Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 413
Filtrar
1.
Hear Res ; 452: 109109, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39241555

RESUMEN

The genes Ocm (encoding oncomodulin) and Slc26a5 (encoding prestin) are expressed strongly in outer hair cells and both are involved in deafness in mice. However, it is not clear if they influence the expression of each other. In this study, we characterise the auditory phenotype resulting from two new mouse alleles, Ocmtm1e and Slc26a5tm1Cre. Each mutation leads to absence of detectable mRNA transcribed from the mutant allele, but there was no evidence that oncomodulin regulates expression of prestin or vice versa. The two mutants show distinctive patterns of auditory dysfunction. Ocmtm1e homozygotes have normal auditory brainstem response thresholds at 4 weeks old followed by progressive hearing loss starting at high frequencies, while heterozygotes show largely normal thresholds until 6 months of age, when signs of worse thresholds are detected. In contrast, Slc26a5tm1Cre homozygotes have stable but raised thresholds across all frequencies tested, 3 to 42 kHz, at least from 4 to 8 weeks old, while heterozygotes have raised thresholds at high frequencies. Distortion product otoacoustic emissions and cochlear microphonics show deficits similar to auditory brainstem responses in both mutants, suggesting that the origin of hearing impairment is in the outer hair cells. Endocochlear potentials are normal in the two mutants. Scanning electron microscopy revealed normal development of hair cells in Ocmtm1e homozygotes but scattered outer hair cell loss even at 4 weeks old when thresholds appeared normal, indicating that there is not a direct relationship between numbers of outer hair cells present and auditory thresholds.


Asunto(s)
Alelos , Umbral Auditivo , Potenciales Evocados Auditivos del Tronco Encefálico , Homocigoto , Emisiones Otoacústicas Espontáneas , Fenotipo , Transportadores de Sulfato , Animales , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Ratones , Mutación , Heterocigoto , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patología , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Cóclea/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Ratones Endogámicos C57BL , Estimulación Acústica
2.
Immunohorizons ; 8(9): 688-694, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39264736

RESUMEN

Chronic suppurative otitis media (CSOM) is a neglected disease that afflicts 330 million people worldwide and is the most common cause of permanent hearing loss among children in the developing world. Previously, we discovered that outer hair cell (OHC) loss occurred in the basal turn of the cochlea and that macrophages are the major immune cells associated with OHC loss in CSOM. Macrophage-associated cytokines are upregulated. Specifically, CCL-2, an important member of the MCP family, is elevated over time following middle ear infection. CCR2 is a common receptor of the MCP family and the unique receptor of CCL2. CCR2 knockout mice (CCR2-/-) have been used extensively in studies of monocyte activation in neurodegenerative diseases. In the present study, we investigated the effect of CCR2 deletion on the cochlear immune response and OHC survival in CSOM. The OHC survival rate was 84 ± 12.5% in the basal turn of CCR2+/+ CSOM cochleae, compared with was 63 ± 19.9% in the basal turn of CCR2-/- CSOM cochleae (p ≤ 0.05). Macrophage numbers were significantly reduced in CCR2-/- CSOM cochleae compared with CCR2+/+ CSOM cochleae (p ≤ 0.001). In addition, CCL7 was upregulated, whereas IL-33 was downregulated, in CCR2-/- CSOM cochleae. Finally, the permeability of the blood-labyrinth barrier in the stria vascularis remained unchanged in CCR2-/- CSOM compared with CCR2+/+ CSOM. Taken together, the data suggest that CCR2 plays a protective role through cochlear macrophages in the CSOM cochlea.


Asunto(s)
Células Ciliadas Auditivas Externas , Ratones Noqueados , Otitis Media Supurativa , Receptores CCR2 , Animales , Otitis Media Supurativa/inmunología , Ratones , Receptores CCR2/metabolismo , Receptores CCR2/genética , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patología , Enfermedad Crónica , Macrófagos/inmunología , Macrófagos/metabolismo , Cóclea/metabolismo , Cóclea/patología , Cóclea/inmunología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Masculino , Femenino
3.
Sci Rep ; 14(1): 15903, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987330

RESUMEN

Losing either type of cochlear sensory hair cells leads to hearing impairment. Inner hair cells act as primary mechanoelectrical transducers, while outer hair cells enhance sound-induced vibrations within the organ of Corti. Established inner ear damage models, such as systemic administration of ototoxic aminoglycosides, yield inconsistent and variable hair cell death in mice. Overcoming this limitation, we developed a method involving surgical delivery of a hyperosmotic sisomicin solution into the posterior semicircular canal of adult mice. This procedure induced rapid and synchronous apoptotic demise of outer hair cells within 14 h, leading to irreversible hearing loss. The combination of sisomicin and hyperosmotic stress caused consistent and synergistic ototoxic damage. Inner hair cells remained until three days post-treatment, after which deterioration in structure and number was observed, culminating in a complete hair cell loss by day seven. This robust animal model provides a valuable tool for otoregenerative research, facilitating single-cell and omics-based studies toward exploring preclinical therapeutic strategies.


