Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Sci ; 20(8): 2833-2859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904025

RESUMEN

Cellular immunotherapy has emerged as an exciting strategy for cancer treatment, as it aims to enhance the body's immune response to tumor cells by engineering immune cells and designing synthetic molecules from scratch. Because of the cytotoxic nature, abundance in peripheral blood, and maturation of genetic engineering techniques, T cells have become the most commonly engineered immune cells to date. Represented by chimeric antigen receptor (CAR)-T therapy, T cell-based immunotherapy has revolutionized the clinical treatment of hematological malignancies. However, serious side effects and limited efficacy in solid tumors have hindered the clinical application of cellular immunotherapy. To address these limitations, various innovative strategies regarding synthetic cells and molecules have been developed. On one hand, some cytotoxic immune cells other than T cells have been engineered to explore the potential of targeted elimination of tumor cells, while some adjuvant cells have also been engineered to enhance the therapeutic effect. On the other hand, diverse synthetic cellular components and molecules are added to engineered immune cells to regulate their functions, promoting cytotoxic activity and restricting side effects. Moreover, novel bioactive materials such as hydrogels facilitating the delivery of therapeutic immune cells have also been applied to improve the efficacy of cellular immunotherapy. This review summarizes the innovative strategies of synthetic cells and molecules currently available in cellular immunotherapies, discusses the limitations, and provides insights into the next generation of cellular immunotherapies.


Asunto(s)
Inmunoterapia , Humanos , Inmunoterapia/métodos , Neoplasias/terapia , Neoplasias/inmunología , Animales , Células Artificiales/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Inmunoterapia Adoptiva/métodos
2.
Front Immunol ; 15: 1386160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779658

RESUMEN

The study of peptide repertoires presented by major histocompatibility complex (MHC) molecules and the identification of potential T-cell epitopes contribute to a multitude of immunopeptidome-based treatment approaches. Epitope mapping is essential for the development of promising epitope-based approaches in vaccination as well as for innovative therapeutics for autoimmune diseases, infectious diseases, and cancer. It also plays a critical role in the immunogenicity assessment of protein therapeutics with regard to safety and efficacy concerns. The main challenge emerges from the highly polymorphic nature of the human leukocyte antigen (HLA) molecules leading to the requirement of a peptide mapping strategy for a single HLA allele. As many autoimmune diseases are linked to at least one specific antigen, we established FASTMAP, an innovative strategy to transiently co-transfect a single HLA allele combined with a disease-specific antigen into a human cell line. This approach allows the specific identification of HLA-bound peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using FASTMAP, we found a comparable spectrum of endogenous peptides presented by the most frequently expressed HLA alleles in the world's population compared to what has been described in literature. To ensure a reliable peptide mapping workflow, we combined the HLA alleles with well-known human model antigens like coagulation factor VIII, acetylcholine receptor subunit alpha, protein structures of the SARS-CoV-2 virus, and myelin basic protein. Using these model antigens, we have been able to identify a broad range of peptides that are in line with already published and in silico predicted T-cell epitopes of the specific HLA/model antigen combination. The transient co-expression of a single affinity-tagged MHC molecule combined with a disease-specific antigen in a human cell line in our FASTMAP pipeline provides the opportunity to identify potential T-cell epitopes/endogenously processed MHC-bound peptides in a very cost-effective, fast, and customizable system with high-throughput potential.


Asunto(s)
Mapeo Epitopo , Epítopos de Linfocito T , Antígenos HLA-E , Proteómica , Proteómica/métodos , Antígenos HLA-E/análisis , Epítopos de Linfocito T/análisis , Mapeo Epitopo/métodos , Mapeo Epitopo/normas , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/inmunología , Línea Celular , Humanos , Cromatografía Líquida con Espectrometría de Masas , Péptidos/aislamiento & purificación , Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología
3.
ACS Appl Mater Interfaces ; 13(47): 55890-55901, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34787393

