Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.266
Filtrar
1.
Biochem Biophys Res Commun ; 716: 150019, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38703555

RESUMEN

- Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a life-threatening condition marked by severe lung inflammation and increased lung endothelial barrier permeability. Endothelial glycocalyx deterioration is the primary factor of vascular permeability changes in ARDS/ALI. Although previous studies have shown that phospholipase D2 (PLD2) is closely related to the onset and progression of ARDS/ALI, its role and mechanism in the damage of endothelial cell glycocalyx remains unclear. We used LPS-induced ARDS/ALI mice (in vivo) and LPS-stimulated injury models of EA.hy926 endothelial cells (in vitro). We employed C57BL/6 mice, including wild-type and PLD2 knockout (PLD2-/-) mice, to establish the ARDS/ALI model. We applied immunofluorescence and ELISA to examine changes in syndecan-1 (SDC-1), matrix metalloproteinase-9 (MMP9), inflammatory cytokines (TNF-α, IL-6, and IL-1ß) levels and the effect of external factors, such as phosphatidic acid (PA), 1-butanol (a PLD inhibitor), on SDC-1 and MMP9 expression levels. We found that PLD2 deficiency inhibits SDC-1 degradation and MMP9 expression in LPS-induced ARDS/ALI. Externally added PA decreases SDC-1 levels and increases MMP9 in endothelial cells, hence underlining PA's role in SDC-1 degradation. Additionally, PLD2 deficiency decreases the production of inflammatory cytokines (TNF-α, IL-6, and IL-1ß) in LPS-induced ARDS/ALI. In summary, these findings suggest that PLD2 deficiency plays a role in inhibiting the inflammatory process and protecting against endothelial glycocalyx injury in LPS-induced ARDS/ALI.


Asunto(s)
Lesión Pulmonar Aguda , Glicocálix , Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasa D , Síndrome de Dificultad Respiratoria , Animales , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Glicocálix/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/etiología , Ratones , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Sindecano-1/metabolismo , Sindecano-1/genética , Citocinas/metabolismo , Línea Celular
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732107

RESUMEN

Arteriovenous malformations (AVMs) are congenital vascular anomalies with a poor prognosis. AVMs are considered intractable diseases, as there is no established approach for early diagnosis and treatment. Therefore, this study aimed to provide new evidence by analyzing microRNAs (miRNAs) associated with AVM. We present fundamental evidence for the early diagnosis and treatment of AVM by analyzing miRNAs in the endothelial cells of AVMs. This study performed sequencing and validation of miRNAs in endothelial cells from normal and AVM tissues. Five upregulated and two downregulated miRNAs were subsequently analyzed under hypoxia and vascular endothelial growth factor (VEGF) treatment by one-way analysis of variance (ANOVA). Under hypoxic conditions, miR-135b-5p was significantly upregulated in the AVM compared to that under normal conditions, corresponding to increased endothelial activity (p-value = 0.0238). VEGF treatment showed no significant increase in miR-135b-5p under normal conditions, however, a surge in AVM was observed. Under both hypoxia and VEGF treatment, comparison indicated a downregulation of miR-135b-5p in AVM. Therefore, miR-135b-5p was assumed to affect the pathophysiological process of AVM and might play a vital role as a potential biomarker of AVMs for application related to diagnosis and treatment.


Asunto(s)
Malformaciones Arteriovenosas , Biomarcadores , Células Endoteliales , MicroARNs , Factor A de Crecimiento Endotelial Vascular , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/metabolismo , Malformaciones Arteriovenosas/patología , Malformaciones Arteriovenosas/diagnóstico , Células Endoteliales/metabolismo , Células Endoteliales/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Masculino , Femenino , Adulto , Hipoxia de la Célula/genética
3.
J Transl Med ; 22(1): 442, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730286