Asunto(s)
Modelos Animales de Enfermedad , Pérdida Auditiva , Animales , Ratones , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/patología , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/patología , Células Ciliadas Auditivas Internas/efectos de los fármacos , Células Ciliadas Auditivas Internas/patología , Apoptosis/efectos de los fármacos , Aminoglicósidos/administración & dosificación , Aminoglicósidos/efectos adversos , Aminoglicósidos/toxicidad , Presión Osmótica
4.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000390

RESUMEN

The motor protein prestin, found in the inner ear's outer hair cells (OHCs), is responsible for high sensitivity and sharp frequency selectivity in mammalian hearing. Some studies have suggested that prestin could be a serological biomarker for cochlear damage, as OHCs are highly vulnerable to damage from various sources. However, the reported data are inconsistent and lack appropriate negative controls. To investigate whether prestin can be used as a serological biomarker for cochlear damage or stress, we measured prestin quantities in the bloodstreams of mice using ELISA kits from different companies. Wildtype (WT) mice were exposed to different ototoxic treatments, including noise exposure and ototoxic reagents that rapidly kill OHCs. Prestin-knockout (KO) mice were used as a negative control. Our data show that some ELISA kits were not able to detect prestin specifically. The ELISA kit that could detect the prestin protein from cochlear homogenates failed to detect prestin in the bloodstream, despite there being significant damage to OHCs in the cochleae. Furthermore, the optical densities of the serum samples, which correlate to prestin quantities, were significantly influenced by hemolysis in the samples. In conclusion, Prestin from OHCs is not a sensitive and reliable serological biomarker for detecting cochlear damage in mice using ELISA.


Asunto(s)
Biomarcadores , Células Ciliadas Auditivas Externas , Proteínas Motoras Moleculares , Animales , Biomarcadores/sangre , Ratones , Células Ciliadas Auditivas Externas/patología , Células Ciliadas Auditivas Externas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Proteínas Motoras Moleculares/genética , Ratones Noqueados , Cóclea/patología , Cóclea/metabolismo , Ensayo de Inmunoadsorción Enzimática , Ratones Endogámicos C57BL
5.
J Physiol ; 602(16): 3995-4025, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39037943

RESUMEN

The hair bundle of cochlear hair cells comprises specialized microvilli, the stereocilia, which fulfil the role of mechanotransduction. Genetic defects and environmental noise challenge the maintenance of hair bundle structure, critically contributing to age-related hearing loss. Stereocilia fusion is a major component of the hair bundle pathology in mature hair cells, but its role in hearing loss and its molecular basis are poorly understood. Here, we utilized super-resolution expansion microscopy to examine the molecular anatomy of outer hair cell stereocilia fusion in mouse models of age-related hearing loss, heightened endoplasmic reticulum stress and prolonged noise exposure. Prominent stereocilia fusion in our model of heightened endoplasmic reticulum stress, Manf (Mesencephalic astrocyte-derived neurotrophic factor)-inactivated mice in a background with Cadherin 23 missense mutation, impaired mechanotransduction and calcium balance in stereocilia. This was indicated by reduced FM1-43 dye uptake through the mechanotransduction channels, reduced neuroplastin/PMCA2 expression and increased expression of the calcium buffer oncomodulin inside stereocilia. Sparse BAIAP2L2 and myosin 7a expression was retained in the fused stereocilia but mislocalized away from their functional sites at the tips. These hair bundle abnormalities preceded cell soma degeneration, suggesting a sequela from stereociliary molecular perturbations to cell death signalling. In the age-related hearing loss and noise-exposure models, stereocilia fusion was more restricted within the bundles, yet both models exhibited oncomodulin upregulation at the fusion sites, implying perturbed calcium homeostasis. We conclude that stereocilia fusion is linked with the failure to maintain cellular proteostasis and with disturbances in stereociliary calcium balance. KEY POINTS: Stereocilia fusion is a hair cell pathology causing hearing loss. Inactivation of Manf, a component of the endoplasmic reticulum proteostasis machinery, has a cell-intrinsic mode of action in triggering outer hair cell stereocilia fusion and the death of these cells. The genetic background with Cadherin 23 missense mutation contributes to the high susceptibility of outer hair cells to stereocilia fusion, evidenced in Manf-inactivated mice and in the mouse models of early-onset hearing loss and noise exposure. Endoplasmic reticulum stress feeds to outer hair cell stereocilia bundle pathology and impairs the molecular anatomy of calcium regulation. The maintenance of the outer hair cell stereocilia bundle cohesion is challenged by intrinsic and extrinsic stressors, and understanding the underlying mechanisms will probably benefit the development of interventions to promote hearing health.