RESUMEN

Effective expansion of T-cells without ex vivo stimulation and maintenance of their antitumor functions in the complex tumor microenvironment (TME) are still daunting challenges in T-cell-based immunotherapy. Here, we developed biomimetic artificial antigen-presenting cells (aAPCs), ultrathin MnOx nanoparticles (NPs) functionalized with T-cell activators (anti-CD3/CD28 mAbs, CD), and tumor cell membranes (CMs) for enhanced lung metastasis immunotherapy. The aAPCs, termed CD-MnOx@CM, not only efficiently enhanced the expansion and activation of intratumoral CD8+ cytotoxic T-cells and dendritic cells after homing to homotypic metastatic tumors but also regulated the TME to facilitate T-cell survival through catalyzing the decomposition of intratumoral H2O2 into O2. Consequently, the aAPCs significantly inhibited the development of lung metastatic nodules and extended the survival of a B16-F10 melanoma metastasis model, while minimizing adverse events. Our work represents a new biomaterial strategy of inhibiting tumor metastasis through targeted TME regulation and in situ T-cell-based immunotherapy.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología , Materiales Biomiméticos/química , Linfocitos T CD8-positivos/inmunología , Inmunoterapia , Neoplasias Pulmonares/terapia , Melanoma/terapia , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/secundario , Compuestos de Manganeso/química , Compuestos de Manganeso/inmunología , Melanoma/inmunología , Ratones , Óxidos/química , Óxidos/inmunología , Tamaño de la Partícula , Propiedades de Superficie , Microambiente Tumoral
4.
J Extracell Vesicles ; 10(9): e12120, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34262675

RESUMEN

Bacterial outer membrane vesicles (OMV) have gained attention as a promising new cancer vaccine platform for efficiently provoking immune responses. However, OMV induce severe toxicity by activating the innate immune system. In this study, we applied a simple isolation approach to produce artificial OMV that we have named Synthetic Bacterial Vesicles (SyBV) that do not induce a severe toxic response. We also explored the potential of SyBV as an immunotherapy combined with tumour extracellular vesicles to induce anti-tumour immunity. Bacterial SyBV were produced with high yield by a protocol including lysozyme and high pH treatment, resulting in pure vesicles with very few cytosolic components and no RNA or DNA. These SyBV did not cause systemic pro-inflammatory cytokine responses in mice compared to naturally released OMV. However, SyBV and OMV were similarly effective in activation of mouse bone marrow-derived dendritic cells. Co-immunization with SyBV and melanoma extracellular vesicles elicited tumour regression in melanoma-bearing mice through Th-1 type T cell immunity and balanced antibody production. Also, the immunotherapeutic effect of SyBV was synergistically enhanced by anti-PD-1 inhibitor. Moreover, SyBV displayed significantly greater adjuvant activity than other classical adjuvants. Taken together, these results demonstrate a safe and efficient strategy for eliciting specific anti-tumour responses using immunotherapeutic bacterial SyBV.


Asunto(s)
Membrana Externa Bacteriana/inmunología , Escherichia coli/inmunología , Vesículas Extracelulares/inmunología , Inmunoterapia , Melanoma Experimental/inmunología , Adyuvantes Inmunológicos/metabolismo , Animales , Células Artificiales/inmunología , Membrana Externa Bacteriana/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Células Dendríticas , Vesículas Extracelulares/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunización , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos C57BL , Células TH1/inmunología
5.
ACS Appl Mater Interfaces ; 13(7): 7913-7923, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33573372

RESUMEN

Biomimetic biomaterials are being actively explored in the context of cancer immunotherapy because of their ability to directly engage the immune system to generate antitumor responses. Unlike cellular therapies, biomaterial-based immunotherapies can be precisely engineered to exhibit defined characteristics including biodegradability, physical size, and tuned surface presentation of immunomodulatory signals. In particular, modulating the interface between the biomaterial surface and the target biological cell is key to enabling biological functions. Synthetic artificial antigen presenting cells (aAPCs) are promising as a cancer immunotherapy but are limited in clinical translation by the requirement of ex vivo cell manipulation and adoptive transfer of antigen-specific CD8+ T cells. To move toward acellular aAPC technology for in vivo use, we combine poly(lactic-co-glycolic acid) (PLGA) and cationic poly(beta-amino-ester) (PBAE) to form a biodegradable blend based on the hypothesis that therapeutic aAPCs fabricated from a cationic blend may have improved functions. PLGA/PBAE aAPCs demonstrate enhanced surface interactions with antigen-specific CD8+ T cells that increase T cell activation and expansion ex vivo, associated with significantly increased conjugation efficiency of T cell stimulatory signals to the aAPCs. Critically, these PLGA/PBAE aAPCs also expand antigen-specific cytotoxic CD8+ T cells in vivo without the need of adoptive transfer. Treatment with PLGA/PBAE aAPCs in combination with checkpoint therapy decreases tumor growth and extends survival in a B16-F10 melanoma mouse model. These results demonstrate the potential of PLGA/PBAE aAPCs as a biocompatible, directly injectable acellular therapy for cancer immunotherapy.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología , Inmunoterapia , Melanoma/terapia , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/inmunología , Polímeros/química , Animales , Células Artificiales/química , Linfocitos T CD8-positivos/inmunología , Cationes/química , Cationes/inmunología , Melanoma/inmunología , Ratones , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Propiedades de Superficie
6.
Nano Lett ; 19(10): 6945-6954, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31478664

RESUMEN

Activation of T cells by antigen presenting cells (APCs) initiates their proliferation, cytokine production, and killing of infected or cancerous cells. We and others have shown that T-cell receptors require mechanical forces for triggering, and these forces arise during the interaction of T cells with APCs. Efficient activation of T cells in vitro is necessary for clinical applications. In this paper, we studied the impact of combining mechanical, oscillatory movements provided by an orbital shaker with soft, biocompatible, artificial APCs (aAPCs) of various sizes and amounts of antigen. We showed that these aAPCs allow for testing the strength of signal delivered to T cells, and enabled us to confirm that that absolute amounts of antigen engaged by the T cell are more important for activation than the density of antigen. We also found that when our aAPCs interact with T cells in the context of an oscillatory mechanoenvironment, they roughly double antigenic signal strength, compared to conventional, static culture. Combining these effects, our aAPCs significantly outperformed the commonly used Dynabeads. We finally demonstrated that tuning the signal strength down to a submaximal "sweet spot" allows for robust expansion of induced regulatory T cells. In conclusion, augmenting engineered aAPCs with mechanical forces offers a novel approach for tuning of T-cell activation and differentiation.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología , Activación de Linfocitos , Linfocitos T/inmunología , Animales , Células Presentadoras de Antígenos/citología , Células Artificiales/citología , Fenómenos Biomecánicos , Células Cultivadas , Humanos , Ratones , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/citología
7.
Adv Mater ; 31(23): e1807359, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30968468

RESUMEN

T cell therapies require the removal and culture of T cells ex vivo to expand several thousand-fold. However, these cells often lose the phenotype and cytotoxic functionality for mediating effective therapeutic responses. The extracellular matrix (ECM) has been used to preserve and augment cell phenotype; however, it has not been applied to cellular immunotherapies. Here, a hyaluronic acid (HA)-based hydrogel is engineered to present the two stimulatory signals required for T-cell activation-termed an artificial T-cell stimulating matrix (aTM). It is found that biophysical properties of the aTM-stimulatory ligand density, stiffness, and ECM proteins-potentiate T cell signaling and skew phenotype of both murine and human T cells. Importantly, the combination of the ECM environment and mechanically sensitive TCR signaling from the aTM results in a rapid and robust expansion of rare, antigen-specific CD8+ T cells. Adoptive transfer of these tumor-specific cells significantly suppresses tumor growth and improves animal survival compared with T cells stimulated by traditional methods. Beyond immediate immunotherapeutic applications, demonstrating the environment influences the cellular therapeutic product delineates the importance of the ECM and provides a case study of how to engineer ECM-mimetic materials for therapeutic immune stimulation in the future.


Asunto(s)
Células Artificiales/citología , Ingeniería Celular/métodos , Inmunoterapia/métodos , Linfocitos T/citología , Traslado Adoptivo , Animales , Células Artificiales/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Citocinas/metabolismo , Matriz Extracelular/química , Humanos , Ácido Hialurónico/química , Hidrogeles , Ligandos , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Ratones , Ratones Transgénicos , Trasplante de Neoplasias , Receptores de Antígenos de Linfocitos T/fisiología , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo
8.
Mol Immunol ; 98: 13-18, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29525074

RESUMEN

Exciting developments in cancer nanomedicine include the engineering of nanocarriers to deliver drugs locally to tumors, increasing efficacy and reducing off-target toxicity associated with chemotherapies. Despite nanocarrier advances, metastatic cancer remains challenging to treat due to barriers that prevent nanoparticles from gaining access to remote, dispersed, and poorly vascularized metastatic tumors. Instead of relying on nanoparticles to directly destroy every tumor cell, immunotherapeutic approaches target immune cells to train them to recognize and destroy tumor cells, which, due to the amplification and specificity of an adaptive immune response, may be a more effective approach to treating metastatic cancer. One novel technology for cancer immunotherapy is the artificial antigen presenting cell (aAPC), a micro- or nanoparticle-based system that mimics an antigen presenting cell by presenting important signal proteins to T cells to activate them against cancer. Signal 1 molecules target the T cell receptor and facilitate antigen recognition by T cells, signal 2 molecules provide costimulation essential for T cell activation, and signal 3 consists of secreted cues that further stimulate T cells. Classic microscale aAPCs present signal 1 and 2 molecules on their surface, and biodegradable polymeric aAPCs offer the additional capability of releasing signal 3 cytokines and costimulatory molecules that modulate the T cell response. Although particles of approximately 5-10 µm in diameter may be considered the optimal size of an aAPC for ex vivo cellular expansion, nanoscale aAPCs have demonstrated superior in vivo pharmacokinetic properties and are more suitable for systemic injection. As sufficient surface contact between T cells and aAPCs is essential for activation, nano-aAPCs with microscale contact surface areas have been created through engineering approaches such as shape manipulation and nanoparticle clustering. These design strategies have demonstrated greatly enhanced efficacy of nano-aAPCs, endowing nano-aAPCs with the potential to be among the next generation of cancer nanomedicines.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Animales , Biomimética , Humanos , Nanopartículas de Magnetita/química , Ratones , Nanomedicina , Nanopartículas/ultraestructura , Nanotecnología , Tamaño de la Partícula
9.
Nano Lett ; 17(11): 7045-7054, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28994285

RESUMEN

Particles engineered to engage and interact with cell surface ligands and to modulate cells can be harnessed to explore basic biological questions as well as to devise cellular therapies. Biology has inspired the design of these particles, such as artificial antigen-presenting cells (aAPCs) for use in immunotherapy. While much has been learned about mimicking antigen presenting cell biology, as we decrease the size of aAPCs to the nanometer scale, we need to extend biomimetic design to include considerations of T cell biology-including T-cell receptor (TCR) organization. Here we describe the first quantitative analysis of particle size effect on aAPCs with both Signals 1 and 2 based on T cell biology. We show that aAPCs, larger than 300 nm, activate T cells more efficiently than smaller aAPCs, 50 nm. The 50 nm aAPCs require saturating doses or require artificial magnetic clustering to activate T cells. Increasing ligand density alone on the 50 nm aAPCs did not increase their ability to stimulate CD8+ T cells, confirming the size-dependent phenomenon. These data support the need for multireceptor ligation and activation of T-cell receptor (TCR) nanoclusters of similar sizes to 300 nm aAPCs. Quantitative analysis and modeling of a nanoparticle system provides insight into engineering constraints of aAPCs for T cell immunotherapy applications and offers a case study for other cell-modulating particles.


Asunto(s)
Células Presentadoras de Antígenos/química , Células Artificiales/química , Inmunomodulación , Activación de Linfocitos , Nanopartículas/química , Células Artificiales/inmunología , Células Artificiales/ultraestructura , Materiales Biomiméticos/química , Materiales Biomiméticos/uso terapéutico , Biomimética/métodos , Antígenos CD28/inmunología , Antígenos CD8/inmunología , Humanos , Inmunoterapia , Ligandos , Complejo Mayor de Histocompatibilidad , Nanopartículas/uso terapéutico , Nanopartículas/ultraestructura , Neoplasias/terapia , Tamaño de la Partícula , Receptores de Antígenos de Linfocitos T/inmunología
10.
Theranostics ; 7(14): 3504-3516, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28912891

RESUMEN

The immune system protects the body against a wide range of infectious diseases and cancer by leveraging the efficiency of immune cells and lymphoid organs. Over the past decade, immune cell/organ therapies based on the manipulation, infusion, and implantation of autologous or allogeneic immune cells/organs into patients have been widely tested and have made great progress in clinical applications. Despite these advances, therapy with natural immune cells or lymphoid organs is relatively expensive and time-consuming. Alternatively, biomimetic materials and strategies have been applied to develop artificial immune cells and lymphoid organs, which have attracted considerable attentions. In this review, we survey the latest studies on engineering biomimetic materials for immunotherapy, focusing on the perspectives of bioengineering artificial antigen presenting cells and lymphoid organs. The opportunities and challenges of this field are also discussed.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología , Tejido Linfoide/inmunología , Animales , Células Artificiales/química , Materiales Biomiméticos/química , Humanos , Tejido Linfoide/citología
11.
Methods Mol Biol ; 1530: 343-353, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28150213

RESUMEN

Artificial antigen-presenting cells (aAPCs) overcome many of the limitations of biologically based adoptive immunotherapy protocols. While these acellular systems can be designed with a variety of parameters, including material type, diameter, and proliferative signals for T cells, we outline methods to formulate and characterize a comprehensive polymeric microparticle aAPC platform. These aAPCs, which can be reproducibly fabricated in large quantities, efficiently stimulate antigen-specific T cell activation and proliferation by both paracrine cytokine signals and engagement of T cell surface proteins.


Asunto(s)
Presentación de Antígeno , Células Artificiales/inmunología , Inmunoterapia , Anticuerpos/química , Anticuerpos/inmunología , Células Presentadoras de Antígenos/inmunología , Avidina , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/inmunología , Humanos , Inmunoterapia Adoptiva , Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Propiedades de Superficie , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
12.
Biomaterials ; 118: 16-26, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27940380

RESUMEN

Biomimetic materials that target the immune system and generate an anti-tumor responses hold promise in augmenting cancer immunotherapy. These synthetic materials can be engineered and optimized for their biodegradability, physical parameters such as shape and size, and controlled release of immune-modulators. As these new platforms enter the playing field, it is imperative to understand their interaction with existing immunotherapies since single-targeted approaches have limited efficacy. Here, we investigate the synergy between a PLGA-based artificial antigen presenting cell (aAPC) and a checkpoint blockade molecule, anti-PD1 monoclonal antibody (mAb). The combination of antigen-specific aAPC-based activation and anti-PD-1 mAb checkpoint blockade induced the greatest IFN-γ secretion by CD8+ T cells in vitro. Combination treatment also acted synergistically in an in vivo murine melanoma model to result in delayed tumor growth and extended survival, while either treatment alone had no effect. This was shown mechanistically to be due to decreased PD-1 expression and increased antigen-specific proliferation of CD8+ T cells within the tumor microenvironment and spleen. Thus, biomaterial-based therapy can synergize with other immunotherapies and motivates the translation of biomimetic combinatorial treatments.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología , Materiales Biomiméticos/uso terapéutico , Melanoma/inmunología , Melanoma/terapia , Implantes Absorbibles , Animales , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Implantes de Medicamentos/administración & dosificación , Sinergismo Farmacológico , Ácido Láctico/química , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Resultado del Tratamiento
13.
Immunol Cell Biol ; 94(7): 662-72, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26924643

RESUMEN

Owing to their multiple immune functions, CD4(+) T cells are of major interest for immunotherapy in chronic viral infections and cancer, as well as for severe autoimmune diseases and transplantation. Therefore, standardized methods allowing rapid generation of a large number of CD4(+) T cells for adoptive immunotherapy are still awaited. We constructed stable artificial antigen-presenting cells (AAPCs) derived from mouse fibroblasts. They were genetically modified to express human leukocyte antigen (HLA)-DR molecules and the human accessory molecules B7.1, Intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-3 (LFA-3). AAPCs expressing HLA-DR1, HLA-DR15 or HLA-DR51 molecules and loaded with peptides derived from influenza hemagglutinin (HA), myelin basic protein (MBP) or factor VIII, respectively, activated specific CD4(+) T-cell clones more effectively than Epstein-Barr virus (EBV)-transformed B cells. We also showed that AAPCs were able to take up and process whole Ag proteins, and present epitopes to specific T cells. In primary cultures, AAPCs loaded with HA peptide allowed generation of specific Th1 lymphocytes from healthy donors as demonstrated by tetramer and intracellular cytokine staining. Although AAPCs were less effective than autologous peripheral blood mononuclear cells (PBMCs) to stimulate CD4(+) T cells in primary culture, AAPCs were more potent to reactivate and expand memory Th1 cells in a strictly Ag-dependent manner. As the availability of autologous APCs is limited, the AAPC system represents a stable and reliable tool to achieve clinically relevant numbers of CD4(+) T cells for adoptive immunotherapy. For fundamental research in immunology, AAPCs are also useful to decipher mechanisms involved in the development of human CD4 T-cell responses.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología , Linfocitos T CD4-Positivos/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Memoria Inmunológica , Animales , Presentación de Antígeno/inmunología , Linfocitos T CD4-Positivos/citología , Proliferación Celular , Epítopos/inmunología , Humanos , Activación de Linfocitos/inmunología , Ratones , Células 3T3 NIH , Péptidos/metabolismo , Fenotipo , Donantes de Tejidos
14.
Annu Rev Biomed Eng ; 17: 317-49, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26421896

RESUMEN

Strategies to enhance, suppress, or qualitatively shape the immune response are of importance for diverse biomedical applications, such as the development of new vaccines, treatments for autoimmune diseases and allergies, strategies for regenerative medicine, and immunotherapies for cancer. However, the intricate cellular and molecular signals regulating the immune system are major hurdles to predictably manipulating the immune response and developing safe and effective therapies. To meet this challenge, biomaterials are being developed that control how, where, and when immune cells are stimulated in vivo, and that can finely control their differentiation in vitro. We review recent advances in the field of biomaterials for immunomodulation, focusing particularly on designing biomaterials to provide controlled immunostimulation, targeting drugs and vaccines to lymphoid organs, and serving as scaffolds to organize immune cells and emulate lymphoid tissues. These ongoing efforts highlight the many ways in which biomaterials can be brought to bear to engineer the immune system.


Asunto(s)
Materiales Biocompatibles , Inmunomodulación , Animales , Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología , Ingeniería Biomédica , Células Dendríticas/inmunología , Humanos , Inmunización , Factores Inmunológicos/administración & dosificación , Inmunoterapia , Tejido Linfoide/inmunología , Nanopartículas , Nanotecnología , Proteínas/inmunología , Biología de Sistemas , Ingeniería de Tejidos
15.
ACS Appl Mater Interfaces ; 6(21): 18435-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25343426

RESUMEN

Here we show that the multifunctionality of Janus particles can be exploited for in vitro T cell activation. We engineer bifunctional Janus particles on which the spatial distribution of two ligands, anti-CD3 and fibronectin, mimics the "bull's eye" protein pattern formed in the membrane junction between a T cell and an antigen-presenting cell. Different levels of T cell activation can be achieved by simply switching the spatial distribution of the two ligands on the surfaces of the "bull's eye" particles. We find that the ligand pattern also affects clustering of intracellular proteins. This study demonstrates that anisotropic particles, such as Janus particles, can be developed as artificial antigen-presenting cells for modulating T cell activation.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología , Materiales Biocompatibles/farmacología , Activación de Linfocitos/efectos de los fármacos , Modelos Inmunológicos , Linfocitos T/efectos de los fármacos , Células Presentadoras de Antígenos/química , Células Artificiales/química , Materiales Biocompatibles/química , Biotecnología , Calcio/análisis , Calcio/metabolismo , Humanos , Sinapsis Inmunológicas , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Células Jurkat , Linfocitos T/química , Linfocitos T/metabolismo
16.
Trends Biotechnol ; 32(9): 456-65, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24998519

RESUMEN

Active anti-cancer immune responses depend on efficient presentation of tumor antigens and co-stimulatory signals by antigen-presenting cells (APCs). Therapy with autologous natural APCs is costly and time-consuming and results in variable outcomes in clinical trials. Therefore, development of artificial APCs (aAPCs) has attracted significant interest as an alternative. We discuss the characteristics of various types of acellular aAPCs, and their clinical potential in cancer immunotherapy. The size, shape, and ligand mobility of aAPCs and their presentation of different immunological signals can all have significant effects on cytotoxic T cell activation. Novel optimized aAPCs, combining carefully tuned properties, may lead to efficient immunomodulation and improved clinical responses in cancer immunotherapy.


Asunto(s)
Células Presentadoras de Antígenos/fisiología , Células Artificiales/inmunología , Inmunoterapia/métodos , Neoplasias/terapia , Investigación Biomédica/tendencias , Humanos , Activación de Linfocitos , Linfocitos T Citotóxicos/inmunología
17.
Asian Pac J Trop Med ; 6(6): 467-72, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23711708

RESUMEN

OBJECTIVE: To develop a novel artificial antigen-presenting system for efficiently inducing melanoma-specific CD8(+) CD28(+) cytotoxic T lymphocyte (CTL) responses. METHODS: Cell-sized Dynabeads® M-450 Epoxy beads coated with H-2K(b): Ig-TRP2180-188 and anti-CD28 antibody were used as artificial antigen-presenting cells (aAPCs) to induce melanoma-specific CD8(+)CD28(+) CTL responses with the help of IL-21 and IL-15. Dimer staining, proliferation, ELISPOT, and cytotoxicity experiments were conducted to evaluate the frequency and activity of induced CTLs. RESULTS: Dimer staining demonstrated that the new artificial antigen-presenting system efficiently induced melanoma TRP2-specific CD8(+)CD28(+)CTLs. Proliferation and ELISPOT assays indicated that the induced CTLs rapidly proliferate and produce increased IFN- γ under the stimulation of H-2K(b): Ig-TRP2-aAPCs, IL-15, and IL-21. In addition, cytotoxicity experiments showed that induced CTLs have specific killing activity of target cells. CONCLUSIONS: The new artificial antigen-presenting system including aAPCs plus IL-21 and IL-15 can induce a large number of antigen-specific CD8(+) CD28(+) CTLs against the melanoma. Our study provides evidence for a novel adoptive immunotherapy against tumors.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología , Linfocitos T CD8-positivos/inmunología , Interleucina-15/inmunología , Interleucinas/inmunología , Melanoma/terapia , Linfocitos T Citotóxicos/inmunología , Animales , Células Artificiales/química , Antígenos CD28/química , Antígenos CD28/metabolismo , Linfocitos T CD8-positivos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Femenino , Citometría de Flujo , Interferón gamma/inmunología , Interleucina-15/administración & dosificación , Interleucina-15/química , Interleucinas/administración & dosificación , Interleucinas/química , Melanoma/inmunología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Linfocitos T Citotóxicos/química
18.
Immunol Lett ; 150(1-2): 1-11, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23328744