RESUMEN

INTRODUCTION: Lung cancer is a prevalent malignancy globally, and immunotherapy has revolutionized its treatment. However, resistance to immunotherapy remains a challenge. Abnormal cholinesterase (ChE) activity and choline metabolism are associated with tumor oncogenesis, progression, and poor prognosis in multiple cancers. Yet, the precise mechanism underlying the relationship between ChE, choline metabolism and tumor immune microenvironment in lung cancer, and the response and resistance of immunotherapy still unclear. METHODS: Firstly, 277 advanced non-small cell lung cancer (NSCLC) patients receiving first-line immunotherapy in Sun Yat-sen University Cancer Center were enrolled in the study. Pretreatment and the alteration of ChE after 2 courses of immunotherapy and survival outcomes were collected. Kaplan-Meier survival and cox regression analysis were performed, and nomogram was conducted to identify the prognostic and predicted values. Secondly, choline metabolism-related genes were screened using Cox regression, and a prognostic model was constructed. Functional enrichment analysis and immune microenvironment analysis were also conducted. Lastly, to gain further insights into potential mechanisms, single-cell analysis was performed. RESULTS: Firstly, baseline high level ChE and the elevation of ChE after immunotherapy were significantly associated with better survival outcomes for advanced NSCLC. Constructed nomogram based on the significant variables from the multivariate Cox analysis performed well in discrimination and calibration. Secondly, 4 choline metabolism-related genes (MTHFD1, PDGFB, PIK3R3, CHKB) were screened and developed a risk signature that was found to be related to a poorer prognosis. Further analysis revealed that the choline metabolism-related genes signature was associated with immunosuppressive tumor microenvironment, immune escape and metabolic reprogramming. scRNA-seq showed that MTHFD1 was specifically distributed in tumor-associated macrophages (TAMs), mediating the differentiation and immunosuppressive functions of macrophages, which may potentially impact endothelial cell proliferation and tumor angiogenesis. CONCLUSION: Our study highlights the discovery of ChE as a prognostic marker in advanced NSCLC, suggesting its potential for identifying patients who may benefit from immunotherapy. Additionally, we developed a prognostic signature based on choline metabolism-related genes, revealing the correlation with the immunosuppressive microenvironment and uncovering the role of MTHFD1 in macrophage differentiation and endothelial cell proliferation, providing insights into the intricate workings of choline metabolism in NSCLC pathogenesis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Colina , Células Endoteliales , Neoplasias Pulmonares , Microambiente Tumoral , Macrófagos Asociados a Tumores , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Colina/metabolismo , Masculino , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , Persona de Mediana Edad , Pronóstico , Inmunoterapia , Terapia de Inmunosupresión , Estimación de Kaplan-Meier , Nomogramas , Reprogramación Metabólica
4.
Respir Res ; 25(1): 205, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730297

RESUMEN

BACKGROUND: Obesity is the main risk factor leading to the development of various respiratory diseases, such as asthma and pulmonary hypertension. Pulmonary microvascular endothelial cells (PMVECs) play a significant role in the development of lung diseases. Aconitate decarboxylase 1 (Acod1) mediates the production of itaconate, and Acod1/itaconate axis has been reported to play a protective role in multiple diseases. However, the roles of Acod1/itaconate axis in the PMVECs of obese mice are still unclear. METHODS: mRNA-seq was performed to identify the differentially expressed genes (DEGs) between high-fat diet (HFD)-induced PMVECs and chow-fed PMVECs in mice (|log2 fold change| ≥ 1, p ≤ 0.05). Free fatty acid (FFA) was used to induce cell injury, inflammation and mitochondrial oxidative stress in mouse PMVECs after transfection with the Acod1 overexpressed plasmid or 4-Octyl Itaconate (4-OI) administration. In addition, we investigated whether the nuclear factor erythroid 2-like 2 (Nrf2) pathway was involved in the effects of Acod1/itaconate in FFA-induced PMVECs. RESULTS: Down-regulated Acod1 was identified in HFD mouse PMVECs by mRNA-seq. Acod1 expression was also reduced in FFA-treated PMVECs. Acod1 overexpression inhibited cell injury, inflammation and mitochondrial oxidative stress induced by FFA in mouse PMVECs. 4-OI administration showed the consistent results in FFA-treated mouse PMVECs. Moreover, silencing Nrf2 reversed the effects of Acod1 overexpression and 4-OI administration in FFA-treated PMVECs, indicating that Nrf2 activation was required for the protective effects of Acod1/itaconate. CONCLUSION: Our results demonstrated that Acod1/Itaconate axis might protect mouse PMVECs from FFA-induced injury, inflammation and mitochondrial oxidative stress via activating Nrf2 pathway. It was meaningful for the treatment of obesity-caused pulmonary microvascular endotheliopathy.


Asunto(s)
Carboxiliasas , Células Endoteliales , Pulmón , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Obesidad , Succinatos , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Carboxiliasas/metabolismo , Carboxiliasas/genética , Obesidad/metabolismo , Obesidad/complicaciones , Masculino , Succinatos/farmacología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/irrigación sanguínea , Células Cultivadas , Microvasos/metabolismo , Microvasos/efectos de los fármacos , Microvasos/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Dieta Alta en Grasa/efectos adversos , Endotelio Vascular/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Hidroliasas
5.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724987

RESUMEN

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Asunto(s)
Cardiomiopatías Diabéticas , Dinaminas , Células Endoteliales , Ratones Endogámicos C57BL , Transducción de Señal , Animales , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/etiología , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Masculino , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/enzimología , Células Endoteliales/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ferroptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Células Cultivadas , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/enzimología , Ratones , Procesamiento Proteico-Postraduccional , Circulación Coronaria , Péptidos y Proteínas de Señalización Intracelular
6.
J Clin Invest ; 134(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747293

RESUMEN

Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Malformaciones Vasculares , Humanos , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Animales , Malformaciones Vasculares/genética , Malformaciones Vasculares/patología , Malformaciones Vasculares/fisiopatología , Malformaciones Vasculares/metabolismo , Malformaciones Vasculares/enzimología , Células Endoteliales/enzimología , Células Endoteliales/patología , Células Endoteliales/metabolismo , Estrés Mecánico , Mutación con Ganancia de Función , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/fisiopatología , Hemangioma Cavernoso del Sistema Nervioso Central/patología
7.
Sci Rep ; 14(1): 9976, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693148