Asunto(s)
Cadherinas , Células Ciliadas Auditivas Externas , Mecanotransducción Celular , Estereocilios , Animales , Estereocilios/metabolismo , Estereocilios/patología , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patología , Ratones , Cadherinas/metabolismo , Cadherinas/genética , Estrés del Retículo Endoplásmico , Ratones Endogámicos C57BL , Masculino , Calcio/metabolismo , Miosina VIIa/metabolismo , Femenino , Pérdida Auditiva/patología , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Mutación Missense , Proteínas de Unión al Calcio
6.
Hear Res ; 447: 109013, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718672

RESUMEN

Cisplatin, a highly effective chemotherapeutic drug for various human cancers, induces irreversible sensorineural hearing loss as a side effect. Currently there are no highly effective clinical strategies for the prevention of cisplatin-induced ototoxicity. Previous studies have indicated that short-term cisplatin ototoxicity primarily affects the outer hair cells of the cochlea. Therefore, preventing the entry of cisplatin into hair cells may be a promising strategy to prevent cisplatin ototoxicity. This study aimed to investigate the entry route of cisplatin into mouse cochlear hair cells. The competitive inhibitor of organic cation transporter 2 (OCT2), cimetidine, and the sensory mechanoelectrical transduction (MET) channel blocker benzamil, demonstrated a protective effect against cisplatin toxicity in hair cells in cochlear explants. Sensory MET-deficient hair cells explanted from Tmc1Δ;Tmc2Δ mice were resistant to cisplatin toxicity. Cimetidine showed an additive protective effect against cisplatin toxicity in sensory MET-deficient hair cells. However, in the apical turn, cimetidine, benzamil, or genetic ablation of sensory MET channels showed limited protective effects, implying the presence of other entry routes for cisplatin to enter the hair cells in the apical turn. Systemic administration of cimetidine failed to protect cochlear hair cells from ototoxicity caused by systemically administered cisplatin. Notably, outer hair cells in MET-deficient mice exhibited no apparent deterioration after systemic administration of cisplatin, whereas the outer hair cells in wild-type mice showed remarkable deterioration. The susceptibility of mouse cochlear hair cells to cisplatin ototoxicity largely depends on the sensory MET channel both ex vivo and in vivo. This result justifies the development of new pharmaceuticals, such as a specific antagonists for sensory MET channels or custom-designed cisplatin analogs which are impermeable to sensory MET channels.


Asunto(s)
Antineoplásicos , Cimetidina , Cisplatino , Mecanotransducción Celular , Transportador 2 de Cátion Orgánico , Ototoxicidad , Cisplatino/toxicidad , Animales , Ototoxicidad/prevención & control , Ototoxicidad/metabolismo , Ototoxicidad/fisiopatología , Mecanotransducción Celular/efectos de los fármacos , Transportador 2 de Cátion Orgánico/metabolismo , Transportador 2 de Cátion Orgánico/genética , Transportador 2 de Cátion Orgánico/antagonistas & inhibidores , Cimetidina/farmacología , Antineoplásicos/toxicidad , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/patología , Células Ciliadas Auditivas Externas/metabolismo , Ratones Endogámicos C57BL , Ratones , Proteínas de la Membrana
7.
Otol Neurotol ; 45(5): 495-501, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561601

RESUMEN

HYPOTHESIS: Cyclodextrin (CDX)-induced serum prestin burst is not dependent on outer hair cell (OHC) loss. BACKGROUND: Serum prestin has been proposed as a biomarker for ototoxicity. We recently used an automated Western approach to quantify serum prestin changes in a newly introduced model of CDX ototoxicity. To gain insights into prestin as a biomarker, here we further characterize serum prestin in the CDX model. METHODS: Guinea pigs were treated with 750, 3,000, or 4,000 mg/kg CDX, and serum samples were obtained through up to 15 weeks after exposure. Serum prestin levels were quantified using automated Western, and hair cell counts were obtained. RESULTS: All three doses induced an N -glycosylated ~134-kDa prestin burst; however, only the 3,000 and 4,000 mg/kg resulted in robust OHC loss. Prestin levels returned to baseline where they remained up to 15 weeks in the absence of OHCs. CONCLUSION: The ~134-kDa prestin burst induced after CDX administration is N -glycosylated, representing a posttranslational modification of prestin. Serum prestin seems to be a promising biomarker when using therapeutics with ototoxic properties because it is not dependent on OHC loss as a necessary event, thus affording the opportunity for early detection and intervention.


Asunto(s)
Células Ciliadas Auditivas Externas , Animales , Cobayas , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/patología , Biomarcadores/sangre , Biomarcadores/metabolismo , Ototoxicidad/etiología , Transportadores de Sulfato/metabolismo
8.
Mol Ther ; 32(5): 1387-1406, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38414247

RESUMEN

Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.


Asunto(s)
Cisplatino , Ferroptosis , Pérdida Auditiva , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Animales , Cisplatino/efectos adversos , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Ratones , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Modelos Animales de Enfermedad , Receptores de Transferrina/metabolismo , Receptores de Transferrina/genética , Especies Reactivas de Oxígeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/patología , Ototoxicidad/etiología , Ototoxicidad/metabolismo , Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos
9.
Antioxid Redox Signal ; 40(7-9): 470-491, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37476961

RESUMEN

Aims: Radiation-induced sensorineural hearing loss (RISNHL) is one of the major side effects of radiotherapy for head and neck cancers. At present, no effective clinical treatment or prevention is available for RISNHL. This study thus aimed to investigate the cochlear pathology so that the underlying mechanisms of RISNHL may be elucidated, consequently paving the way for potential protective strategies to be developed. Results: Functional and morphological impairment in the stria vascularis (SV) was observed after irradiation (IR), as indicated by endocochlear potential (EP) reduction, hyperpermeability, and SV atrophy. The expression of zonulae occludins-1 was found to have decreased after IR. The loss of outer hair cells (OHCs) occurred later than SV damage. The disruption to the SV and OHCs could be attributed to reactive oxygen species (ROS)-related damage. In addition, EP shifts and the loss of OHCs were reduced when ROS was reduced by N-acetylcysteine (NAC) in C57BL/6 mice, attenuating auditory threshold shifts. Innovation: The damage to the SV was found to occur before OHC loss. ROS-related damage accounted for SV damage and OHC loss. The incidences of SV damage and OHC loss were decreased through ROS modulation by NAC, subsequently preventing RISNHL, suggesting the possible role of NAC as a possible protective agent against RISNHL. Conclusion: The findings from this study suggest oxidative stress-induced early SV injury and late OHC loss to be the key factors leading to RISNHL. NAC prevents IR-induced OHC loss, and attenuates auditory brainstem response and EP shifts by regulating the level of oxidative stress. Antioxid. Redox Signal. 40, 470-491.


Asunto(s)
Pérdida Auditiva Sensorineural , Estría Vascular , Ratones , Animales , Estría Vascular/patología , Estría Vascular/fisiología , Especies Reactivas de Oxígeno , Ratones Endogámicos C57BL , Pérdida Auditiva Sensorineural/inducido químicamente , Pérdida Auditiva Sensorineural/patología , Células Ciliadas Auditivas Externas/patología , Células Ciliadas Auditivas Externas/fisiología , Acetilcisteína/farmacología
10.
J Chin Med Assoc ; 86(12): 1101-1108, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820291

RESUMEN

BACKGROUND: Hearing loss is a global health issue and its etiopathologies involve complex molecular pathways. The ubiquitin-proteasome system has been reported to be associated with cochlear development and hearing loss. The gene related to anergy in lymphocytes ( GRAIL ), as an E3 ubiquitin ligase, has not, as yet, been examined in aging-related and noise-induced hearing loss mice models. METHODS: This study used wild-type (WT) and GRAIL knockout (KO) mice to examine cochlear hair cells and synaptic ribbons using immunofluorescence staining. The hearing in WT and KO mice was detected using auditory brainstem response. Gene expression patterns were compared using RNA-sequencing to identify potential targets during the pathogenesis of noise-induced hearing loss in WT and KO mice. RESULTS: At the 12-month follow-up, GRAIL KO mice had significantly less elevation in threshold level and immunofluorescence staining showed less loss of outer hair cells and synaptic ribbons in the hook region compared with GRAIL WT mice. At days 1, 14, and 28 after noise exposure, GRAIL KO mice had significantly less elevation in threshold level than WT mice. After noise exposure, GRAIL KO mice showed less loss of outer hair cells in the cochlear hook and basal regions compared with WT mice. Moreover, immunofluorescence staining showed less loss of synaptic ribbons in the hook regions of GRAIL KO mice than of WT mice. RNA-seq analysis results showed significant differences in C-C motif chemokine ligand 19 ( CCL19 ), C-C motif chemokine ligand 21 ( CCL21 ), interleukin 25 ( IL25 ), glutathione peroxidase 6 ( GPX6 ), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 ( NOX1 ) genes after noise exposure. CONCLUSION: The present data demonstrated that GRAIL deficiency protects against aging-related and noise-induced hearing loss. The mechanism involved needs to be further clarified from the potential association with synaptic modulation, inflammation, and oxidative stress.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Animales , Ratones , Envejecimiento/fisiología , Umbral Auditivo/fisiología , Quimiocinas/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Técnicas de Inactivación de Genes , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva Provocada por Ruido/genética , Pérdida Auditiva Provocada por Ruido/prevención & control , Ligandos , Ruido/efectos adversos
11.
J Neurosci ; 43(50): 8801-8811, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37863653

RESUMEN

Several lines of evidence have suggested that steeply sloping audiometric losses are caused by hair cell degeneration, while flat audiometric losses are caused by strial atrophy, but this concept has never been rigorously tested in human specimens. Here, we systematically compare audiograms and cochlear histopathology in 160 human cases from the archival collection of celloidin-embedded temporal bones at the Massachusetts Eye and Ear. The dataset included 106 cases from a prior study of normal-aging ears, and an additional 54 cases selected by combing the database for flat audiograms. Audiogram shapes were classified algorithmically into five groups according to the relation between flatness (i.e., SD of hearing levels across all frequencies) and low-frequency pure-tone average (i.e., mean at 0.25, 0.5, and 1.0 kHz). Outer and inner hair cell losses, neural degeneration, and strial atrophy were all quantified as a function of cochlear location in each case. Results showed that strial atrophy was worse in the apical than the basal half of the cochlea and was worse in females than in males. The degree of strial atrophy was uncorrelated with audiogram flatness. Apical atrophy was correlated with low-frequency thresholds and basal atrophy with high-frequency thresholds, and the former correlation was higher. However, a multivariable regression with all histopathological measures as predictors and audiometric thresholds as the outcome showed that strial atrophy was a significant predictor of threshold shift only in the low-frequency region, and, even there, the contribution of outer hair cell damage was larger.SIGNIFICANCE STATEMENT Cochlear pathology can only be assessed postmortem; thus, human cochlear histopathology is critical to our understanding of the mechanisms of hearing loss. Dogma holds that relative damage to sensory cells, which transduce mechanical vibration into electrical signals, versus the stria vascularis, the cellular battery that powers transduction, can be inferred by the shape of the audiogram, that is, down-sloping (hair cell damage) versus flat (strial atrophy). Here we quantified hair cell and strial atrophy in 160 human specimens to show that it is the degree of low-frequency hearing loss, rather than the audiogram slope, that predicts strial atrophy. Results are critical to the design of clinical trials for hearing-loss therapeutics, as current drugs target only hair cell, not strial, regeneration.


Asunto(s)
Sordera , Estría Vascular , Masculino , Femenino , Humanos , Estría Vascular/patología , Cóclea/patología , Sordera/patología , Atrofia/patología , Células Ciliadas Auditivas Externas/patología
12.
Hear Res ; 422: 108533, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35671600

RESUMEN

Cochlear synaptopathy, the loss of or damage to connections between auditory-nerve fibers (ANFs) and inner hair cells (IHCs), is a prominent pathology in noise-induced and age-related hearing loss. Here, we investigated if degeneration of the olivocochlear (OC) efferent innervation is also a major aspect of the synaptopathic ear, by quantifying the volume and spatial organization of its cholinergic and dopaminergic components, using antibodies to vesicular acetylcholine transporter (VAT) and tyrosine hydroxylase (TH), respectively. CBA/CaJ male mice were examined 1 day to 8 months after a synaptopathic noise exposure, and compared to unexposed age-matched controls and unexposed aged mice at 24-28 months. In normal ears, cholinergic lateral (L)OC terminals were denser in the apical half of the cochlea and on the modiolar side of the inner hair cells (IHCs), where ANFs of low-spontaneous rate are typically found, while dopaminergic terminals were more common in the basal third of the cochlea and, re the IHC axes, were offset towards the habenula with respect to cholinergic terminals. The noise had only small and transient effects on the density of LOC innervation, its spatial organization around the IHC axes, or the extent to which TH and VAT signal were colocalized. The synaptopathic noise also had relatively small and transient effects on cholinergic innervation density in the outer hair cell (OHC) area, which normally peaks in the 16 kHz region and falls monotonically towards higher and lower frequencies. In contrast, in the aged ears, there was massive degeneration of OHC efferents, especially in the apical half of the cochlea, where there was also significant loss of OHCs. In the IHC area, there was significant loss of cholinergic terminals in both apical and basal regions and of dopaminergic innervation in the basal half. Furthermore, the cholinergic terminals in the aged ears spread from their normal clustering near the IHC basolateral pole, where the ANF synapses are found, to positions up and down the IHC somata and regions of the neuropil closer to the habenula. This apparent migration was most striking in the apex, where the hair cell pathology was greatest, and may be a harbinger of impending hair cell death.


Asunto(s)
Cóclea , Pérdida Auditiva Provocada por Ruido , Masculino , Ratones , Animales , Ratones Endogámicos CBA , Cóclea/fisiología , Ruido/efectos adversos , Células Ciliadas Auditivas Internas/patología , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva Provocada por Ruido/patología , Colinérgicos/metabolismo
13.
Biomed Res Int ; 2022: 9548316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35686233

RESUMEN

Noise-induced hearing loss (NIHL) has always been an important occupational hazard, but the exact etiopathogenesis underlying NIHL remains unclear. Herein, we aimed to find metabolic biomarkers involved in the development of NIHL based on a mouse model using a gas chromatography coupled with mass spectrometry (GC-MS) metabolomics technique. We showed that the auditory brainstem response (ABR) thresholds at the frequencies of 4, 8, 12, 16, 24, and 32 kHz were all significantly elevated in the noise-exposed mice. Noise could cause outer hair cell (OHC) loss in the base of the cochlea. A total of 17 differential metabolites and 9 metabolic pathways were significantly affected following noise exposure. Spermidine acting as an autophagy modulator was found to be 2.85-fold higher in the noise-exposed group than in the control group and involved in ß-alanine metabolism and arginine and proline metabolism pathways. Additionally, we demonstrated that LC3B and Beclin1 were expressed in the spiral ganglion neurons (SGNs), and their mRNA levels were increased after noise. We showed that SOD activity was significantly decreased in the cochlea of noise-exposed mice. Further experiments suggested that SOD1 and SOD2 proteins in the SGNs were all decreased following noise exposure. The upregulation of spermidine may induce LC3B- and Beclin1-mediated autophagy in the cochlear hair cells (HCs) through ß-alanine metabolism and arginine and proline metabolism and be involved in the NIHL. ROS-mediated oxidative damage may be a pivotal molecular mechanism of NIHL. Taken together, spermidine can be regarded as an important metabolic marker for the diagnosis of NIHL.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Animales , Arginina/metabolismo , Umbral Auditivo , Beclina-1/metabolismo , Cóclea/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva Provocada por Ruido/etiología , Metabolómica , Ratones , Prolina/metabolismo , Espermidina , beta-Alanina
14.
Cell Mol Life Sci ; 79(5): 249, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35438341

RESUMEN

BACKGROUND: The Ca2+/calmodulin-dependent protein kinase kinases (CaMKKs) are serine/threonine-directed protein kinases that are activated following increases in intracellular calcium, playing a critical role in neuronal signaling. Inner-ear-trauma-induced calcium overload in sensory hair cells has been well documented in the pathogenesis of traumatic noise-induced hair cell death and hearing loss, but there are no established pharmaceutical therapies available due to a lack of specific therapeutic targets. In this study, we investigated the activation of CaMKKß in the inner ear after traumatic noise exposure and assessed the prevention of noise-induced hearing loss (NIHL) with RNA silencing. RESULTS: Treatment with short hairpin RNA of CaMKKß (shCaMKKß) via adeno-associated virus transduction significantly knocked down CaMKKß expression in the inner ear. Knockdown of CaMKKß significantly attenuated noise-induced hair cell loss and hearing loss (NIHL). Additionally, pretreatment with naked CaMKKß small interfering RNA (siCaMKKß) attenuated noise-induced losses of inner hair cell synapses and OHCs and NIHL. Furthermore, traumatic noise exposure activates CaMKKß in OHCs as demonstrated by immunolabeling for p-CaMKI. CaMKKß mRNA assessed by fluorescence in-situ hybridization and immunolabeling for CaMKKß in OHCs also increased after the exposure. Finally, pretreatment with siCaMKKß diminished noise-induced activation of AMPKα in OHCs. CONCLUSIONS: These findings demonstrate that traumatic-noise-induced OHC loss and hearing loss occur primarily via activation of CaMKKß. Targeting CaMKKß is a key strategy for prevention of noise-induced hearing loss. Furthermore, our data suggest that noise-induced activation of AMPKα in OHCs occurs via the CaMKKß pathway.


Asunto(s)
Sordera , Pérdida Auditiva Provocada por Ruido , Proteínas Quinasas Activadas por AMP/metabolismo , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Muerte Celular , Sordera/metabolismo , Cabello/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/prevención & control , Humanos , Proteínas Serina-Treonina Quinasas , ARN Interferente Pequeño/metabolismo
15.
Int J Numer Method Biomed Eng ; 38(5): e3582, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35150464

RESUMEN

A biophysically inspired signal processing model of the human cochlea is deployed to simulate the effects of specific noise-induced inner hair cell (IHC) and outer hair cell (OHC) lesions on hearing thresholds, cochlear compression, and the spectral and temporal features of the auditory nerve (AN) coding. The model predictions were evaluated by comparison with corresponding data from animal studies as well as human clinical observations. The hearing thresholds were simulated for specific OHC and IHC damages and the cochlear nonlinearity was assessed at 0.5 and 4 kHz. The tuning curves were estimated at 1 kHz and the contributions of the OHC and IHC pathologies to the tuning curve were distinguished by the model. Furthermore, the phase locking of AN spikes were simulated in quiet and in presence of noise. The model predicts that the phase locking drastically deteriorates in noise indicating the disturbing effect of background noise on the temporal coding in case of hearing impairment. Moreover, the paper presents an example wherein the model is inversely configured for diagnostic purposes using a machine learning optimization technique (Nelder-Mead method). Accordingly, the model finds a specific pattern of OHC lesions that gives the audiometric hearing loss measured in a group of noise-induced hearing impaired humans.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Animales , Umbral Auditivo/fisiología , Cóclea/patología , Células Ciliadas Auditivas Internas/patología , Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Externas/patología , Células Ciliadas Auditivas Externas/fisiología , Pérdida Auditiva Provocada por Ruido/patología
16.
Hear Res ; 415: 108441, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35065507

RESUMEN

The acoustic startle reflex (ASR) amplitude can be enhanced or suppressed by noise-induced hearing loss or age-related hearing loss; however, little is known about how the ASR changes when ototoxic drugs destroy outer hair cells (OHCs) and inner hair cells (IHCs). High doses of 2-hydroxypropyl-beta-cyclodextrin (HPßCD), a cholesterol-lowering drug used to treat Niemann-Pick Type disease type C1, initially destroy OHCs and then the IHCs 6-8 weeks later. Adult rats were treated with doses of HPßCD designed to produce a diversity of hair cell lesions and hearing losses. When HPßCD destroyed OHCs and IHCs in the extreme base of the cochlea and caused minimal high-frequency hearing loss, the ASR amplitudes were enhanced at 4-, 8- and 16 kHz. Enhanced ASR occurred during the first few weeks post-treatment when only OHCs were missing; little change in the ASR occurred 6-8-WK post-treatment. If HPßCD destroyed most OHCs and many IHCs in the basal half of the cochlea, high-frequency thresholds increased ∼50 dB, and ASR amplitudes were reduced ∼50% at 4-, 8- and 16-kHz. The ASR amplitude reduction occurred in the first few weeks post-treatment when the OHCs were degenerating. The ASR was largely abolished when most of the OHCs were missing over the basal two-thirds of the cochlea and a 40-50 dB hearing loss was present at most frequencies. These results indicate that high-doses of HPßCD generally lead to a decline in ASR amplitude as OHCs degenerate; however, ASR amplitudes were enhanced in a few cases when hair cell loss was confined to the extreme base of the cochlea.


Asunto(s)
Ciclodextrinas , Presbiacusia , Animales , Cóclea/patología , Células Ciliadas Auditivas Internas/patología , Células Ciliadas Auditivas Externas/patología , Presbiacusia/patología , Ratas , Reflejo de Sobresalto
17.
Sci Rep ; 12(1): 1154, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064195

RESUMEN

Serological biomarkers of inner ear proteins are a promising new approach for studying human hearing. Here, we focus on the serological measurement of prestin, a protein integral to a human's highly sensitive hearing, expressed in cochlear outer hair cells (OHCs). Building from recent nonhuman studies that associated noise-induced OHC trauma with reduced serum prestin levels, and studies suggesting subclinical hearing damage in humans regularly engaging in noisy activities, we investigated the relation between serum prestin levels and environmental noise levels in young adults with normal clinical audiograms. We measured prestin protein levels from circulating blood and collected noise level data multiple times over the course of the experiment using body-worn sound recorders. Results indicate that serum prestin levels have a negative relation with noise exposure: individuals with higher routine noise exposure levels tended to have lower prestin levels. Moreover, when grouping participants based on their risk for a clinically-significant noise-induced hearing loss, we found that prestin levels differed significantly between groups, even though behavioral hearing thresholds were similar. We discuss possible interpretations for our findings including whether lower serum levels may reflect subclinical levels of OHC damage, or possibly an adaptive, protective mechanism in which prestin expression is downregulated in response to loud environments.


Asunto(s)
Células Ciliadas Auditivas Externas/metabolismo , Pérdida Auditiva Provocada por Ruido/diagnóstico , Ruido/efectos adversos , Transportadores de Sulfato/sangre , Adolescente , Audiometría , Biomarcadores/sangre , Biomarcadores/metabolismo , Regulación hacia Abajo , Femenino , Células Ciliadas Auditivas Externas/patología , Audición , Pérdida Auditiva Provocada por Ruido/sangre , Pérdida Auditiva Provocada por Ruido/patología , Humanos , Masculino , Transportadores de Sulfato/metabolismo , Adulto Joven
18.
Hear Res ; 413: 108254, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34020824

RESUMEN

Mesenchymal stem cells (MSCs) can be isolated from different tissue origins, such as the bone marrow, the placenta, the umbilical cord, adipose tissues, and skin tissues. MSCs can secrete anti-inflammatory molecules and growth factors for tissue repair and remodeling. However, the ability of skin-derived MSCs (SMSCs) to repair cochlear damage and ameliorate hearing loss remains unclear. Cisplatin is a commonly used chemotherapeutic agent that has the side effect of ototoxicity due to inflammation and oxidative stress. This study investigated the effects of SMSCs on cisplatin-induced hearing loss in mice. Two independent experiments were designed for modeling cisplatin-induced hearing loss in mice, one for chronic toxicity (4 mg/kg intraperitoneal [IP] injection once per day for 5 consecutive days) and the other for acute toxicity (25 mg/kg IP injection once on day one). Three days after cisplatin injection, 1 × 106 or 3 × 106 SMSCs were injected through the tail vein. Data on auditory brain responses suggested that SMSCs could significantly reduce the hearing threshold of cisplatin-injected mice. Furthermore, immunohistochemical staining data suggested that SMSCs could significantly ameliorate the loss of cochlear hair cells, TUNEL-positive cells and cleaved caspase 3-positive cells in cisplatin-injected mice. Neuropathological gene analyses revealed that SMSCs treatment could downregulate the expression of cochlear genes involved in apoptosis, autophagy, chromatin modification, disease association, matrix remodeling, oxidative stress, tissue integrity, transcription, and splicing and unfolded protein responses. Additionally, SMSCs treatment could upregulate the expression of cochlear genes affecting the axon and dendrite structures, cytokines, trophic factors, the neuronal skeleton and those involved in carbohydrate metabolism, growth factor signaling, myelination, neural connectivity, neural transmitter release, neural transmitter response and reuptake, neural transmitter synthesis and storage, and vesicle trafficking. Results from TUNEL and caspase 3 staining further confirmed that cisplatin-induced apoptosis in cochlear tissues of cisplatin-injected mice could be reduced by SMSCs treatment. In conclusion, the evidence of the effects of SMSCs in favor of ameliorating ototoxicity-induced hearing loss suggests a potential clinical application.


