revealed an increased abundance of Firmicutes in butyrate group. Serum metabolite profile in butyrate group exhibited reduced amino acid and increased fatty acid content. Muscle circadian clock genes were upregulated, resulting in increased transcription of fatty acid oxidation-related genes. In myoblast cells, butyrate also enhanced pan-histone acetylation via histone deacetylase inhibition, particularly modulating acetylation at the promoter of circadian clock genes. Correlation analysis revealed potential links between Firmicutes phylum, including certain genera within it, and butyrate-induced molecular changes in muscle as well as phenotypic alterations. The butyrate-driven effects on diet-induced obesity were associated with alterations in gut microbiota and a muscle-specific increase in histone acetylation, leading to the transcriptional activation of circadian clock genes and their controlled genes.


Asunto(s)
Relojes Circadianos , Microbioma Gastrointestinal , Animales , Ratas , Masculino , Relojes Circadianos/genética , Butiratos/farmacología , Butiratos/metabolismo , Histonas/metabolismo , Epigénesis Genética , Ratas Sprague-Dawley , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo
17.
Heart Vessels ; 39(6): 486-495, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38393377

RESUMEN

This study examined the effects of pemafibrate, a selective peroxisome proliferator-activated receptor α agonist, on the serum biochemical parameters of male patients with coronary artery disease and metabolic syndrome (MetS). This was a post hoc analysis of a randomized, crossover study that treated hypertriglyceridemia with pemafibrate or bezafibrate for 24 weeks, followed by a crossover of another 24 weeks. Of the 60 patients enrolled in the study, 55 were male. Forty-one of 55 male patients were found to have MetS. In this sub-analysis, male patients with MetS (MetS group, n = 41) and those without MetS (non-MetS group, n = 14) were compared. The primary endpoint was a change in fasting serum triglyceride (TG) levels during pemafibrate therapy, and the secondary endpoints were changes in insulin resistance-related markers and liver function parameters. Serum TG levels significantly decreased (MetS group, from 266.6 to 148.0 mg/dL, p < 0.001; non-MetS group, from 203.9 to 97.6 mg/dL, p < 0.001); however, a percent change (%Change) was not significantly different between the groups (- 44.1% vs. - 51.6%, p = 0.084). Serum insulin levels and homeostasis model assessment of insulin resistance significantly decreased in the MetS group but not in the non-MetS group. %Change in liver enzyme levels was markedly decreased in the MetS group compared with that in the non-MetS group (alanine aminotransferase, - 25.1% vs. - 11.3%, p = 0.027; gamma-glutamyl transferase, - 45.8% vs. - 36.2%, p = 0.020). In conclusion, pemafibrate can effectively decrease TG levels in patients with MetS, and it may be a more efficient drug for improving insulin resistance and liver function in such patients.


Asunto(s)
Benzoxazoles , Butiratos , Enfermedad de la Arteria Coronaria , Estudios Cruzados , Hipertrigliceridemia , Resistencia a la Insulina , Síndrome Metabólico , Humanos , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/complicaciones , Síndrome Metabólico/diagnóstico , Hipertrigliceridemia/sangre , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/complicaciones , Hipertrigliceridemia/diagnóstico , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Benzoxazoles/uso terapéutico , Benzoxazoles/farmacología , Butiratos/uso terapéutico , Butiratos/farmacología , Resultado del Tratamiento , Anciano , Triglicéridos/sangre , Hipolipemiantes/uso terapéutico , Hipolipemiantes/farmacología , Biomarcadores/sangre , PPAR alfa/agonistas , Bezafibrato/uso terapéutico , Bezafibrato/farmacología
18.
Sci Rep ; 14(1): 4975, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424468

