Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.546
Filtrar
1.
Int J Mol Sci ; 25(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39456851

RESUMEN

Serine and folate metabolism play critical roles in erythroid development in both embryonic and adult mice; however, the precise roles of these metabolic pathways in erythropoiesis and the pathophysiology of anemia remain inadequately characterized in the literature. To delineate the contributions of serine and folate metabolism to erythroid differentiation, we focused on serine hydroxymethyltransferase 2 (SHMT2), a key regulatory enzyme within these metabolic pathways. Using gene-editing techniques, we created fetal and adult mouse models with targeted deletion of Shmt2 in the hematopoietic system. Our findings demonstrated that the deletion of Shmt2 within the hematopoietic system led to the distinctive anemia phenotype in both fetal and adult mice. Detailed progression analysis of anemia revealed that Shmt2 deletion exerts stage-specific effects on the development and maturation of erythroid cells. Specifically, Shmt2 deficiency promoted erythroid differentiation in the R2 (CD71+ Ter119-) cell population residing in the bone marrow while concurrently inhibiting the proliferation and erythroid differentiation of the R3 (CD71+ Ter119+) cell population. This disruption resulted in developmental arrest at the R3 stage, significantly contributing to the anemia phenotype observed in the models. This study elucidates the critical role of Shmt2 in erythroid development within the hematopoietic system, highlighting the underlying mechanisms of erythroid developmental arrest associated with Shmt2 loss.


Asunto(s)
Anemia , Modelos Animales de Enfermedad , Eritropoyesis , Glicina Hidroximetiltransferasa , Animales , Eritropoyesis/genética , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Ratones , Anemia/genética , Anemia/metabolismo , Anemia/patología , Células Eritroides/metabolismo , Células Eritroides/patología , Diferenciación Celular , Sistema Hematopoyético/metabolismo , Ratones Noqueados , Ácido Fólico/metabolismo , Ratones Endogámicos C57BL
2.
Anal Cell Pathol (Amst) ; 2024: 2639464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39411209

RESUMEN

Background: As an important downstream effector of various signaling pathways, mTOR plays critical roles in regulating many physiological processes including erythropoiesis. It is composed of two distinct complexes, mTORC1 and mTORC2, which differ in their components and downstream signaling effects. Our previous study revealed that the inhibition of mTORC1 by rapamycin significantly repressed the erythroid progenitor expansion in the early stage but promoted enucleation and mitochondria clearance in the late stage of erythroid differentiation. However, the particular roles and differences of mTORC1 and mTORC2 in the regulation of erythropoiesis still remain largely unknown. In the present study, we investigated the comparative effects of dual mTORC1/mTORC2 mTOR kinase inhibitor AZD8055 and mTORC1 inhibitor rapamycin on erythroid differentiation in K562 cells induced by hemin and erythropoiesis in ß-thalassemia mouse model. Materials and Methods: In vitro erythroid differentiation model of hemin-induced K562 cells and ß-thalassemia mouse model were treated with AZD8055 and rapamycin. Cell Counting Kit-8 was used to detect cell viability. The cell proliferation, cell cycle, erythroid surface marker expression, mitochondrial content, and membrane potential were determined and analyzed by flow cytometry and laser scanning confocal microscopy. Globin gene expression during erythroid differentiation was measured by RT-qPCR. The mTORC2/mTORC1 and autophagy pathway was evaluated using western blotting. Results: Both AZD8055 and rapamycin treatments increased the expression levels of the erythroid differentiation-specific markers, CD235a, α-globin, γ-globin, and ε-globin. Notably, AZD8055 suppressed the cell proliferation and promoted the mitochondrial clearance of hemin-induced K562 cells more effectively than rapamycin. In a mouse model of ß-thalassemia, both rapamycin and AZD8055 remarkably improve erythroid cell maturation and anemia. Moreover, AZD8055 and rapamycin treatment inhibited the mTORC1 pathway and enhanced autophagy, whereas AZD8055 enhanced autophagy more effectively than rapamycin. Indeed, AZD8055 treatment inhibited both mTORC2 and mTORC1 pathway in hemin-induced K562 cells. Conclusion: AZD8055 is more effective than rapamycin in inhibiting proliferation and promoting mitochondrial clearance in erythroid differentiation, which might provide us one more therapeutic option other than rapamycin for ineffective erythropoiesis treatment in the future. These findings also provide some preliminary information indicating the roles of mTORC1 and mTORC2 in erythropoiesis, and further studies are necessary to dissect the underlying mechanisms.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Mitocondrias , Morfolinas , Sirolimus , Animales , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Células K562 , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Morfolinas/farmacología , Sirolimus/farmacología , Ratones , Eritropoyesis/efectos de los fármacos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Talasemia beta/metabolismo , Talasemia beta/tratamiento farmacológico , Talasemia beta/patología , Células Eritroides/efectos de los fármacos , Células Eritroides/metabolismo , Modelos Animales de Enfermedad , Hemina/farmacología
3.
Sci Rep ; 14(1): 23225, 2024 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369090