RESUMEN

Inflammation and fibrosis often occur in the kidney after acute injury, resulting in chronic kidney disease and consequent renal failure. Recent studies have indicated that lymphangiogenesis can drive renal inflammation and fibrosis in injured kidneys. However, whether and how this pathogenesis affects the contralateral kidney remain largely unknown. In our study, we uncovered a mechanism by which the contralateral kidney responded to injury. We found that the activation of mineralocorticoid receptors and the increase in vascular endothelial growth factor C in the contralateral kidney after unilateral ureteral obstruction could promote lymphangiogenesis. Furthermore, mineralocorticoid receptor activation in lymphatic endothelial cells resulted in the secretion of myofibroblast markers, thereby contributing to renal fibrosis. We observed that this process could be attenuated by administering the mineralocorticoid receptor blocker eplerenone, which, prevented the development of fibrotic injury in the contralateral kidneys of rats with unilateral ureteral obstruction. These findings offer valuable insights into the intricate mechanisms underlying kidney injury and may have implications for the development of therapeutic strategies to mitigate renal fibrosis in the context of kidney disease.


Asunto(s)
Eplerenona , Fibrosis , Riñón , Linfangiogénesis , Antagonistas de Receptores de Mineralocorticoides , Obstrucción Ureteral , Animales , Eplerenona/farmacología , Linfangiogénesis/efectos de los fármacos , Ratas , Fibrosis/tratamiento farmacológico , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología , Obstrucción Ureteral/complicaciones , Antagonistas de Receptores de Mineralocorticoides/farmacología , Masculino , Receptores de Mineralocorticoides/metabolismo , Espironolactona/análogos & derivados , Espironolactona/farmacología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ratas Sprague-Dawley , Miofibroblastos/metabolismo , Miofibroblastos/efectos de los fármacos , Miofibroblastos/patología
8.
Sci Rep ; 14(1): 9991, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693202

RESUMEN

Endothelial cells (ECs) have essential roles in cardiac tissue repair after myocardial infarction (MI). To establish stage-specific and long-term effects of the ischemic injury on cardiac ECs, we analyzed their transcriptome at landmark time points after MI in mice. We found that early EC response at Day 2 post-MI centered on metabolic changes, acquisition of proinflammatory phenotypes, initiation of the S phase of cell cycle, and activation of stress-response pathways, followed by progression to mitosis (M/G2 phase) and acquisition of proangiogenic and mesenchymal properties during scar formation at Day 7. In contrast, genes involved in vascular physiology and maintenance of vascular tone were suppressed. Importantly, ECs did not return to pre-injury phenotypes after repair has been completed but maintained inflammatory, fibrotic and thrombotic characteristics and lost circadian rhythmicity. We discovered that the highest induced transcript is the mammalian-specific Sh2d5 gene that promoted migration and invasion of ECs through Rac1 GTPase. Our results revealed a synchronized, temporal activation of disease phenotypes, metabolic pathways, and proliferation in quiescent ECs after MI, indicating that precisely-timed interventions are necessary to optimize cardiac tissue repair and improve outcomes. Furthermore, long-term effects of acute ischemic injury on ECs may contribute to vascular dysfunction and development of heart failure.


Asunto(s)
Células Endoteliales , Perfilación de la Expresión Génica , Infarto del Miocardio , Animales , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/patología , Transcriptoma , Masculino , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Modelos Animales de Enfermedad , Proliferación Celular , Movimiento Celular/genética
9.
Cell Death Dis ; 15(5): 308, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693114

RESUMEN

Heart disease involves irreversible myocardial injury that leads to high morbidity and mortality rates. Numerous cell-based cardiac in vitro models have been proposed as complementary approaches to non-clinical animal research. However, most of these approaches struggle to accurately replicate adult human heart conditions, such as myocardial infarction and ventricular remodeling pathology. The intricate interplay between various cell types within the adult heart, including cardiomyocytes, fibroblasts, and endothelial cells, contributes to the complexity of most heart diseases. Consequently, the mechanisms behind heart disease induction cannot be attributed to a single-cell type. Thus, the use of multi-cellular models becomes essential for creating clinically relevant in vitro cell models. This study focuses on generating self-organizing heart organoids (HOs) using human-induced pluripotent stem cells (hiPSCs). These organoids consist of cardiomyocytes, fibroblasts, and endothelial cells, mimicking the cellular composition of the human heart. The multi-cellular composition of HOs was confirmed through various techniques, including immunohistochemistry, flow cytometry, q-PCR, and single-cell RNA sequencing. Subsequently, HOs were subjected to hypoxia-induced ischemia and ischemia-reperfusion (IR) injuries within controlled culture conditions. The resulting phenotypes resembled those of acute myocardial infarction (AMI), characterized by cardiac cell death, biomarker secretion, functional deficits, alterations in calcium ion handling, and changes in beating properties. Additionally, the HOs subjected to IR efficiently exhibited cardiac fibrosis, displaying collagen deposition, disrupted calcium ion handling, and electrophysiological anomalies that emulate heart disease. These findings hold significant implications for the advancement of in vivo-like 3D heart and disease modeling. These disease models present a promising alternative to animal experimentation for studying cardiac diseases, and they also serve as a platform for drug screening to identify potential therapeutic targets.