RESUMEN

Venetoclax has been approved recently for treatment of Acute myeloid leukemia (AML). Venetoclax is a BH3-mimetic and induces apoptosis via Bcl-2 inhibition. However, venetoclax's effect is still restrictive and a novel strategy is needed. In the present study, we demonstrate that sodium butyrate (NaB) facilitates the venetoclax's efficacy of cell death in AML cells. As a single agent, NaB or venetoclax exerted just a weak effect on cell death induction for AML cell line KG-1. The combination with NaB and venetoclax drastically induced cell death. NaB upregulated pro-apoptotic factors, Bax and Bak, indicating the synergistic effect by the collaboration with Bcl-2 inhibition by venetoclax. The combined treatment with NaB and venetoclax strongly cleaved a caspase substrate poly (ADP-ribose) polymerase (PARP) and a potent pan-caspase inhibitor Q-VD-OPh almost completely blocked the cell death induced by the combination, meaning that the combination mainly induced apoptosis. The combination with NaB and venetoclax also strongly induced cell death in another AML cell line SKNO-1 but did not affect chronic myeloid leukemia (CML) cell line K562, indicating that the effect was specific for AML cells. Our results provide a novel strategy to strengthen the effect of venetoclax for AML treatment.


Asunto(s)
Butiratos , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Línea Celular Tumoral , Butiratos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Apoptosis , Caspasas
19.
Gut Microbes ; 16(1): 2310603, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38332676

RESUMEN

Chronic pain is commonly linked with diminished working memory. This study explores the impact of the anesthetic (S)-ketamine on spatial working memory in a chronic constriction injury (CCI) mouse model, focusing on gut microbiome. We found that multiple doses of (S)-ketamine, unlike a single dose, counteracted the reduced spontaneous alteration percentage (%SA) in the Y-maze spatial working memory test, without affecting mechanical or thermal pain sensitivity. Additionally, repeated (S)-ketamine treatments improved the abnormal composition of the gut microbiome (ß-diversity), as indicated by fecal 16S rRNA analysis, and increased levels of butyrate, a key gut - brain axis mediator. Protein analysis showed that these treatments also corrected the upregulated histone deacetylase 2 (HDAC2) and downregulated brain-derived neurotrophic factor (BDNF) in the hippocampi of CCI mice. Remarkably, fecal microbiota transplantation from mice treated repeatedly with (S)-ketamine to CCI mice restored %SA and hippocampal BDNF levels in CCI mice. Butyrate supplementation alone also improved %SA, BDNF, and HDAC2 levels in CCI mice. Furthermore, the TrkB receptor antagonist ANA-12 negated the beneficial effects of repeated (S)-ketamine on spatial working memory impairment in CCI mice. These results indicate that repeated (S)-ketamine administration ameliorates spatial working memory impairment in CCI mice, mediated by a gut microbiota - brain axis, primarily through the enhancement of hippocampal BDNF - TrkB signaling by butyrate.


Asunto(s)
Dolor Crónico , Microbioma Gastrointestinal , Ketamina , Ratones , Animales , Ketamina/farmacología , Ketamina/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Memoria a Corto Plazo , Dolor Crónico/tratamiento farmacológico , ARN Ribosómico 16S , Hipocampo/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Butiratos/farmacología
20.
Int J Biol Macromol ; 262(Pt 2): 130007, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340928

RESUMEN

Obesity and associated liver diseases are becoming global public health challenges. Raspberry (Rubus chingii Hu.), as a medicine food homology plant, possesses a series of health-promoting properties, but its protective effect on obesity-related liver injury and the potential mechanisms remain obscure. Herein high-fat diet (HFD)-fed mice were orally treated with raspberry polysaccharides (RCP) for 14 weeks. Treatment with RCP alleviated obesity and associated symptoms including hyperglycemia, hyperlipemia, endotoxemia, as well as hepatic inflammation and oxidant stress in HFD-induced obese mice. RCP restructured the gut microbiota and host metabolism especially by increasing the levels of Dubosiella and its metabolite butyrate. Besides, exogenous butyrate supplementation protected against intestinal barrier disruption, and thereby reduced inflow of lipopolysaccharide and mitigated inflammation and oxidative injury in the liver of obese mice. Therefore, we suggest that RCP can be utilized as a novel prebiotics to improve obesity-induced hepatic oxidative injury by enhancing butyrate-mediated intestinal barrier function.


Asunto(s)
Rubus , Animales , Ratones , Ratones Obesos , Butiratos/farmacología , Funcion de la Barrera Intestinal , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Inflamación/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Lipopolisacáridos/metabolismo , Estrés Oxidativo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA