Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.686
Filtrar
1.
Mol Biol Rep ; 51(1): 767, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878205

RESUMEN

BACKGROUND: Esterases (EC 3.1.1.X) are enzymes that catalyze the hydrolysis ester bonds. These enzymes have large potential for diverse applications in fine industries, particularly in pharmaceuticals, cosmetics, and bioethanol production. METHODS AND RESULTS: In this study, a gene encoding an esterase from Thermobifida fusca YX (TfEst) was successfully cloned, and its product was overexpressed in Escherichia coli and purified using affinity chromatography. The TfEst kinetic assay revealed catalytic efficiencies of 0.58 s-1 mM-1, 1.09 s-1 mM-1, and 0.062 s-1 mM-1 against p-Nitrophenyl acetate, p-Nitrophenyl butyrate, and 1-naphthyl acetate substrates, respectively. Furthermore, TfEst also exhibited activity in a pH range from 6.0 to 10.0, with maximum activity at pH 8.0. The enzyme demonstrated a half-life of 20 min at 70 °C. Notably, TfEst displayed acetyl xylan esterase activity as evidenced by the acetylated xylan assay. The structural prediction of TfEst using AlphaFold indicated that has an α/ß-hydrolase fold, which is consistent with other esterases. CONCLUSIONS: The enzyme stability over a broad pH range and its activity at elevated temperatures make it an appealing candidate for industrial processes. Overall, TfEst emerges as a promising enzymatic tool with significant implications for the advancement of biotechnology and biofuels industries.


Asunto(s)
Acetilesterasa , Esterasas , Thermobifida , Acetilesterasa/metabolismo , Acetilesterasa/genética , Acetilesterasa/química , Concentración de Iones de Hidrógeno , Cinética , Especificidad por Sustrato , Thermobifida/enzimología , Thermobifida/genética , Esterasas/metabolismo , Esterasas/genética , Esterasas/química , Estabilidad de Enzimas , Temperatura , Escherichia coli/genética , Escherichia coli/metabolismo , Clonación Molecular/métodos , Hidrólisis , Xilanos/metabolismo , Butiratos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Nitrofenoles
2.
Microb Biotechnol ; 17(6): e14502, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888486

RESUMEN

Butyl butyrate is a short-chain fatty acid ester (C8) with a fruity aroma. It has broad prospects in the fields of foods, cosmetics and biofuels. At present, butyl butyrate is produced by chemical synthesis in the industry, but it is highly dependent on petroleum-based products. The growing concerns regarding the future scarcity of fossil fuels have been strongly promoted the transition from traditional fossil fuels and products to renewable bioenergy and biochemicals. Therefore, it is necessary to develop a green biochemical technology to replace traditional petroleum-based materials. In recent years, microorganisms such as Escherichia coli and Clostridium have been engineered to serve as cell factories for the sustainable one-pot production of short-chain fatty acid esters, including butyl butyrate. This opinion highlights the recent development in the use of lipases and alcohol acyltransferases (AATs) for butyl butyrate production in microbial fermentation, as well as future perspectives.


Asunto(s)
Butiratos , Fermentación , Ingeniería Metabólica , Butiratos/metabolismo , Ingeniería Metabólica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Clostridium/metabolismo , Clostridium/genética , Lipasa/metabolismo , Lipasa/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Microbiología Industrial/métodos , Biocombustibles
3.
Gut Microbes ; 16(1): 2363020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841892

RESUMEN

CD4+ T cells play a critical role in regulating autoimmune diseases, and intestinal microbial metabolites control various immune responses. Granzyme B (GzmB)-producing CD4+ T cells have been recently reported to participate in the pathogenesis of autoimmune diseases. Here, we found that GzmbB-deficient CD4+ T cells induced more severe colitis in Rag1-/- mice than wild-type (WT) CD4+ T cells. Germ-free (GF) mice exhibited a lower expression of GzmB in intestinal CD4+ T cells compared to specific pathogen-free (SPF) mice. Intestinal microbial metabolite butyrate increased GzmB expression in CD4+ T cells, especially in IL-10-producing Th1 cells, through HDAC inhibition and GPR43, but not GPR41 and GPR109a. Butyrate-treated GzmB-deficient CD4+ T cells demonstrated more severe colitis compared to butyrate-treated WT CD4+ T cells in the T cell transfer model. Butyrate altered intestinal microbiota composition, but altered microbiota did not mediate butyrate induction of intestinal CD4+ T cell expression of GzmB in mice. Blimp1 was involved in the butyrate induction of GzmB in IL-10-producing Th1 cells. Glucose metabolism, including glycolysis and pyruvate oxidation, mediated butyrate induction of GzmB in Th1 cells. In addition, we found that IKZF3 and NR2F6 regulated GzmB expression induced by butyrate. Together, our studies underscored the critical role of GzmB in mediating gut bacterial metabolite butyrate regulation of T cell tolerance at the mucosal surface.


Asunto(s)
Butiratos , Colitis , Microbioma Gastrointestinal , Granzimas , Interleucina-10 , Ratones Endogámicos C57BL , Células TH1 , Animales , Interleucina-10/metabolismo , Interleucina-10/genética , Interleucina-10/inmunología , Células TH1/inmunología , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Butiratos/metabolismo , Butiratos/farmacología , Granzimas/metabolismo , Colitis/inmunología , Colitis/microbiología , Colitis/metabolismo , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Tolerancia Inmunológica , Proteínas de Homeodominio
4.
Appl Microbiol Biotechnol ; 108(1): 372, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874789

RESUMEN

Methanol is a promising feedstock for the bio-based economy as it can be derived from organic waste streams or produced electrochemically from CO2. Acetate production from CO2 in microbial electrosynthesis (MES) has been widely studied, while more valuable compounds such as butyrate are currently attracting attention. In this study, methanol was used as a co-substrate with CO2 to enhance butyrate production in MES. Feeding with CO2 and methanol resulted in the highest butyrate production rates and titres of 0.36 ± 0.01 g L-1 d-1 and 8.6 ± 0.2 g L-1, respectively, outperforming reactors with only CO2 feeding (0.20 ± 0.03 g L-1 d-1 and 5.2 ± 0.1 g L-1, respectively). Methanol acted as electron donor and as carbon source, both of which contributed ca. 50% of the carbon in the products. Eubacterium was the dominant genus with 52.6 ± 2.5% relative abundance. Thus, we demonstrate attractive route for the use of the C1 substrates, CO2 and methanol, to produce mainly butyrate. KEY POINTS: • Butyrate was the main product from methanol and CO2 in MES • Methanol acted as both carbon and electron source in MES • Eubacterium dominating microbial culture was enriched in MES.


Asunto(s)
Butiratos , Dióxido de Carbono , Metanol , Metanol/metabolismo , Dióxido de Carbono/metabolismo , Butiratos/metabolismo , Reactores Biológicos/microbiología , Carbono/metabolismo , Acetatos/metabolismo
5.
Microbiol Res ; 285: 127739, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763016

RESUMEN

Clostridioides difficile may have a negative impact on gut microbiota composition in terms of diversity and abundance, thereby triggering functional changes supported by the differential presence of genes involved in significant metabolic pathways, such as short-chain fatty acids (SCFA). This work has evaluated shotgun metagenomics data regarding 48 samples from four groups classified according to diarrhea acquisition site (community- and healthcare facility-onset) and positive or negative Clostridioides difficile infection (CDI) result. The metagenomic-assembled genomes (MAGs) obtained from each sample were taxonomically assigned for preliminary comparative analysis concerning differences in composition among groups. The predicted genes involved in metabolism, transport, and signaling remained constant in microbiota members; characteristic patterns were observed in MAGs and genes involved in SCFA butyrate and acetate metabolic pathways for each study group. A decrease in genera and species, as well as relative MAG abundance with the presence of the acetate metabolism-related gene, was evident in the HCFO/- group. Increased antibiotic resistance markers (ARM) were observed in MAGs along with the genes involved in acetate metabolism. The results highlight the need to explore the role of acetate in greater depth as a potential protector of the imbalances produced by CDI, as occurs in other inflammatory intestinal diseases.


Asunto(s)
Acetatos , Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Metagenoma , Metagenómica , Clostridioides difficile/genética , Acetatos/metabolismo , Humanos , Infecciones por Clostridium/microbiología , Ácidos Grasos Volátiles/metabolismo , Genoma Bacteriano , Butiratos/metabolismo , Redes y Vías Metabólicas/genética , Heces/microbiología , Diarrea/microbiología
6.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732048

RESUMEN

HIV infection results in marked alterations in the gut microbiota (GM), such as the loss of microbial diversity and different taxonomic and metabolic profiles. Despite antiretroviral therapy (ART) partially ablating gastrointestinal alterations, the taxonomic profile after successful new ART has shown wide variations. Our objective was to determine the GM composition and functions in people living with HIV (PLWHIV) under ART in comparison to seronegative controls (SC). Fecal samples from 21 subjects (treated with integrase strand-transfer inhibitors, INSTIs) and 18 SC were included. We employed 16S rRNA amplicon sequencing, coupled with PICRUSt2 and fecal short-chain fatty acid (SCFA) quantification by gas chromatography. The INSTI group showed a decreased α-diversity (p < 0.001) compared to the SC group, at the expense of increased amounts of Pseudomonadota (Proteobacteria), Segatella copri, Lactobacillus, and Gram-negative bacteria. Concurrently, we observed an enrichment in Megasphaera and Butyricicoccus, both SCFA-producing bacteria, and significant elevations in fecal butyrate in this group (p < 0.001). Interestingly, gut dysbiosis in PLWHIV was characterized by a proinflammatory environment orchestrated by Pseudomonadota and elevated levels of butyrate associated with bacterial metabolic pathways, as well as the evident presence of butyrogenic bacteria. The role of this unique GM in PLWHIV should be evaluated, as well as the use of butyrate-based supplements and ART regimens that contain succinate, such as tenofovir disoproxil succinate. This mixed profile is described for the first time in PLWHIV from Mexico.


Asunto(s)
Heces , Microbioma Gastrointestinal , Infecciones por VIH , ARN Ribosómico 16S , Humanos , Infecciones por VIH/microbiología , Infecciones por VIH/tratamiento farmacológico , México , Femenino , Masculino , Adulto , Persona de Mediana Edad , Heces/microbiología , ARN Ribosómico 16S/genética , Disbiosis/microbiología , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/análisis , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Butiratos/metabolismo
7.
Environ Microbiol Rep ; 16(3): e13276, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733087

RESUMEN

Syntrophic interactions are key in anaerobic food chains, facilitating the conversion of complex organic matter into methane. A typical example involves acetogenic bacteria converting fatty acids (e.g., butyrate and propionate), a process thermodynamically reliant on H2 consumption by microorganisms such as methanogens. While most studies focus on H2-interspecies transfer between these groups, knowledge on acetate cross-feeding in anaerobic systems is lacking. This study investigated butyrate oxidation by co-cultures of Syntrophomonas wolfei and Methanospirillum hungatei, both with and without the addition of the acetate scavenger Methanothrix soehngenii. Growth and gene expression patterns of S. wolfei and M. hungatei were followed in the two conditions. Although butyrate consumption rates remained constant, genes in the butyrate degradation pathway of S. wolfei were less expressed in the presence of M. soehngenii, including genes involved in reverse electron transport. Higher expression of a type IV-pili operon in S. wolfei hints to the potential for direct interspecies electron transfer between S. wolfei and M. soehngenii and an energetically advantageous relationship between the two microorganisms. Overall, the presence of the acetate scavenger M. soehngenii positively influenced the energy metabolism of S. wolfei and highlighted the relevance of including acetate scavengers when investigating syntrophic fatty acid degradation.


Asunto(s)
Methanospirillum , Methanospirillum/metabolismo , Methanospirillum/genética , Butiratos/metabolismo , Transcriptoma , Anaerobiosis , Oxidación-Reducción , Acetatos/metabolismo , Interacciones Microbianas , Metano/metabolismo , Técnicas de Cocultivo , Transporte de Electrón
8.
Gut Microbes ; 16(1): 2350151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715346

RESUMEN

The extreme environmental conditions of a plateau seriously threaten human health. The relationship between gut microbiota and human health at high altitudes has been extensively investigated. However, no universal gut microbiota biomarkers have been identified in the plateau population, limiting research into gut microbiota and high-altitude adaptation. 668 16s rRNA samples were analyzed using meta-analysis to reduce batch effects and uncover microbiota biomarkers in the plateau population. Furthermore, the robustness of these biomarkers was validated. Mendelian randomization (MR) results indicated that Tibetan gut microbiota may mediate a reduced erythropoietic response. Functional analysis and qPCR revealed that butyrate may be a functional metabolite in high-altitude adaptation. A high-altitude rat model showed that butyrate reduced intestinal damage caused by high altitudes. According to cell experiments, butyrate may downregulate hypoxia-inducible factor-1α (HIF-1α) expression and blunt cellular responses to hypoxic stress. Our research found universally applicable biomarkers and investigated their potential roles in promoting human health at high altitudes.


Asunto(s)
Altitud , Biomarcadores , Butiratos , Microbioma Gastrointestinal , Subunidad alfa del Factor 1 Inducible por Hipoxia , Humanos , Tibet , Butiratos/metabolismo , Butiratos/análisis , Biomarcadores/análisis , Animales , Ratas , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Masculino , Adaptación Fisiológica , Análisis de la Aleatorización Mendeliana
9.
Artículo en Inglés | MEDLINE | ID: mdl-38739685

RESUMEN

An oval to rod-shaped, Gram-stain-positive, strictly anaerobic bacterium, designated LFL-14T, was isolated from the faeces of a healthy Chinese woman. Cells of the strain were non-spore-forming, grew optimally at 37 °C (growth range 30-45 °C) and pH 7.0 (growth range 6.0-9.0) under anaerobic conditions in the liquid modified Gifu anaerobic medium (mGAM). The result of 16S rRNA gene-based analysis indicated that LFL-14T shared an identity of 94.7 0% with Eubacterium ventriosum ATCC 27560T, indicating LFL-14T represented a novel taxon. The results of genome-based analysis revealed that the average nucleotide identity (ANI), the digital DNA-DNA hybridisation (dDDH) and average amino acid identity (AAI) between LFL-14T and its phylogenetically closest neighbour, Eubacterium ventriosum ATCC 27560T, were 77.0 %, 24.6 and 70.9 %, respectively, indicating that LFL-14T represents a novel species of the genus Eubacterium. The genome size of LFL-14T was 2.92 Mbp and the DNA G+C content was 33.14 mol%. We analysed the distribution of the genome of LFL-14T in cohorts of healthy individuals, type 2 diabetes patients (T2D) and patients with non-alcoholic fatty liver disease (NAFLD). We found that its abundance was higher in the T2D cohort, but it had a low average abundance of less than 0.2 % in all three cohorts. The percentages of frequency of occurrence in the T2D, healthy and NAFLD cohorts were 48.87 %, 16.72 % and 13.10 % respectively. The major cellular fatty acids of LFL-14T were C16 : 0 (34.4 %), C17 : 0 2-OH (21.4 %) and C14 : 0 (11.7 %). Additionally, the strain contained diphosphatidylglycerol (DPG) and phosphatidylethanolamine (PE), as well as unidentified phospholipids and unidentified glycolipids. The glucose fermentation products of LFL-14T were acetate and butyrate. In summary, On the basis of its chemotaxonomic, phenotypic, phylogenetic and phylogenomic properties, strain LFL-14T (= CGMCC 1.18005T = KCTC 25580T) is identified as representing a novel species of the genus Eubacterium, for which the name Eubacterium album sp. nov. is proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Eubacterium , Ácidos Grasos , Heces , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Humanos , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Femenino , Eubacterium/genética , Eubacterium/aislamiento & purificación , Eubacterium/clasificación , Heces/microbiología , Butiratos/metabolismo , Genoma Bacteriano , China , Adulto
10.
Anim Sci J ; 95(1): e13954, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38797605

RESUMEN

This study investigated the physiological characteristics and carcass performance associated with residual methane emissions (RME), and the effects of bull differences on CH4-related traits in Japanese Black cattle. Enteric methane (CH4) emissions from 156 Japanese Black cattle (111 heifers and 45 steers) were measured during early fattening using the sniffer method. Various physiological parameters were investigated to clarify the physiological traits between the high, middle, and low RME groups. CH4-related traits were examined to determine whether bull differences affected progeny CH4 emissions. Ruminal butyrate and NH3 concentrations were significantly higher in the high-RME group than in the low-RME group, whereas the propionate content was significantly higher in the low-RME group. Blood urea nitrogen, ß-hydroxybutyric acid, and insulin concentrations were significantly higher, and blood amino acids were lower in the high-RME group than in the other groups. No significant differences were observed in the carcass traits and beef fat composition between RME groups. CH4-related traits were significantly different among bull herds. Our results show that CH4-related traits are heritable, wherein bull differences affect progeny CH4 production capability, and that the above-mentioned rumen fermentations and blood metabolites could be used to evaluate enteric methanogenesis in Japanese Black cattle.


Asunto(s)
Butiratos , Metano , Rumen , Animales , Metano/metabolismo , Bovinos/metabolismo , Bovinos/fisiología , Masculino , Rumen/metabolismo , Femenino , Butiratos/metabolismo , Amoníaco/metabolismo , Amoníaco/sangre , Amoníaco/análisis , Fermentación , Ácido 3-Hidroxibutírico/sangre , Propionatos/metabolismo , Nitrógeno de la Urea Sanguínea , Insulina/sangre , Insulina/metabolismo
11.
Anim Sci J ; 95(1): e13955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38769748

RESUMEN

This study was conducted to assess the effects of fermented rice bran (FRB) with Ligilactobacillus equi on ruminal fermentation using an in vitro system. Oat hay, corn starch, and wheat bran were used as substrate for control. Ten percent of wheat bran was replaced with rice bran (RB), rice bran fermented with distilled water, and rice bran fermented with L. equi for T1, T2, and T3, respectively. The experimental diets were mixed with buffered rumen fluid from wethers under nitrogen gas and incubated for 24 h at 39°C. The fermentation profile and microbial population were analyzed after the incubations. The results revealed that the RB and FRB (with or without L. equi) significantly reduced the gas, methane (CH4), and CH4 per dry matter digested (p < 0.001). Total short-chain fatty acid was also reduced in T1 and T2 in comparison with the control (p < 0.001). Propionate proportion was increased while butyrate proportion was reduced in response to treatment addition in cultures (p < 0.001). Anaerobic fungi and Fibrobacter succinogenes abundance were decreased in treatments (p < 0.001). Overall, CH4 production in vitro can be reduced by RB and FRB supplementation as a result of the reduction of fiber-degrading microorganisms and a decrease in gas production.


Asunto(s)
Fibras de la Dieta , Ácidos Grasos Volátiles , Fermentación , Metano , Oryza , Rumen , Animales , Rumen/microbiología , Rumen/metabolismo , Fibras de la Dieta/metabolismo , Metano/metabolismo , Ácidos Grasos Volátiles/metabolismo , Técnicas In Vitro , Alimentación Animal , Fibrobacter/metabolismo , Propionatos/metabolismo , Butiratos/metabolismo
12.
Nutrients ; 16(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38674791

RESUMEN

Sleep deprivation (SD) leads to impaired intestinal barrier function and intestinal flora disorder, especially a reduction in the abundance of the next generation of probiotic Faecalibacterium prausnitzii (F. prausnitzii). However, it remains largely unclear whether F. prausnitzii can ameliorate SD-induced intestinal barrier damage. A 72 h SD mouse model was used in this research, with or without the addition of F. prausnitzii. The findings indicated that pre-colonization with F. prausnitzii could protect against tissue damage from SD, enhance goblet cell count and MUC2 levels in the colon, boost tight-junction protein expression, decrease macrophage infiltration, suppress pro-inflammatory cytokine expression, and reduce apoptosis. We found that the presence of F. prausnitzii helped to balance the gut microbiota in SD mice by reducing harmful bacteria like Klebsiella and Staphylococcus, while increasing beneficial bacteria such as Akkermansia. Ion chromatography analysis revealed that F. prausnitzii pretreatment increased the fecal butyrate level in SD mice. Overall, these results suggested that incorporating F. prausnitzii could help reduce gut damage caused by SD, potentially by enhancing the intestinal barrier and balancing gut microflora. This provides a foundation for utilizing probiotics to protect against intestinal illnesses.


Asunto(s)
Disbiosis , Faecalibacterium prausnitzii , Microbioma Gastrointestinal , Mucosa Intestinal , Probióticos , Privación de Sueño , Animales , Privación de Sueño/complicaciones , Ratones , Probióticos/farmacología , Probióticos/administración & dosificación , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Heces/microbiología , Ratones Endogámicos C57BL , Suplementos Dietéticos , Modelos Animales de Enfermedad , Mucina 2/metabolismo , Butiratos/metabolismo , Colon/microbiología , Colon/metabolismo
13.
Physiol Genomics ; 56(6): 426-435, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557279

RESUMEN

Short-chain fatty acids (SCFAs) produced by the gut bacteria have been associated with cardiovascular dysfunction in humans and rodents. However, studies exploring effects of SCFAs on cardiovascular parameters in the zebrafish, an increasingly popular model in cardiovascular research, remain limited. Here, we performed fecal bacterial 16S sequencing and gas chromatography/mass spectrometry (GC-MS) to determine the composition and abundance of gut microbiota and SCFAs in adult zebrafish. Following this, the acute effects of major SCFAs on heart rate and vascular tone were measured in anesthetized zebrafish larvae using fecal concentrations of butyrate, acetate, and propionate. Finally, we investigated if coincubation with butyrate may lessen the effects of angiotensin II (ANG II) and phenylephrine (PE) on vascular tone in anesthetized zebrafish larvae. We found that the abundance in Proteobacteria, Firmicutes, and Fusobacteria phyla in the adult zebrafish resembled those reported in rodents and humans. SCFA levels with highest concentration of acetate (27.43 µM), followed by butyrate (2.19 µM) and propionate (1.65 µM) were observed in the fecal samples of adult zebrafish. Immersion in butyrate and acetate produced a ∼20% decrease in heart rate (HR), respectively, with no observed effects of propionate. Butyrate alone also produced an ∼25% decrease in the cross-sectional width of the dorsal aorta (DA) at 60 min (*P < 0.05), suggesting compensatory vasoconstriction, with no effects of either acetate or propionate. In addition, butyrate significantly alleviated the decrease in DA cross-sectional width produced by both ANG II and PE. We demonstrate the potential for zebrafish in investigation of host-microbiota interactions in cardiovascular health.NEW & NOTEWORTHY We highlight the presence of a core gut microbiota and demonstrate in vivo short-chain fatty acid production in adult zebrafish. In addition, we show cardio-beneficial vasoactive and chronotropic properties of butyrate, and chronotropic properties of acetate in anesthetized zebrafish larvae.


Asunto(s)
Ácidos Grasos Volátiles , Heces , Microbioma Gastrointestinal , Frecuencia Cardíaca , Larva , Pez Cebra , Animales , Pez Cebra/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Heces/microbiología , Butiratos/metabolismo , Butiratos/farmacología , Angiotensina II/metabolismo , Angiotensina II/farmacología , Bacterias/efectos de los fármacos , Fenilefrina/farmacología , Acetatos/farmacología , Acetatos/metabolismo , ARN Ribosómico 16S/genética
14.
Brain Behav Immun ; 119: 394-407, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38608743

RESUMEN

Chronic infection with Toxoplasma gondii (T. gondii) emerges as a risk factor for neurodegenerative diseases in animals and humans. However, the underlying mechanisms are largely unknown. We aimed to investigate whether gut microbiota and its metabolites play a role in T. gondii-induced cognitive deficits. We found that T. gondii infection induced cognitive deficits in mice, which was characterized by synaptic ultrastructure impairment and neuroinflammation in the hippocampus. Moreover, the infection led to gut microbiota dysbiosis, barrier integrity impairment, and inflammation in the colon. Interestingly, broad-spectrum antibiotic ablation of gut microbiota attenuated the adverse effects of the parasitic infection on the cognitive function in mice; cognitive deficits and hippocampal pathological changes were transferred from the infected mice to control mice by fecal microbiota transplantation. In addition, the abundance of butyrate-producing bacteria and the production of serum butyrate were decreased in infected mice. Interestingly, dietary supplementation of butyrate ameliorated T. gondii-induced cognitive impairment in mice. Notably, compared to the healthy controls, decreased butyrate production was observed in the serum of human subjects with high levels of anti-T. gondii IgG. Overall, this study demonstrates that gut microbiota is a key regulator of T. gondii-induced cognitive impairment.


Asunto(s)
Disfunción Cognitiva , Disbiosis , Microbioma Gastrointestinal , Hipocampo , Toxoplasma , Toxoplasmosis , Animales , Ratones , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/microbiología , Toxoplasmosis/metabolismo , Toxoplasmosis/complicaciones , Disbiosis/metabolismo , Humanos , Masculino , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Trasplante de Microbiota Fecal/métodos , Butiratos/metabolismo , Femenino , Cognición/fisiología
15.
Cell Rep Med ; 5(4): 101488, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38565146

RESUMEN

Most recurrences of lung cancer (LC) occur within 3 years after surgery, but the underlying mechanism remains unclear. Here, we collect LC tissues with shorter (<3 years, recurrence group) and longer (>3 years, non-recurrence group) recurrence-free survival. By using 16S sequencing, we find that intratumor microbiome diversity is lower in the recurrence group and butyrate-producing bacteria are enriched in the recurrence group. The intratumor microbiome signature and circulating microbiome DNA can accurately predict LC recurrence. We prove that intratumor injection of butyrate-producing bacteria Roseburia can promote subcutaneous tumor growth. Mechanistically, bacteria-derived butyrate promotes LC metastasis by increasing expression of H19 in tumor cells through inhibiting HDAC2 and increasing H3K27 acetylation at the H19 promoter and inducing M2 macrophage polarization. Depletion of macrophages partially abolishes the metastasis-promoting effect of butyrate. Our results provide evidence for the cross-talk between the intratumor microbiome and LC metastasis and suggest the potential prognostic and therapeutic value of the intratumor microbiome.


Asunto(s)
Neoplasias Pulmonares , Microbiota , Humanos , Neoplasias Pulmonares/patología , Butiratos/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Macrófagos
16.
Molecules ; 29(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675716

RESUMEN

The health benefits of young barley leaves, rich in dietary fiber, have been studied for several decades; however, their beneficial effects on the intestinal microenvironment remain to be elucidated. To investigate the effects of young barley leaf-derived dietary fiber (YB) on the gut microbiota and immunity, mice were fed an AIN-93G diet containing cellulose or YB and subjected to subsequent analysis. The population of MHC-II-positive conventional dendritic cells (cDCs) and CD86 expression in the cDCs of Peyer's patches were elevated in the YB-fed mice. MHC-II and CD86 expression was also elevated in the bone marrow-derived DCs treated with YB. 16S-based metagenomic analysis revealed that the gut microbiota composition was markedly altered by YB feeding. Among the gut microbiota, Lachnospiraceae, mainly comprising butyrate-producing NK4A136 spp., were overrepresented in the YB-fed mice. In fact, fecal butyrate concentration was also augmented in the YB-fed mice, which coincided with increased retinaldehyde dehydrogenase (RALDH) activity in the CD103+ cDCs of the mesenteric lymph nodes. Consistent with elevated RALDH activity, the population of colonic IgA+ plasma cells was higher in the YB-fed mice than in the parental control mice. In conclusion, YB has beneficial effects on the gut microbiota and intestinal immune system.


Asunto(s)
Fibras de la Dieta , Microbioma Gastrointestinal , Hordeum , Hojas de la Planta , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Hordeum/química , Fibras de la Dieta/farmacología , Hojas de la Planta/química , Ratones , Retinal-Deshidrogenasa/metabolismo , Butiratos/metabolismo , Heces/microbiología
17.
Neurochem Int ; 176: 105745, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641025

RESUMEN

Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.


Asunto(s)
Butiratos , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Animales , Butiratos/uso terapéutico , Butiratos/farmacología , Butiratos/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Probióticos/uso terapéutico
18.
Sci Rep ; 14(1): 7042, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528074

RESUMEN

In China, traditional medications for osteoporosis have significant side effects, low compliance, and high costs, making it urgent to explore new treatment options. Probiotics have demonstrated superiority in the treatment of various chronic diseases, and the reduction of bone mass in postmenopausal osteoporosis (PMOP) is closely related to the degradation and metabolism of intestinal probiotics. It is crucial to explore the role and molecular mechanisms of probiotics in alleviating PMOP through their metabolites, as well as their therapeutic effects. We aim to identify key probiotics and their metabolites that affect bone loss in PMOP through 16srDNA sequencing combined with non-targeted metabolomics sequencing, and explore the impact and possible mechanisms of key probiotics and their metabolites on the progression of PMOP in the context of osteoporosis caused by estrogen deficiency. The sequencing results showed a significant decrease in Lactobacillus acidophilus and butyrate in PMOP patients. In vivo experiments confirmed that the intervention of L. acidophilus and butyrate significantly inhibited osteoclast formation and bone resorption activity, improved intestinal barrier permeability, suppressed B cells, and the production of RANKL on B cells, effectively reduced systemic bone loss induced by oophorectomy, with butyric acid levels regulated by L. acidophilus. Consistently, in vitro experiments have confirmed that butyrate can directly inhibit the formation of osteoclasts and bone resorption activity. The above research results indicate that there are various pathways through which L. acidophilus inhibits osteoclast formation and bone resorption activity through butyrate. Intervention with L. acidophilus may be a safe and promising treatment strategy for osteoclast related bone diseases, such as PMOP.


Asunto(s)
Resorción Ósea , Osteoporosis Posmenopáusica , Osteoporosis , Probióticos , Femenino , Humanos , Osteoclastos/metabolismo , Osteoporosis Posmenopáusica/etiología , Lactobacillus acidophilus , Butiratos/metabolismo , Osteoporosis/metabolismo , Resorción Ósea/metabolismo , Probióticos/farmacología , Probióticos/uso terapéutico , Diferenciación Celular , Ovariectomía/efectos adversos
19.
Bioresour Technol ; 400: 130646, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556063

RESUMEN

The present study evaluated the production potential of CH4, carboxylic acids and alcohols from a mixed culture enriched using synthetic syngas. The influence of syngas concentration on the microbial community and products productivity and selectivity was investigated. The results demonstrated the enrichment of a mesophilic mixed culture capable of converting CO and H2 mainly to CH4 and acetate, along with butyrate. The selectivity values showed that acetate production was enhanced during the first cycle in all conditions tested (up to 20 %), while CH4 was the main product generated during following cycles. Concretely, CH4 selectivity remained unaffected by syngas concentration, reaching a stable value of 41.6 ± 2.0 %. On the other hand, butyrate selectivity was only representative at the highest syngas concentration and lower pH values (26.1 ± 5.8 %), where the H2 consumption was completely inhibited. Thus, pH was identified as a key parameter for both butyrate synthesis and the development of hydrogenotrophic activity.


Asunto(s)
Ácidos Grasos Volátiles , Metano , Metano/metabolismo , Ácidos Grasos Volátiles/metabolismo , Concentración de Iones de Hidrógeno , Hidrógeno/metabolismo , Gases/metabolismo , Reactores Biológicos , Alcoholes/metabolismo , Acetatos/metabolismo , Butiratos/metabolismo
20.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38513071

RESUMEN

This experiment was conducted to evaluate the effects of including a mixed-dimensional attapulgite clay (MDA) into a naturally moldly diet for Hu lambs. Fifty male Hu lambs with similar initial body weight (28.24 ±â€…1.80 kg) were randomly allocated into five dietary treatments: a basal diet containing naturally occurring mycotoxins with 0, 0.5, 1.0, and 2.0 kg/t MDA, and basal diet with a commercial mycotoxin adsorbent Solis with montmorillonite as the major component at 1 kg/t. Both MDA and Solis increased average daily gain (ADG) and dry matter intake (DMI; P ≤ 0.004), and there was no difference in growth performance between MDA and Solis (P ≥ 0.26). The final body weight, DMI, and ADG were linearly increased with increasing MDA supplementation (P < 0.01). Lambs treated with both MDA and Solis demonstrated greater apparent digestibility of dry matter (DM), organic matter (OM), and energy compared with the control group (P ≤ 0.03), and there were no differences in nutrient digestibilities between MDA and Solis (P ≥ 0.38). Digestibility of CP was linearly increased with the increasing MDA supplementation (P = 0.01). Neither MDA nor Solis affected rumen total volatile fatty acid (TVFA) concentration (P ≥ 0.39), but decreased the acetate-to-propionate ratio and molar proportion of n-butyrate (P ≤ 0.01), and MDA also increased the concentration of ammonia (P = 0.003). Besides, increasing MDA supplementation linearly reduced the acetate-to-propionate ratio and molar proportion of n-butyrate (P = 0.01), but linearly and quadratically increased the concentration of ammonia (P ≥ 0.003). These results showed that the incorporation of MDA into a naturally moldy diet of Hu lambs yielded comparable results to the Solis product, with higher growth performance and nutrient digestibility but lower acetate-to-propionate ratio observed. In conclusion, including ≥ 1 kg/t of MDA in high mycotoxin risk diets for growing lambs improves feed intake and rumen fermentation.


The issue of mycotoxin-contaminated animal feed has consistently presented a significant challenge in relation to animal health and production. The mixed-dimensional attapulgite clay (MDA) has been proven effective in binding polar mycotoxins such as aflatoxin, while also effectively adsorbing hydrophobic or weakly polar mycotoxins such as zearalenone (ZEN) and ochratoxin. Therefore, this study was undertaken to assess the impact of MDA inclusion in mycotoxin-contaminated diets on performance and rumen fermentation variables in lambs. The results indicated that MDA not only significantly improved the growth performance and nutrient digestibility of Hu lambs but also enhanced the molar proportion of propionate and ammonia concentration, and reduced the acetate to propionate ratio and the molar proportion of n-butyrate.


Asunto(s)
Compuestos de Magnesio , Micotoxinas , Rumen , Compuestos de Silicona , Ovinos , Animales , Masculino , Arcilla , Rumen/metabolismo , Propionatos/metabolismo , Fermentación , Amoníaco/metabolismo , Digestión , Dieta/veterinaria , Oveja Doméstica , Ingestión de Alimentos , Acetatos/metabolismo , Butiratos/metabolismo , Peso Corporal , Alimentación Animal/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...