Asunto(s)
Fibrosis , Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Miocitos Cardíacos , Organoides , Humanos , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Organoides/metabolismo , Organoides/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocardio/patología , Miocardio/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología
10.
Sci Rep ; 14(1): 10276, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704483

RESUMEN

Fuchs endothelial corneal dystrophy (FECD) is a complex corneal disease characterized by the progressive decline and morphological changes of corneal endothelial cells (CECs) that leads to corneal edema and vision loss. The most common mutation in FECD is an intronic CTG repeat expansion in transcription factor 4 (TCF4) that leads to its altered expression. Corneal endothelial wound healing occurs primarily through cell enlargement and migration, and FECD CECs have been shown to display increased migration speeds. In this study, we aim to determine whether TCF4 can promote cellular migration in FECD CECs. We generated stable CEC lines derived from FECD patients that overexpressed different TCF4 isoforms and investigated epithelial-to-mesenchymal (EMT) expression, morphological analysis and cellular migration speeds. We found that full length TCF4-B isoform overexpression promotes cellular migration in FECD CECs in an EMT-independent manner. RNA-sequencing identified several pathways including the negative regulation of microtubules, with TUBB4A (tubulin beta 4A class IVa) as the top upregulated gene. TUBB4A expression was increased in FECD ex vivo specimens, and there was altered expression of cytoskeleton proteins, tubulin and actin, compared to normal healthy donor ex vivo specimens. Additionally, there was increased acetylation and detyrosination of microtubules in FECD supporting that microtubule stability is altered in FECD and could promote cellular migration. Future studies could be aimed at investigating if targeting the cytoskeleton and microtubules would have therapeutic potential for FECD by promoting cellular migration and regeneration.


Asunto(s)
Movimiento Celular , Endotelio Corneal , Distrofia Endotelial de Fuchs , Microtúbulos , Factor de Transcripción 4 , Humanos , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Distrofia Endotelial de Fuchs/patología , Movimiento Celular/genética , Microtúbulos/metabolismo , Factor de Transcripción 4/metabolismo , Factor de Transcripción 4/genética , Endotelio Corneal/metabolismo , Endotelio Corneal/patología , Masculino , Femenino , Transición Epitelial-Mesenquimal/genética , Anciano , Células Endoteliales/metabolismo , Células Endoteliales/patología , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Persona de Mediana Edad , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
11.
PLoS One ; 19(5): e0303296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753743

RESUMEN

AIM: Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most prevalent liver diseases and is characterized by steatosis and the accumulation of bioactive lipids. This study aims to understand the specific lipid species responsible for the progression of liver fibrosis in MASH. METHODS: Changes in bioactive lipid levels were examined in the livers of MASH mice fed a choline-deficient diet (CDD). Additionally, sphingosine kinase (SphK)1 mRNA, which generates sphingosine 1 phosphate (S1P), was examined in the livers of patients with MASH. RESULTS: CDD induced MASH and liver fibrosis were accompanied by elevated levels of S1P and increased expression of SphK1 in capillarized liver sinusoidal endothelial cells (LSECs) in mice. SphK1 mRNA also increased in the livers of patients with MASH. Treatment of primary cultured mouse hepatic stellate cells (HSCs) with S1P stimulated their activation, which was mitigated by the S1P receptor (S1PR)2 inhibitor, JTE013. The inhibition of S1PR2 or its knockout in mice suppressed liver fibrosis without reducing steatosis or hepatocellular damage. CONCLUSION: S1P level is increased in MASH livers and contributes to liver fibrosis via S1PR2.


Asunto(s)
Hígado Graso , Células Estrelladas Hepáticas , Cirrosis Hepática , Lisofosfolípidos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Receptores de Esfingosina-1-Fosfato , Esfingosina , Animales , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Lisofosfolípidos/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Cirrosis Hepática/etiología , Ratones , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Humanos , Receptores de Esfingosina-1-Fosfato/metabolismo , Hígado Graso/metabolismo , Hígado Graso/patología , Masculino , Ratones Noqueados , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/patología , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Lisoesfingolípidos/genética , Pirazoles , Piridinas
12.
Commun Biol ; 7(1): 544, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714800

RESUMEN

Numerous myofibroblasts are arisen from endothelial cells (ECs) through endothelial to mesenchymal transition (EndMT) triggered by TGF-ß. However, the mechanism of ECs transforms to a different subtype, or whether there exists an intermediate state of ECs remains unclear. In present study, we demonstrate Midkine (MDK) mainly expressed by CD31 + ACTA2+ECs going through partial EndMT contribute greatly to myofibroblasts by spatial and single-cell transcriptomics. MDK is induced in TGF-ß treated ECs, which upregulates C/EBPß and increases EndMT genes, and these effects could be reversed by siMDK. Mechanistically, MDK promotes the binding ability of C/EBPß with ACTA2 promoter by stabilizing the C/EBPß protein. In vivo, knockout of Mdk or conditional knockout of Mdk in ECs reduces EndMT markers and significantly reverses fibrogenesis. In conclusion, our study provides a mechanistic link between the induction of EndMT by TGF-ß and MDK, which suggests that blocking MDK provides potential therapeutic strategies for renal fibrosis.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT , Fibrosis , Midkina , Midkina/metabolismo , Midkina/genética , Animales , Ratones , Humanos , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Transición Epitelial-Mesenquimal , Células Endoteliales/metabolismo , Células Endoteliales/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/genética , Miofibroblastos/metabolismo , Miofibroblastos/patología , Factor de Crecimiento Transformador beta/metabolismo , Ratones Endogámicos C57BL , Masculino , Riñón/metabolismo , Riñón/patología , Ratones Noqueados , Transición Endotelial-Mesenquimatosa
13.
Commun Biol ; 7(1): 602, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762624

RESUMEN

The role of endothelial cells in promoting cancer cell extravasation to the brain during the interaction of cancer cells with the vasculature is not well characterised. We show that brain endothelial cells activate EGFR signalling in triple-negative breast cancer cells with propensity to metastasise to the brain. This activation is dependent on soluble factors secreted by brain endothelial cells, and occurs via the RAC1 GEF DOCK4, which is required for breast cancer cell extravasation to the brain in vivo. Knockdown of DOCK4 inhibits breast cancer cell entrance to the brain without affecting cancer cell survival or growth. Defective extravasation is associated with loss of elongated morphology preceding intercalation into brain endothelium. We also show that brain endothelial cells promote paracrine stimulation of mesenchymal-like morphology of breast cancer cells via DOCK4, DOCK9, RAC1 and CDC42. This stimulation is accompanied by EGFR activation necessary for brain metastatic breast cancer cell elongation which can be reversed by the EGFR inhibitor Afatinib. Our findings suggest that brain endothelial cells promote metastasis through activation of cell signalling that renders breast cancer cells competent for extravasation. This represents a paradigm of brain endothelial cells influencing the signalling and metastatic competency of breast cancer cells.


Asunto(s)
Neoplasias Encefálicas , Encéfalo , Células Endoteliales , Receptores ErbB , Transducción de Señal , Proteína de Unión al GTP rac1 , Receptores ErbB/metabolismo , Receptores ErbB/genética , Humanos , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Femenino , Células Endoteliales/metabolismo , Células Endoteliales/patología , Línea Celular Tumoral , Animales , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Ratones , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética
14.
Artículo en Chino | MEDLINE | ID: mdl-38604683