RESUMEN

Cell-free artificial antigen-presenting cells (aAPCs) were generated by coupling H-2K(b)/TRP2 tetramers together with anti-CD28 and anti-4-1BB antibodies onto cell-sized latex beads and injected intravenously and subcutaneously into naïve mice and antigen-primed mice (B6, H-2K(b)). Vigorous tumor antigen-specific CTL responses in the native T-cell repertoire in each mouse model were elicited as evaluated by measuring surface CD69 and CD25, intracellular IFN-γ, tetramer staining and cytolysis of melanoma cells. Furthermore, the aAPCs efficiently inhibited subcutaneous tumor growth and markedly delayed tumor progression in tumor-bearing mice. These data suggest that bead-based aAPCs represent a potential strategy for the active immunotherapy of cancers or persistent infections.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología , Microesferas , Neoplasias/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Antígenos de Neoplasias/química , Antígenos de Neoplasias/inmunología , Línea Celular Tumoral , Citocinas/biosíntesis , Masculino , Melanoma/inmunología , Proteínas de la Membrana/inmunología , Ratones , Neoplasias/metabolismo , Fragmentos de Péptidos/inmunología , Bazo/citología , Bazo/inmunología
19.
Adv Mater ; 24(28): 3724-46, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22641380

RESUMEN

The immune system can be a cure or cause of disease, fulfilling a protective role in attacking cancer or pathogenic microbes but also causing tissue destruction in autoimmune disorders. Thus, therapies aimed to amplify or suppress immune reactions are of great interest. However, the complex regulation of the immune system, coupled with the potential systemic side effects associated with traditional systemic drug therapies, has presented a major hurdle for the development of successful immunotherapies. Recent progress in the design of synthetic micro- and nano-particles that can target drugs, deliver imaging agents, or stimulate immune cells directly through their physical and chemical properties is leading to new approaches to deliver vaccines, promote immune responses against tumors, and suppress autoimmunity. In addition, novel strategies, such as the use of particle-laden immune cells as living targeting agents for drugs, are providing exciting new approaches for immunotherapy. This progress report describes recent advances in the design of micro- and nano-particles for immunotherapies and diagnostics.


Asunto(s)
Inmunoterapia/métodos , Nanopartículas , Adyuvantes Inmunológicos/administración & dosificación , Animales , Presentación de Antígeno , Células Artificiales/inmunología , Bioingeniería , Vacunas contra el Cáncer/administración & dosificación , Células Dendríticas/inmunología , Humanos , Leucocitos/inmunología , Nanotecnología , Fagocitos/inmunología , Vacunas de Subunidad/inmunología
20.
Adv Mater ; 24(28): 3757-78, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22528985

RESUMEN

The nascent field of biomimetic delivery with micro- and nanoparticles (MNP) has advanced considerably in recent years. Drawing inspiration from the ways that cells communicate in the body, several different modes of "delivery" (i.e., temporospatial presentation of biological signals) have been investigated in a number of therapeutic contexts. In particular, this review focuses on (1) controlled release formulations that deliver natural soluble factors with physiologically relevant temporal context, (2) presentation of surface-bound ligands to cells, with spatial organization of ligands ranging from isotropic to dynamically anisotropic, and (3) physical properties of particles, including size, shape and mechanical stiffness, which mimic those of natural cells. Importantly, the context provided by multimodal, or multifactor delivery represents a key element of most biomimetic MNP systems, a concept illustrated by an analogy to human interpersonal communication. Regulatory implications of increasingly sophisticated and "cell-like" biomimetic MNP systems are also discussed.


Asunto(s)
Materiales Biomiméticos/administración & dosificación , Sistemas de Liberación de Medicamentos , Nanopartículas/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Animales , Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología , Materiales Biomiméticos/química , Quimiocinas/metabolismo , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Endocitosis , Eritrocitos/metabolismo , Humanos , Inflamación/terapia , Ligandos , Nanocompuestos/administración & dosificación , Nanocompuestos/química , Nanopartículas/química , Nanotecnología , Proteínas Opsoninas/administración & dosificación , Comunicación Paracrina , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...