Asunto(s)
Antineoplásicos , Pérdida Auditiva , Células Madre Mesenquimatosas , Administración Intravenosa , Animales , Antineoplásicos/metabolismo , Cisplatino/metabolismo , Cisplatino/toxicidad , Cóclea/patología , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/metabolismo , Pérdida Auditiva/prevención & control , Células Madre Mesenquimatosas/metabolismo , Ratones
19.
Anat Rec (Hoboken) ; 305(3): 622-642, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34096183

RESUMEN

The apex or apical region of the cochlear spiral within the inner ear encodes for low-frequency sounds. The disposition of sensory hair cells on the organ of Corti is largely variable in the apical region of mammals, and it does not necessarily follow the typical three-row pattern of outer hair cells (OHCs). As most underwater noise sources contain low-frequency components, we expect to find most lesions in the apical region of the cochlea of toothed whales, in cases of permanent noise-induced hearing loss. To further understand how man-made noise might affect cetacean hearing, there is a need to describe normal morphological features of the apex and document interspecific anatomic variations in cetaceans. However, distinguishing between apical normal variability and hair cell death is challenging. We describe anatomical features of the organ of Corti of the apex in 23 ears from five species of toothed whales (harbor porpoise Phocoena phocoena, spinner dolphin Stenella longirostris, pantropical spotted dolphin Stenella attenuata, pygmy sperm whale Kogia breviceps, and beluga whale Delphinapterus leucas) by scanning electron microscopy and immunofluorescence. Our results showed an initial region where the lowest frequencies are encoded with two or three rows of OHCs, followed by the typical configuration of three OHC rows and three rows of supporting Deiters' cells. Whenever two rows of OHCs were detected, there were usually only two corresponding rows of supporting Deiters' cells, suggesting that the number of rows of Deiters' cells is a good indicator to distinguish between normal and pathological features.


Asunto(s)
Cóclea , Pérdida Auditiva Provocada por Ruido , Animales , Biomarcadores/metabolismo , Cóclea/patología , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva Provocada por Ruido/metabolismo , Humanos , Órgano Espiral/patología , Ballenas
20.
Int J Immunopathol Pharmacol ; 35: 20587384211034086, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34344210

RESUMEN

INTRODUCTION: Cruciferous vegetables are a rich source of sulforaphane (SFN), which acts as a natural HDAC inhibitor (HDACi). Our previous study found that HDACi could restore histone acetyltransferase/histone deacetylase (HAT/HDAC) balance in the cochlea and attenuate gentamicin-induced hearing loss in guinea pigs. Here, we investigated the protective effect of SFN on cisplatin-induced hearing loss (CIHL). METHODS: Thirty rats were randomly divided into 3 equal groups: the control group, cisplatin group, and SFN+cisplatin group. Rats were injected with SFN (30 mg/kg once a day) and cisplatin (7 mg/kg twice a day) for 7 days to investigate the protective role of SFN on CIHL. We observed auditory brainstem response (ABR) threshold shifts and immunostained cochlear basilar membranes of rats. For in vitro experiments, we treated HEI-OC1 cells and rat cochlear organotypic cultures with SFN (5, 10, and 15 µM) and cisplatin (10 µM). Immunofluorescence, cell viability, and protein analysis were performed to further analyze the protective mechanism of SFN on CIHL. RESULTS: SFN (30 mg/kg once a day) decreased cisplatin (7 mg/kg twice a day)-induced ABR threshold shifts and outer hair cell loss. CCK-8 assay showed that cisplatin (10 µM) reduced the viability of HEI-OC1 cells to 42%, and SFN had a dose-dependent protective effect. In cochlear organotypic cultures, we found that SFN (10 and 15 µM) increased cisplatin (10 µM)-induced myosin 7a+ cell count and restored ciliary morphology. SFN (5, 10, and 15 µM) reversed the cisplatin (10 µM)-induced increase in HDAC2, -4, and -5 and SFN (15 µM) reversed the cisplatin (10 µM)-induced decrease in H3-Ack9 [acetyl-histone H3 (Lys9)] protein expression in HEI-OC1 cells. Neither cisplatin nor cisplatin combined with SFN affected the expression of HDAC7, or HDAC9. CONCLUSION: SFN prevented disruption of the HAT/HDAC balance, protecting against CIHL in rats.


Asunto(s)
Antineoplásicos , Cisplatino , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Isotiocianatos/uso terapéutico , Sulfóxidos/uso terapéutico , Animales , Recuento de Células , Cilios/patología , Cóclea/patología , Relación Dosis-Respuesta a Droga , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Células Ciliadas Auditivas Externas/patología , Histona Desacetilasas/biosíntesis , Histona Desacetilasas/efectos de los fármacos , Histona Desacetilasas/genética , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...