RESUMEN

OBJECTIVE: To investigate the capillarization of liver sinusoidal endothelial cells (LSECs) and its association with hepatic fibrosis during the development of alveolar echinococcosis, so as to provide the basis for unraveling the mechanisms underlying the role of LSEC in the development and prognosis of hepatic injuries and hepatic fibrosis caused by alveolar echinococcosis. METHODS: Forty C57BL/6 mice at ages of 6 to 8 weeks were randomly divided into a control group and 1-, 2- and 4-week infection groups, of 10 mice in each group. Each mouse in the infection groups was intraperitoneally injected with 2 000 Echinococcus multilocularis protoscoleces, while each mouse in the control group was given an equal volume of phosphate-buffered saline using the same method. All mice were sacrificed 1, 2 and 4 weeks post-infection and mouse livers were collected. The pathological changes of livers were observed using hematoxylin-eosin (HE) staining, and hepatic fibrosis was evaluated through semi-quantitative analysis of Masson's trichrome staining-positive areas. The activation of hepatic stellate cells (HSCs) and extracellular matrix (ECM) deposition were examined using immunohistochemical staining of α-smooth muscle actin (α-SMA) and collagen type I alpha 1 (COL1A1), and the fenestrations on the surface of LSECs were observed using scanning electron microscopy. Primary LSECs were isolated from mouse livers, and the mRNA expression of LSEC marker genes Stabilin-1, Stabilin-2, Ehd3, CD209b, GATA4 and Maf was quantified using real-time fluorescence quantitative PCR (qPCR) assay. RESULTS: Destruction of local liver lobular structure was observed in mice 2 weeks post-infection with E. multilocularis protoscoleces, and hydatid cysts, which were surrounded by granulomatous tissues, were found in mouse livers 4 weeks post-infection. Semi-quantitative analysis of Masson's trichrome staining showed a significant difference in the proportion of collagen fiber contents in mouse livers among the four groups (F = 26.060, P < 0.001), and a higher proportion of collagen fiber contents was detected in mouse livers in the 4-week infection group [(11.29 ± 2.58)%] than in the control group (P < 0.001). Immunohistochemical staining revealed activation of a few HSCs and ECM deposition in mouse livers 1 and 2 weeks post-infection, and abundant brown-yellow stained α-SMA and COL1A1 were deposited in the lesion areas in mouse livers 4 weeks post-infection, which spread to surrounding tissues. Semi-quantitative analysis revealed significant differences in α-SMA (F = 7.667, P < 0.05) and COL1A1 expression (F = 6.530, P < 0.05) in mouse levers among the four groups, with higher α-SMA [(7.13 ± 3.68)%] and COL1A1 expression [(13.18 ± 7.20)%] quantified in mouse livers in the 4-week infection group than in the control group (both P values < 0.05). Scanning electron microscopy revealed significant differences in the fenestration frequency (F = 37.730, P < 0.001) and porosity (F = 16.010, P < 0.001) on the surface of mouse LSECs among the four groups, and reduced fenestration frequency and porosity were observed in the 1-[(1.22 ± 0.48)/µm2 and [(3.05 ± 0.91)%] and 2-week infection groups [(3.47 ± 0.10)/µm2 and (7.57 ± 0.23)%] groups than in the control group (all P values < 0.001). There was a significant difference in the average fenestration diameter on the surface of mouse LSECs among the four groups (F = 15.330, P < 0.001), and larger average fenestration diameters were measured in the 1-[(180.80 ± 16.42) nm] and 2-week infection groups [(161.70 ± 3.85) nm] than in the control group (both P values < 0.05). In addition, there were significant differences among the four groups in terms of Stabilin-1 (F = 153.100, P < 0.001), Stabilin-2 (F = 57.010, P < 0.001), Ehd3 (F = 31.700, P < 0.001), CD209b (F = 177.400, P < 0.001), GATA4 (F = 17.740, P < 0.001), and Maf mRNA expression (F = 72.710, P < 0.001), and reduced mRNA expression of Stabilin-1, Stabilin-2, Ehd3, CD209b, GATA4 and Maf genes was quantified in three infection groups than in the control group (all P values < 0.001). CONCLUSIONS: E. multilocularis infections may induce capillarization of LSECs in mice, and result in a reduction in the expression of functional and phenotypic marker genes of LSECs, and capillarization of LSECs occurs earlier than activation of HSC and development of hepatic fibrosis.


Asunto(s)
Equinococosis , Células Endoteliales , Ratones , Animales , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ratones Endogámicos C57BL , Hígado/patología , Cirrosis Hepática/patología , Equinococosis/patología , ARN Mensajero/metabolismo , Colágeno/efectos adversos , Colágeno/metabolismo
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 455-464, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38597436

RESUMEN

OBJECTIVE: To investigate the expression of the ubiquitination enzyme UBE2S in different cell types in hepatocellular carcinoma (HCC) microenvironment and its impact on proliferation and stemness of HCC cells. METHODS: TCGA and CPTAC database were used to analyze the transcriptional and promoter methylation levels and protein expressions of UBE2S in HCC. Specific expression patterns of UBE2S, intercellular communication and key transcription factors in different cell types were analyzed based on single-cell sequencing data from TISCH website. We further examined UBE2S expressions in clinical samples of HCC tissues, HCC cells and T cells using immunohistochemistry and immunofluorescence staining. We also tested the effects of UBE2S knockdown on stemness of HCC-LM3 and HepG2 cells using clone formation experiments and sphere formation assay. RESULTS: Analysis based on TCGA database suggested significant overexpression of UBE2S in both paired and non-paired tumor tissues (P < 0.001), and its transcriptional level increased with tumor grades. The methylation level of UBE2S promoter was significantly decreased in HCC (P < 0.001), and its transcription level increased obviously in HCC with TP53 mutation (P < 0.001). Analysis of CPTAC database also demonstrated overexpression of UBE2S protein in HCC tissues (P < 0.001). Three prognostic models suggested that HCC patients with high UBE2S expression had poorer prognosis (P < 0.001). Single-cell sequencing data analysis revealed high expressions of UBE2S in T cells and high intensities of interaction between endothelial cells, epithelial cells and fibroblasts in HCC microenvironment. Immunohistochemistry and immunofluorescence staining demonstrated high UBE2S expressions in clinical samples of HCC tissues, HCC cells and T cells. In HCC-LM3 and HepG2 cells, UBE2S knockdown significantly inhibited cell clone formation and tumor sphere formation (P < 0.05). CONCLUSION: UBE2S is highly expressed in T cells in HCC microenvironment in close correlation with a poor prognosis. High UBE2S expression promotes the stemness of HCC cells.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Células Endoteliales/patología , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Neoplasias Hepáticas/patología , Pronóstico , Microambiente Tumoral
16.
Pharmacol Res ; 203: 107165, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561112