RESUMEN

The identification of optimal candidate genes from large-scale blood transcriptomic data is crucial for developing targeted assays to monitor immune responses. Here, we introduce a novel, optimized large language model (LLM)-based approach for prioritizing candidate biomarkers from blood transcriptional modules. Focusing on module M14.51 from the BloodGen3 repertoire, we implemented a multi-step LLM-driven workflow. Initial high-throughput screening used GPT-4, Claude 3, and Claude 3.5 Sonnet to score and rank the module's constituent genes across six criteria. Top candidates then underwent high-resolution scoring using Consensus GPT, with concurrent manual fact-checking and, when needed, iterative refinement of the scores based on user feedback. Qualitative assessment of literature-based narratives and analysis of reference transcriptome data further refined the selection process. This novel multi-tiered approach consistently identified Glutathione Peroxidase 4 (GPX4) as the top candidate gene for module M14.51. GPX4's role in oxidative stress regulation, its potential as a future drug target, and its expression pattern across diverse cell types supported its selection. The incorporation of reference transcriptome data further validated GPX4 as the most suitable candidate for this module. This study presents an advanced LLM-driven workflow with a novel optimized scoring strategy for candidate gene prioritization, incorporating human-in-the-loop augmentation. The approach identified GPX4 as a key gene in the erythroid cell-associated module M14.51, suggesting its potential utility for biomarker discovery and targeted assay development. By combining AI-driven literature analysis with iterative human expert validation, this method leverages the strengths of both artificial and human intelligence, potentially contributing to the development of biologically relevant and clinically informative targeted assays. Further validation studies are needed to confirm the broader applicability of this human-augmented AI approach.


Asunto(s)
Biomarcadores , Células Eritroides , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Humanos , Biomarcadores/sangre , Células Eritroides/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Transcriptoma , Perfilación de la Expresión Génica/métodos , Estrés Oxidativo/genética
4.
Nat Commun ; 15(1): 8131, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284836

RESUMEN

Hematopoietic stem cells (HSCs) react to various stress conditions. However, it is unclear whether and how HSCs respond to severe anemia. Here, we demonstrate that upon induction of acute anemia, HSCs rapidly proliferate and enhance their erythroid differentiation potential. In severe anemia, lipoprotein profiles largely change and the concentration of ApoE increases. In HSCs, transcription levels of lipid metabolism-related genes, such as very low-density lipoprotein receptor (Vldlr), are upregulated. Stimulation of HSCs with ApoE enhances their erythroid potential, whereas HSCs in Apoe knockout mice do not respond to anemia induction. VldlrhighHSCs show higher erythroid potential, which is enhanced after acute anemia induction. VldlrhighHSCs are epigenetically distinct because of their low chromatin accessibility, and more chromatin regions are closed upon acute anemia induction. Chromatin regions closed upon acute anemia induction are mainly binding sites of Erg. Inhibition of Erg enhanced the erythroid differentiation potential of HSCs. Our findings indicate that lipoprotein metabolism plays an important role in HSC regulation under severe anemic conditions.


Asunto(s)
Anemia , Apolipoproteínas E , Diferenciación Celular , Células Madre Hematopoyéticas , Lipoproteínas , Animales , Anemia/metabolismo , Anemia/genética , Células Madre Hematopoyéticas/metabolismo , Ratones , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Lipoproteínas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de LDL/metabolismo , Receptores de LDL/genética , Masculino , Cromatina/metabolismo , Eritropoyesis/genética , Células Eritroides/metabolismo
5.
Stem Cell Res Ther ; 15(1): 310, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294765

RESUMEN

BACKGROUND: Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), can undergo erythroid differentiation, offering a potentially invaluable resource for generating large quantities of erythroid cells. However, the majority of erythrocytes derived from hPSCs fail to enucleate compared with those derived from cord blood progenitors, with an unknown molecular basis for this difference. The expression of vimentin (VIM) is retained in erythroid cells differentiated from hPSCs but is absent in mature erythrocytes. Further exploration is required to ascertain whether VIM plays a critical role in enucleation and to elucidate the underlying mechanisms. METHODS: In this study, we established a hESC line with reversible vimentin degradation (dTAG-VIM-H9) using the proteolysis-targeting chimera (PROTAC) platform. Various time-course studies, including erythropoiesis from CD34+ human umbilical cord blood and three-dimensional (3D) organoid culture from hESCs, morphological analysis, quantitative real-time PCR (qRT-PCR), western blotting, flow cytometry, karyotyping, cytospin, Benzidine-Giemsa staining, immunofluorescence assay, and high-speed cell imaging analysis, were conducted to examine and compare the characteristics of hESCs and those with vimentin degradation, as well as their differentiated erythroid cells. RESULTS: Vimentin expression diminished during normal erythropoiesis in CD34+ cord blood cells, whereas it persisted in erythroid cells differentiated from hESC. Depletion of vimentin using the degradation tag (dTAG) system promotes erythroid enucleation in dTAG-VIM-H9 cells. Nuclear polarization of erythroblasts is elevated by elimination of vimentin. CONCLUSIONS: VIM disappear during the normal maturation of erythroid cells, whereas they are retained in erythroid cells differentiated from hPSCs. We found that retention of vimentin during erythropoiesis impairs erythroid enucleation from hPSCs. Using the PROTAC platform, we validated that vimentin degradation by dTAG accelerates the enucleation rate in dTAG-VIM-H9 cells by enhancing nuclear polarization.


Asunto(s)
Diferenciación Celular , Células Eritroides , Células Madre Pluripotentes , Vimentina , Humanos , Línea Celular , Células Eritroides/citología , Células Eritroides/metabolismo , Eritropoyesis , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteolisis , Vimentina/metabolismo , Vimentina/genética
6.
PLoS One ; 19(9): e0309455, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39231178

RESUMEN

Hemorrhage, a condition that accompanies most physical trauma cases, remains an important field of study, a field that has been extensively studied in the immunological context for myeloid and lymphoid cells, but not as much for erythroid cells. In this study, we studied the immunological response of murine erythroid cells to acute blood loss using flow cytometry, NanoString immune transcriptome profiling, and BioPlex cytokine secretome profiling. We observed that acute blood loss forces the differentiation of murine erythroid cells in both bone marrow and spleen and that there was an up-regulation of several immune response genes, in particular pathogen-associated molecular pattern sensing gene Clec5a in post-acute blood loss murine bone marrow erythroid cells. We believe that the up-regulation of the Clec5a gene in bone marrow erythroid cells could help bone marrow erythroid cells detect and eliminate pathogens with the help of reactive oxygen species and antimicrobial proteins calprotectin and cathelicidin, the genes of which (S100a8, S100a9, and Camp) dominate the expression in bone marrow erythroid cells of mice.


Asunto(s)
Diferenciación Celular , Quimiocina CCL3 , Células Eritroides , Antígenos Comunes de Leucocito , Animales , Ratones , Células Eritroides/metabolismo , Células Eritroides/citología , Quimiocina CCL3/metabolismo , Quimiocina CCL3/genética , Antígenos Comunes de Leucocito/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Ratones Endogámicos C57BL , Calgranulina A/metabolismo , Calgranulina A/genética , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Calgranulina B/metabolismo , Calgranulina B/genética , Masculino
7.
Front Immunol ; 15: 1431303, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267736

RESUMEN

The role of Erythroid cells in immune regulation and immunosuppression is one of the emerging topics in modern immunology that still requires further clarification as Erythroid cells from different tissues and different species express different immunoregulatory molecules. In this study, we performed a thorough investigation of human bone marrow Erythroid cells from adult healthy donors and adult acute lymphoblastic leukemia patients using the state-of-the-art single-cell targeted proteomics and transcriptomics via BD Rhapsody and cancer-related gene copy number variation analysis via NanoString Sprint Profiler. We found that human bone marrow Erythroid cells express the ARG1, LGALS1, LGALS3, LGALS9, and C10orf54 (VISTA) immunosuppressive genes, CXCL5, CXCL8, and VEGFA cytokine genes, as well as the genes involved in antimicrobial immunity and MHC Class II antigen presentation. We also found that ARG1 gene expression was restricted to the single erythroid cell cluster that we termed ARG1-positive Orthochromatic erythroblasts and that late Erythroid cells lose S100A9 and gain MZB1 gene expression in case of acute lymphoblastic leukemia. These findings show that steady-state erythropoiesis bone marrow Erythroid cells express myeloid signature genes even without any transdifferentiating stimulus like cancer.


Asunto(s)
Células Eritroides , Leucemia-Linfoma Linfoblástico de Células Precursoras , Análisis de la Célula Individual , Humanos , Células Eritroides/metabolismo , Células Eritroides/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Diferenciación Celular/inmunología , Proteómica/métodos , Transcriptoma , Perfilación de la Expresión Génica , Adulto , Multiómica
8.
Nat Genet ; 56(9): 1938-1952, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39210046

RESUMEN

Few transcription factors have been examined for their direct roles in physically connecting enhancers and promoters. Here acute degradation of Yin Yang 1 (YY1) in erythroid cells revealed its requirement for the maintenance of numerous enhancer-promoter loops, but not compartments or domains. Despite its reported ability to interact with cohesin, the formation of YY1-dependent enhancer-promoter loops does not involve stalling of cohesin-mediated loop extrusion. Integrating mitosis-to-G1-phase dynamics, we observed partial retention of YY1 on mitotic chromatin, predominantly at gene promoters, followed by rapid rebinding during mitotic exit, coinciding with enhancer-promoter loop establishment. YY1 degradation during the mitosis-to-G1-phase interval revealed a set of enhancer-promoter loops that require YY1 for establishment during G1-phase entry but not for maintenance in interphase, suggesting that cell cycle stage influences YY1's architectural function. Thus, as revealed here for YY1, chromatin architectural functions of transcription factors can vary in their interplay with CTCF and cohesin as well as by cell cycle stage.


Asunto(s)
Proteínas Cromosómicas no Histona , Cohesinas , Regiones Promotoras Genéticas , Transcripción Genética , Factor de Transcripción YY1 , Animales , Humanos , Ratones , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Elementos de Facilitación Genéticos , Células Eritroides/metabolismo , Células Eritroides/citología , Fase G1/genética , Regulación de la Expresión Génica , Mitosis/genética , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética
9.
Microbiome ; 12(1): 142, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080725

RESUMEN

BACKGROUND: The establishment of microbial communities in neonatal mammals plays a pivotal role in shaping their immune responses to infections and other immune-related conditions. This process is influenced by a combination of endogenous and exogenous factors. Previously, we reported that depletion of CD71 + erythroid cells (CECs) results in an inflammatory response to microbial communities in newborn mice. RESULTS: Here, we systemically tested this hypothesis and observed that the small intestinal lamina propria of neonatal mice had the highest frequency of CECs during the early days of life. This high abundance of CECs was attributed to erythropoiesis niches within the small intestinal tissues. Notably, the removal of CECs from the intestinal tissues by the anti-CD71 antibody disrupted immune homeostasis. This disruption was evident by alteration in the expression of antimicrobial peptides (AMPs), toll-like receptors (TLRs), inflammatory cytokines/chemokines, and resulting in microbial dysbiosis. Intriguingly, these alterations in microbial communities persisted when tested 5 weeks post-treatment, with a more notable effect observed in female mice. This illustrates a sex-dependent association between CECs and neonatal microbiome modulation. Moreover, we extended our studies on pregnant mice, observing that modulating CECs substantially alters the frequency and diversity of their microbial communities. Finally, we found a significantly lower proportion of CECs in the cord blood of pre-term human newborns, suggesting a potential role in dysregulated immune responses to microbial communities in the gut. CONCLUSIONS: Our findings provide novel insights into pivotal role of CECs in immune homeostasis and swift adaptation of microbial communities in newborns. Despite the complexity of the cellular biology of the gut, our findings shed light on the previously unappreciated role of CECs in the dialogue between the microbiota and immune system. These findings have significant implications for human health. Video Abstract.


Asunto(s)
Animales Recién Nacidos , Antígenos CD , Células Eritroides , Microbioma Gastrointestinal , Receptores de Transferrina , Animales , Femenino , Ratones , Embarazo , Antígenos CD/metabolismo , Células Eritroides/inmunología , Receptores de Transferrina/metabolismo , Masculino , Simbiosis , Disbiosis/microbiología , Humanos , Ratones Endogámicos C57BL , Intestino Delgado/microbiología , Intestino Delgado/inmunología
10.
PLoS One ; 19(7): e0305816, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39038020

RESUMEN

Erythroid cells, serving as progenitors and precursors to erythrocytes responsible for oxygen transport, were shown to exhibit an immunosuppressive and immunoregulatory phenotype. Previous investigations from our research group have revealed an antimicrobial gene expression profile within murine bone marrow erythroid cells which suggested a role for erythroid cells in innate immunity. In the present study, we focused on elucidating the characteristics of human bone marrow erythroid cells through comprehensive analyses, including NanoString gene expression profiling utilizing the Immune Response V2 panel, a BioPlex examination of chemokine and TGF-beta family proteins secretion, and analysis of publicly available single-cell RNA-seq data. Our findings demonstrate that an erythroid cell subpopulation manifests a myeloid-like gene expression signature comprised of antibacterial immunity and neutrophil chemotaxis genes which suggests an involvement of human erythroid cells in the innate immunity. Furthermore, we found that human erythroid cells secreted CCL22, CCL24, CXCL5, CXCL8, and MIF chemokines. The ability of human erythroid cells to express these chemokines might facilitate the restriction of immune cells in the bone marrow under normal conditions or contribute to the ability of erythroid cells to induce local immunosuppression by recruiting immune cells in their immediate vicinity in case of extramedullary hematopoiesis.


Asunto(s)
Células Eritroides , Monocitos , Humanos , Monocitos/metabolismo , Monocitos/citología , Monocitos/inmunología , Células Eritroides/metabolismo , Células Eritroides/citología , Inmunidad Innata , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Transcriptoma , Perfilación de la Expresión Génica , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Células Mieloides/metabolismo , Quimiocinas/metabolismo , Quimiocinas/genética , Interleucina-8 , Oxidorreductasas Intramoleculares
11.
Nat Commun ; 15(1): 5678, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971858

RESUMEN

Inherited non-hemolytic anemia is a group of rare bone marrow disorders characterized by erythroid defects. Although concerted efforts have been made to explore the underlying pathogenetic mechanisms of these diseases, the understanding of the causative mutations are still incomplete. Here we identify in a diseased pedigree that a gain-of-function mutation in toll-like receptor 8 (TLR8) is implicated in inherited non-hemolytic anemia. TLR8 is expressed in erythroid lineage and erythropoiesis is impaired by TLR8 activation whereas enhanced by TLR8 inhibition from erythroid progenitor stage. Mechanistically, TLR8 activation blocks annexin A2 (ANXA2)-mediated plasma membrane localization of STAT5 and disrupts EPO signaling in HuDEP2 cells. TLR8 inhibition improves erythropoiesis in RPS19+/- HuDEP2 cells and CD34+ cells from healthy donors and inherited non-hemolytic anemic patients. Collectively, we identify a gene implicated in inherited anemia and a previously undescribed role for TLR8 in erythropoiesis, which could potentially be explored for therapeutic benefit in inherited anemia.


Asunto(s)
Anemia , Eritropoyesis , Receptor Toll-Like 8 , Humanos , Eritropoyesis/genética , Receptor Toll-Like 8/metabolismo , Receptor Toll-Like 8/genética , Femenino , Anemia/genética , Masculino , Linaje , Eritropoyetina/metabolismo , Eritropoyetina/genética , Adulto , Transducción de Señal , Mutación , Células Eritroides/metabolismo , Animales , Células Precursoras Eritroides/metabolismo
12.
Adv Exp Med Biol ; 1459: 217-242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017846

RESUMEN

Erythroid Krüppel-like factor (KLF1), first discovered in 1992, is an erythroid-restricted transcription factor (TF) that is essential for terminal differentiation of erythroid progenitors. At face value, KLF1 is a rather inconspicuous member of the 26-strong SP/KLF TF family. However, 30 years of research have revealed that KLF1 is a jack of all trades in the molecular control of erythropoiesis. Initially described as a one-trick pony required for high-level transcription of the adult HBB gene, we now know that it orchestrates the entire erythroid differentiation program. It does so not only as an activator but also as a repressor. In addition, KLF1 was the first TF shown to be directly involved in enhancer/promoter loop formation. KLF1 variants underlie a wide range of erythroid phenotypes in the human population, varying from very mild conditions such as hereditary persistence of fetal hemoglobin and the In(Lu) blood type in the case of haploinsufficiency, to much more serious non-spherocytic hemolytic anemias in the case of compound heterozygosity, to dominant congenital dyserythropoietic anemia type IV invariably caused by a de novo variant in a highly conserved amino acid in the KLF1 DNA-binding domain. In this chapter, we present an overview of the past and present of KLF1 research and discuss the significance of human KLF1 variants.


Asunto(s)
Eritropoyesis , Factores de Transcripción de Tipo Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Humanos , Eritropoyesis/genética , Animales , Diferenciación Celular/genética , Células Eritroides/metabolismo , Células Eritroides/citología , Mutación
13.
Adv Exp Med Biol ; 1459: 199-215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017845

RESUMEN

BCL11A, a zinc finger repressor, is a stage-specific transcription factor that controls the switch from fetal (HbF, α2γ2) to adult (HbA, α2ß2) hemoglobin in erythroid cells. While BCL11A was known as a factor critical for B-lymphoid cell development, its relationship to erythroid cells and HbF arose through genome-wide association studies (GWAS). Subsequent work validated its role as a silencer of γ-globin gene expression in cultured cells and mice. Erythroid-specific loss of BCL11A rescues the phenotype of engineered sickle cell disease (SCD) mice, thereby suggesting that downregulation of BCL11A expression might be beneficial in patients with SCD and ß-thalassemia. Common genetic variation in GWAS resides in an erythroid-specific enhancer within the BCL11A gene that is required for its own expression. CRISPR/Cas9 gene editing of the enhancer revealed a GATA-binding site that confers a large portion of its regulatory function. Disruption of the GATA site leads to robust HbF reactivation. Advancement of a guide RNA targeting the GATA-binding site in clinical trials has recently led to approval of first-in-man use of ex vivo CRISPR editing of hematopoietic stem/progenitor cells (HSPCs) as therapy of SCD and ß-thalassemia. Future challenges include expanding access and infrastructure for delivery of genetic therapy to eligible patients, reducing potential toxicity and costs, exploring prospects for in vivo targeting of hematopoietic stem cells (HSCs), and developing small molecule drugs that impair function of BCL11A protein as an alternative option.


Asunto(s)
Células Eritroides , Proteínas Represoras , Animales , Humanos , Ratones , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Talasemia beta/genética , Talasemia beta/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Sistemas CRISPR-Cas , Células Eritroides/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gamma-Globinas/genética , gamma-Globinas/metabolismo , Edición Génica/métodos , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
14.
Br J Haematol ; 205(2): 429-439, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38946206

RESUMEN

Erythroid cells undergo a highly complex maturation process, resulting in dynamic changes that generate red blood cells (RBCs) highly rich in haemoglobin. The end stages of the erythroid cell maturation process primarily include chromatin condensation and nuclear polarization, followed by nuclear expulsion called enucleation and clearance of mitochondria and other organelles to finally generate mature RBCs. While healthy RBCs are devoid of mitochondria, recent evidence suggests that mitochondria are actively implicated in the processes of erythroid cell maturation, erythroblast enucleation and RBC production. However, the extent of mitochondrial participation that occurs during these ultimate steps is not completely understood. This is specifically important since abnormal RBC retention of mitochondria or mitochondrial DNA contributes to the pathophysiology of sickle cell and other disorders. Here we review some of the key findings so far that elucidate the importance of this process in various aspects of erythroid maturation and RBC production under homeostasis and disease conditions.


Asunto(s)
Eritropoyesis , Homeostasis , Mitocondrias , Humanos , Eritropoyesis/fisiología , Mitocondrias/metabolismo , Eritrocitos/metabolismo , Animales , Eritroblastos/metabolismo , Eritroblastos/patología , ADN Mitocondrial/metabolismo , Células Eritroides/metabolismo , Células Eritroides/patología
15.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39000360

RESUMEN

Mitochondrial dysfunction has been increasingly recognized as a trigger for systemic lupus erythematosus (SLE). Recent bioinformatics studies have suggested Fam210b as a significant candidate for the classification and therapeutic targeting of SLE. To experimentally prove the role of Fam210b in SLE, we constructed Fam210b knockout (Fam210b-/-) mice using the CRISPR-Cas9 method. We found that approximately 15.68% of Fam210b-/- mice spontaneously developed lupus-like autoimmunity, which was characterized by skin ulcerations, splenomegaly, and an increase in anti-double-stranded DNA (anti-dsDNA) IgG antibodies and anti-nuclear antibodies(ANA). Single-cell sequencing showed that Fam210b was mainly expressed in erythroid cells. Critically, the knockout of Fam210b resulted in abnormal erythrocyte differentiation and development in the spleens of mice. Concurrently, the spleens exhibited an increased number of CD71+ erythroid cells, along with elevated levels of reactive oxygen species (ROS) in the erythrocytes. The co-culture of CD71+ erythroid cells and lymphocytes resulted in lymphocyte activation and promoted dsDNA and IgG production. In summary, Fam210b knockout leads to a low probability of lupus-like symptoms in mice through the overproduction of ROS in CD71+ erythroid cells. Thus, Fam210b reduction may serve as a novel key marker that triggers the development of SLE.


Asunto(s)
Lupus Eritematoso Sistémico , Ratones Noqueados , Animales , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/patología , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Anticuerpos Antinucleares , Membranas Mitocondriales/metabolismo , Células Eritroides/metabolismo , Células Eritroides/patología , Modelos Animales de Enfermedad , Inmunoglobulina G/metabolismo , Ratones Endogámicos C57BL , Bazo/metabolismo , Bazo/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Femenino
16.
Cell Tissue Res ; 397(3): 179-192, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38953986

RESUMEN

Erythroid cells, the most prevalent cell type in blood, are one of the earliest products and permeate through the entire process of hematopoietic development in the human body, the oxygen-transporting function of which is crucial for maintaining overall health and life support. Previous investigations into erythrocyte differentiation and development have primarily focused on population-level analyses, lacking the single-cell perspective essential for comprehending the intricate pathways of erythroid maturation, differentiation, and the encompassing cellular heterogeneity. The continuous optimization of single-cell transcriptome sequencing technology, or single-cell RNA sequencing (scRNA-seq), provides a powerful tool for life sciences research, which has a particular superiority in the identification of unprecedented cell subgroups, the analyzing of cellular heterogeneity, and the transcriptomic characteristics of individual cells. Over the past decade, remarkable strides have been taken in the realm of single-cell RNA sequencing technology, profoundly enhancing our understanding of erythroid cells. In this review, we systematically summarize the recent developments in single-cell transcriptome sequencing technology and emphasize their substantial impact on the study of erythroid cells, highlighting their contributions, including the exploration of functional heterogeneity within erythroid populations, the identification of novel erythrocyte subgroups, the tracking of different erythroid lineages, and the unveiling of mechanisms governing erythroid fate decisions. These findings not only invigorate erythroid cell research but also offer new perspectives on the management of diseases related to erythroid cells.


Asunto(s)
Células Eritroides , Análisis de la Célula Individual , Transcriptoma , Humanos , Transcriptoma/genética , Análisis de la Célula Individual/métodos , Células Eritroides/metabolismo , Células Eritroides/citología , Animales
17.
Exp Hematol ; 137: 104250, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38862078

RESUMEN

Genetic downregulation of the BCL11A transcription factor (TF) reverses the switch from fetal to adult hemoglobin and is effective in treating ß-hemoglobinopathies. Genetic ablation results in a gradual reduction in protein abundance and does not lend itself to the analysis of the immediate consequences of protein loss or the determination of the direct interactors/targets of the protein of interest. We achieved acute degradation of the largely disordered and 'undruggable' BCL11A protein by fusing it with a conditional degradation (degron) tag, FKBP12F36V, called degradable tags (dTAG). Small molecules then depleted the BCL11A-dTAG through endogenous proteolytic pathways. By integrating acute depletion with nascent transcriptomics and cell cycle separation techniques, we demonstrate the necessity of BCL11A occupancy at the target chromatin for sustained transcriptional repression in erythroid cells. We advocate for expanding the exploration of TF function to include acute depletion, which holds the potential to unveil unprecedented kinetic insights into TF mechanisms of action.


Asunto(s)
Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cinética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteolisis , Células Eritroides/metabolismo , Células Eritroides/citología
18.
J Clin Lab Anal ; 38(11-12): e25084, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38924171

RESUMEN

BACKGROUND/OBJECTIVES: CD71+ erythroid cells (CECs) are immature red blood cells (proerythroblasts, erythroblasts, and reticulocytes). CECs play an important role in the development of sepsis and cancer by causing immunosuppression. We examined the CEC levels in the peripheral blood of beta thalassemia (ßThal) patients and investigated the relationship between CECs and the clinical status of the patients, especially splenectomy. METHODS: Sixty-eight patients with ßThal (46 splenectomized and 22 nonsplenectomized) and 15 healthy controls were included in this study. The hemogram parameters, ferritin, and CECs (flow cytometry method) were measured. RESULTS: It was observed that the CEC level in the patient group was significantly higher than the control group (p < 0.05). CEC levels were found to be significantly higher in patients with splenectomy than in patients with nonsplenectomy (p < 0.05). CEC levels were higher in patients with nontransfusion-dependent ßT (NTD-ßThal) than in patients with transfusion-dependent ßT (TD-ßThal) (p < 0.05). CEC levels were found to be significantly higher in patients with splenectomy than in patients with nonsplenectomy in both TD-ßThal and NTD-ßThal groups (p < 0.05). There was a moderate-negative correlation was detected between CECs and Hb levels (r = -0.467; p < 0.05). CONCLUSIONS: High CEC levels in ßThal patients develop as a result of ineffective erythropoiesis. We think that keeping CEC levels under control is important for prognosis, especially in patients with splenectomy.


Asunto(s)
Células Eritroides , Talasemia beta , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven , Antígenos CD/sangre , Talasemia beta/sangre , Talasemia beta/cirugía , Estudios de Casos y Controles , Eritrocitos/metabolismo , Células Eritroides/metabolismo , Células Eritroides/patología , Pronóstico , Receptores de Transferrina/sangre , Esplenectomía
19.
Br J Haematol ; 205(2): 580-593, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38887897

RESUMEN

The transcription factor GATA2 has a pivotal role in haematopoiesis. Heterozygous germline GATA2 mutations result in a syndrome characterized by immunodeficiency, bone marrow failure and predispositions to myelodysplastic syndrome (MDS) and acute myeloid leukaemia. Clinical symptoms in these patients are diverse and mechanisms driving GATA2-related phenotypes are largely unknown. To explore the impact of GATA2 haploinsufficiency on haematopoiesis, we generated a zebrafish model carrying a heterozygous mutation of gata2b (gata2b+/-), an orthologue of GATA2. Morphological analysis revealed myeloid and erythroid dysplasia in gata2b+/- kidney marrow. Because Gata2b could affect both transcription and chromatin accessibility during lineage differentiation, this was assessed by single-cell (sc) RNA-seq and single-nucleus (sn) ATAC-seq. Sn-ATAC-seq showed that the co-accessibility between the transcription start site (TSS) and a -3.5-4.1 kb putative enhancer was more robust in gata2b+/- zebrafish HSPCs compared to wild type, increasing gata2b expression and resulting in higher genome-wide Gata2b motif use in HSPCs. As a result of increased accessibility of the gata2b locus, gata2b+/- chromatin was also more accessible during lineage differentiation. scRNA-seq data revealed myeloid differentiation defects, that is, impaired cell cycle progression, reduced expression of cebpa and cebpb and increased signatures of ribosome biogenesis. These data also revealed a differentiation delay in erythroid progenitors, aberrant proliferative signatures and down-regulation of Gata1a, a master regulator of erythropoiesis, which worsened with age. These findings suggest that cell-intrinsic compensatory mechanisms, needed to obtain normal levels of Gata2b in heterozygous HSPCs to maintain their integrity, result in aberrant lineage differentiation, thereby representing a critical step in the predisposition to MDS.


Asunto(s)
Epigénesis Genética , Factor de Transcripción GATA2 , Heterocigoto , Pez Cebra , Animales , Factor de Transcripción GATA2/genética , Proteínas de Pez Cebra/genética , Células Eritroides/metabolismo , Células Eritroides/patología , Células Mieloides/metabolismo , Células Mieloides/patología , Eritropoyesis/genética , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/metabolismo
20.
Blood Adv ; 8(19): 5166-5178, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-38916993

RESUMEN

ABSTRACT: The glucose transporter 1 (GLUT1) is 1 of the most abundant proteins within the erythrocyte membrane and is required for glucose and dehydroascorbic acid (vitamin C precursor) transport. It is widely recognized as a key protein for red cell structure, function, and metabolism. Previous reports highlighted the importance of GLUT1 activity within these uniquely glycolysis-dependent cells, in particular for increasing antioxidant capacity needed to avoid irreversible damage from oxidative stress in humans. However, studies of glucose transporter roles in erythroid cells are complicated by species-specific differences between humans and mice. Here, using CRISPR-mediated gene editing of immortalized erythroblasts and adult CD34+ hematopoietic progenitor cells, we generate committed human erythroid cells completely deficient in expression of GLUT1. We show that absence of GLUT1 does not impede human erythroblast proliferation, differentiation, or enucleation. This work demonstrates, to our knowledge, for the first time, generation of enucleated human reticulocytes lacking GLUT1. The GLUT1-deficient reticulocytes possess no tangible alterations to membrane composition or deformability in reticulocytes. Metabolomic analyses of GLUT1-deficient reticulocytes reveal hallmarks of reduced glucose import, downregulated metabolic processes and upregulated AMP-activated protein kinase signaling, alongside alterations in antioxidant metabolism, resulting in increased osmotic fragility and metabolic shifts indicative of higher oxidant stress. Despite detectable metabolic changes in GLUT1-deficient reticulocytes, the absence of developmental phenotype, detectable proteomic compensation, or impaired deformability comprehensively alters our understanding of the role of GLUT1 in red blood cell structure, function, and metabolism. It also provides cell biological evidence supporting clinical consensus that reduced GLUT1 expression does not cause anemia in GLUT1-deficiency syndrome.


Asunto(s)
Diferenciación Celular , Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Humanos , Eritropoyesis , Eritroblastos/metabolismo , Eritroblastos/citología , Reticulocitos/metabolismo , Reticulocitos/citología , Células Eritroides/metabolismo , Células Eritroides/citología , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...