RESUMEN

The clinical use of the DNA damaging anticancer drug doxorubicin (DOX) is limited by irreversible cardiotoxicity, which depends on the cumulative dose. The RAS-homologous (RHO) small GTPase RAC1 contributes to DOX-induced DNA damage formation and cardiotoxicity. However, the pathophysiological relevance of other RHO GTPases than RAC1 and different cardiac cell types (i.e., cardiomyocytes, non-cardiomyocytes) for DOX-triggered cardiac damage is unclear. Employing diverse in vitro and in vivo models, we comparatively investigated the level of DOX-induced DNA damage in cardiomyocytes versus non-cardiomyocytes (endothelial cells and fibroblasts), in the presence or absence of selected RHO GTPase inhibitors. Non-cardiomyocytes exhibited the highest number of DOX-induced DNA double-strand breaks (DSB), which were efficiently repaired in vitro. By contrast, rather low levels of DSB were formed in cardiomyocytes, which however remained largely unrepaired. Moreover, DOX-induced apoptosis was detected only in non-cardiomyocytes but not in cardiomyocytes. Pharmacological inhibitors of RAC1 and CDC42 most efficiently attenuated DOX-induced DNA damage in all cell types examined in vitro. Consistently, immunohistochemical analyses revealed that the RAC1 inhibitor NSC23766 and the pan-RHO GTPase inhibitor lovastatin reduced the level of DOX-induced residual DNA damage in both cardiomyocytes and non-cardiomyocytes in vivo. Overall, we conclude that endothelial cells, fibroblasts and cardiomyocytes contribute to the pathophysiology of DOX-induced cardiotoxicity, with RAC1- and CDC42-regulated signaling pathways being especially relevant for DOX-stimulated DSB formation and DNA damage response (DDR) activation. Hence, we suggest dual targeting of RAC1/CDC42-dependent mechanisms in multiple cardiac cell types to mitigate DNA damage-dependent cardiac injury evoked by DOX-based anticancer therapy.


Asunto(s)
Aminoquinolinas , Doxorrubicina , Células Endoteliales , Fibroblastos , Miocitos Cardíacos , Pirimidinas , Proteína de Unión al GTP cdc42 , Proteína de Unión al GTP rac1 , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/genética , Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Proteína de Unión al GTP cdc42/metabolismo , Doxorrubicina/toxicidad , Doxorrubicina/efectos adversos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Células Endoteliales/metabolismo , Cardiotoxicidad , Antibióticos Antineoplásicos/toxicidad , Ratones , Apoptosis/efectos de los fármacos , Masculino , Humanos , Ratones Endogámicos C57BL , Roturas del ADN de Doble Cadena/efectos de los fármacos , Neuropéptidos/metabolismo , Daño del ADN/efectos de los fármacos , Células Cultivadas
17.
Biochem Biophys Res Commun ; 715: 149979, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678779

RESUMEN

Endothelial dysfunction is an initiating factor in atherosclerosis. Endothelial cells (ECs) are constantly subject to blood flow shear stress, and atherosclerotic plaques tend to occur in aortic bends or bifurcations impaired by low oscillatory shear stress (OSS). However, the mechanism that how OSS affects the initiation and progression of atherosclerosis remains to be explored. Here, we first reported that OSS can promote endothelial dysfunction and atherogenesis in vivo and in vitro by activating STING pathway. Mechanistically, at atherosclerosis-prone areas, OSS caused mitochondria damage in ECs, leading to the leakage of mitochondrial DNA (mtDNA) into the cytoplasm. The cytoplasmic mtDNA was recognized by cGAS to produce cGAMP, activating the STING pathway and leading to endothelial senescence, which resulted in endothelial dysfunction and atherosclerosis. We found that STING was activated in plaques of atherosclerotic patients and in aortic arch ECs of high-fat diet (HFD)-fed ApoeKO mice, as well as in ECs exposed to OSS. STING-specific deficiency in ECs attenuates endothelial senescence and resulted in a significant reduction in aortic arch plaque area in HFD-fed ApoeKO mice. Consistently, specific deficiency or pharmacological inhibition of STING attenuated OSS-induced senescence and endothelial dysfunction. Pharmacological depletion of mtDNA ameliorated OSS-induced senescence and endothelial dysfunction. Taken together, our study linked hemodynamics and endothelial senescence, and revealed a novel mechanism by which OSS leads to endothelial dysfunction. Our study provided new insights into the development of therapeutic strategies for endothelial senescence and atherosclerosis.


Asunto(s)
Aterosclerosis , Senescencia Celular , ADN Mitocondrial , Células Endoteliales , Proteínas de la Membrana , Ratones Endogámicos C57BL , Estrés Mecánico , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/patología , Masculino , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Dieta Alta en Grasa , Células Cultivadas
18.
Cell Rep ; 43(4): 114114, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625791

RESUMEN

Patients afflicted with Stimulator of interferon gene (STING) gain-of-function mutations frequently present with debilitating interstitial lung disease (ILD) that is recapitulated in mice expressing the STINGV154M mutation (VM). Prior radiation chimera studies revealed an unexpected and critical role for non-hematopoietic cells in initiating ILD. To identify STING-expressing non-hematopoietic cell types required for the development of ILD, we use a conditional knockin (CKI) model and direct expression of the VM allele to hematopoietic cells, fibroblasts, epithelial cells, or endothelial cells. Only endothelial cell-targeted VM expression results in enhanced recruitment of immune cells to the lung associated with elevated chemokine expression and the formation of bronchus-associated lymphoid tissue, as seen in the parental VM strain. These findings reveal the importance of endothelial cells as instigators of STING-driven lung disease and suggest that therapeutic targeting of STING inhibitors to endothelial cells could potentially mitigate inflammation in the lungs of STING-associated vasculopathy with onset in infancy (SAVI) patients or patients afflicted with other ILD-related disorders.


Asunto(s)
Células Endoteliales , Mutación con Ganancia de Función , Pulmón , Proteínas de la Membrana , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ratones , Pulmón/patología , Pulmón/metabolismo , Linfocitos/metabolismo , Enfermedades Pulmonares Intersticiales/patología , Enfermedades Pulmonares Intersticiales/genética , Enfermedades Pulmonares Intersticiales/metabolismo , Ratones Endogámicos C57BL , Humanos
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167169, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631408

RESUMEN

Mitochondrial dysregulation is pivotal in Alzheimer's disease (AD) pathogenesis. Calcium governs vital mitochondrial processes impacting energy conversion, oxidative stress, and cell death signaling. Disruptions in mitochondrial calcium (mCa2+) handling induce calcium overload and trigger the opening of mitochondrial permeability transition pore, ensuing energy deprivation and resulting in AD-related neuronal cell death. However, the role of mCa2+ in non-neuronal cells (microglia, astrocytes, oligodendrocytes, endothelial cells, and pericytes) remains elusive. This review provides a comprehensive exploration of mitochondrial heterogeneity and calcium signaling, offering insights into specific differences among various brain cell types in AD.


Asunto(s)
Enfermedad de Alzheimer , Señalización del Calcio , Calcio , Mitocondrias , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Señalización del Calcio/fisiología , Animales , Calcio/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Pericitos/metabolismo , Pericitos/patología , Microglía/metabolismo , Microglía/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Estrés Oxidativo , Oligodendroglía/metabolismo , Oligodendroglía/patología , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Neuronas/metabolismo , Neuronas/patología
20.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L687-L697, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38563965

RESUMEN

Chronic cigarette smoke exposure decreases lung expression of WWOX which is known to protect the endothelial barrier during infectious models of acute respiratory distress syndrome (ARDS). Proteomic analysis of WWOX-silenced endothelial cells (ECs) was done using tandem mass tag mass spectrometry (TMT-MS). WWOX-silenced ECs as well as those isolated from endothelial cell Wwox knockout (EC Wwox KO) mice were subjected to cyclic stretch (18% elongation, 0.5 Hz, 4 h). Cellular lysates and media supernatant were harvested for assays of cellular signaling, protein expression, and cytokine release. These were repeated with dual silencing of WWOX and zyxin. Control and EC Wwox KO mice were subjected to high tidal volume ventilation. Bronchoalveolar lavage fluid and mouse lung tissue were harvested for cellular signaling, cytokine secretion, and histological assays. TMT-MS revealed upregulation of zyxin expression during WWOX knockdown which predicted a heightened inflammatory response to mechanical stretch. WWOX-silenced ECs and ECs isolated from EC Wwox mice displayed significantly increased cyclic stretch-mediated secretion of various cytokines (IL-6, KC/IL-8, IL-1ß, and MCP-1) relative to controls. This was associated with increased ERK and JNK phosphorylation but decreased p38 mitogen-activated kinases (MAPK) phosphorylation. EC Wwox KO mice subjected to VILI sustained a greater degree of injury than corresponding controls. Silencing of zyxin during WWOX knockdown abrogated stretch-induced increases in IL-8 secretion but not in IL-6. Loss of WWOX function in ECs is associated with a heightened inflammatory response during mechanical stretch that is associated with increased MAPK phosphorylation and appears, in part, to be dependent on the upregulation of zyxin.NEW & NOTEWORTHY Prior tobacco smoke exposure is associated with an increased risk of acute respiratory distress syndrome (ARDS) during critical illness. Our laboratory is investigating one of the gene expression changes that occurs in the lung following smoke exposure: WWOX downregulation. Here we describe changes in protein expression associated with WWOX knockdown and its influence on ventilator-induced ARDS in a mouse model.


Asunto(s)
Células Endoteliales , Inflamación , Ratones Noqueados , Lesión Pulmonar Inducida por Ventilación Mecánica , Oxidorreductasa que Contiene Dominios WW , Animales , Oxidorreductasa que Contiene Dominios WW/metabolismo , Oxidorreductasa que Contiene Dominios WW/genética , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/patología , Inflamación/metabolismo , Inflamación/patología , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/patología , Lesión Pulmonar Inducida por Ventilación Mecánica/genética , Citocinas/metabolismo , Ratones Endogámicos C57BL , Técnicas de Silenciamiento del Gen , Masculino , Pulmón/metabolismo , Pulmón/patología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA