Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.187
Filtrar
1.
J Am Heart Assoc ; 13(12): e034990, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38842292

RESUMEN

BACKGROUND: Previous studies using animal models and cultured cells suggest that vascular smooth muscle cells (SMCs) and inflammatory cytokines are important players in atherogenesis. Validating these findings in human disease is critical to designing therapeutics that target these components. Multiplex imaging is a powerful tool for characterizing cell phenotypes and microenvironments using biobanked human tissue sections. However, this technology has not been applied to human atherosclerotic lesions and needs to first be customized and validated. METHODS AND RESULTS: For validation, we created an 8-plex imaging panel to distinguish foam cells from SMC and leukocyte origins on tissue sections of early human atherosclerotic lesions (n=9). The spatial distribution and characteristics of these foam cells were further analyzed to test the association between SMC phenotypes and inflammation. Consistent with previous reports using human lesions, multiplex imaging showed that foam cells of SMC origin outnumbered those of leukocyte origin and were enriched in the deep intima, where the lipids accumulate in early atherogenesis. This new technology also found that apoptosis or the expression of pro-inflammatory cytokines were not more associated with foam cells than with nonfoam cells in early human lesions. More CD68+ SMCs were present among SMCs that highly expressed interleukin-1ß. Highly inflamed SMCs showed a trend of increased apoptosis, whereas leukocytes expressing similar levels of cytokines were enriched in regions of extracellular matrix remodeling. CONCLUSIONS: The multiplex imaging method can be applied to biobanked human tissue sections to enable proof-of-concept studies and validate theories based on animal models and cultured cells.


Asunto(s)
Aterosclerosis , Fenotipo , Humanos , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/diagnóstico por imagen , Células Espumosas/patología , Células Espumosas/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica , Citocinas/metabolismo , Leucocitos/patología , Leucocitos/metabolismo , Apoptosis
2.
Carbohydr Polym ; 340: 122289, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38858004

RESUMEN

Allium Macrostemon Bge. (AMB) is a well-known homology of herbal medicine and food that has been extensively used for thousands of years to alleviate cardiovascular diseases. It contains a significant amount of polysaccharides, yet limited research exists on whether these polysaccharides are responsible for its cardiovascular protective effects. In this study, the anti-atherosclerosis effect of the crude polysaccharides of AMB (AMBP) was evaluated using ApoE-/- mice fed a high-fat diet, along with ox-LDL-induced Thp-1 foam cells. Subsequently, guided by the inhibitory activity of foam cells formation, a major homogeneous polysaccharide named AMBP80-1a was isolated and purified, yielding 11.1 % from AMB. The molecular weight of AMBP80-1a was determined to be 10.01 kDa. AMBP80-1a was firstly characterized as an agavin-type fructan with main chains consisting of →1)-ß-d-Fruf-(2→ and →1,6)-ß-d-Fruf-(2→ linked to an internal glucose moiety, with →6)-ß-d-Fruf-(2→ and ß-d-Fruf-(2→ serving as side chains. Furthermore, the bio-activity results indicated that AMBP80-1a reduced lipid accumulation and cholesterol contents in ox-LDL-induced Thp-1 foam cell. These findings supported the role of AMBP in alleviating atherosclerosis in vivo/vitro. AMBP80-1a, as the predominant homogeneous polysaccharide in AMB, was expected to be developed as a functional agent to prevent atherosclerosis.


Asunto(s)
Allium , Aterosclerosis , Fructanos , Aterosclerosis/tratamiento farmacológico , Animales , Fructanos/farmacología , Fructanos/química , Ratones , Allium/química , Humanos , Masculino , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Lipoproteínas LDL/metabolismo , Células THP-1 , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética
3.
Sci Rep ; 14(1): 12917, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839811

RESUMEN

Allii Macrostemonis Bulbus (AMB) is a traditional Chinese medicine with medicinal and food homology. AMB has various biological activities, including anti-coagulation, lipid-lowering, anti-tumor, and antioxidant effects. Saponins from Allium macrostemonis Bulbus (SAMB), the predominant beneficial compounds, also exhibited lipid-lowering and anti-inflammatory properties. However, the effect of SAMB on atherosclerosis and the underlying mechanisms are still unclear. This study aimed to elucidate the pharmacological impact of SAMB on atherosclerosis. In apolipoprotein E deficiency (ApoE-/-) mice with high-fat diet feeding, oral SAMB administration significantly attenuated inflammation and atherosclerosis plaque formation. The in vitro experiments demonstrated that SAMB effectively suppressed oxidized-LDL-induced foam cell formation by down-regulating CD36 expression, thereby inhibiting lipid endocytosis in bone marrow-derived macrophages. Additionally, SAMB effectively blocked LPS-induced inflammatory response in bone marrow-derived macrophages potentially through modulating the NF-κB/NLRP3 pathway. In conclusion, SAMB exhibits a potential anti-atherosclerotic effect by inhibiting macrophage foam cell formation and inflammation. These findings provide novel insights into potential preventive and therapeutic strategies for the clinical management of atherosclerosis.


Asunto(s)
Aterosclerosis , Células Espumosas , Inflamación , Saponinas , Animales , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Saponinas/farmacología , Ratones , Inflamación/tratamiento farmacológico , Inflamación/patología , Allium/química , Masculino , Apolipoproteínas E/deficiencia , Dieta Alta en Grasa/efectos adversos , FN-kappa B/metabolismo , Ratones Endogámicos C57BL , Lipoproteínas LDL/metabolismo
4.
Int J Biol Sci ; 20(8): 2943-2964, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904030

RESUMEN

Background: Shear stress-induced Dickkopf-1 (DKK1) secretion by endothelial cells (ECs) promotes EC dysfunction and accelerates atherosclerosis (AS). However, the paracrine role of endothelial DKK1 in modulating adjacent smooth muscle cells (SMCs) in atherosclerosis remains unclear. This study investigated the role of EC-secreted DKK1 in SMC-derived foam cell formation under shear stress, in vitro and in vivo. Methods: Parallel-plate co-culture flow system was used to explore the cellular communication between ECs and SMCs under shear stress in vitro. Endothelium-specific knockout of DKK1 (DKK1ECKO/APOE-/-) and endothelium-specific overexpression of DKK1 (DKK1ECTg) mice were constructed to investigate the role of endothelial DKK1 in atherosclerosis and SMC-derived foam cell formation in vivo. RNA sequencing (RNA-seq) was used to identify the downstream targets of DKK1. Reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blot, coimmunoprecipitation (Co-IP) assays and chromatin immunoprecipitation (ChIP) experiments were conducted to explore the underlying regulatory mechanisms. Results: DKK1 is transcriptionally upregulated in ECs under conditions of low shear stress, but not in co-cultured SMCs. However, DKK1 protein in co-cultured SMCs is increased via uptake of low shear stress-induced endothelial DKK1, thereby promoting lipid uptake and foam cell formation in co-cultured SMCs via the post-translational upregulation of scavenger receptor-A (SR-A) verified in parallel-plate co-culture flow system, DKK1ECKO and DKK1ECTg mice. RNA sequencing revealed that DKK1-induced SR-A upregulation in SMCs is dependent on Ubiquitin-specific Protease 53 (USP53), which bound to SR-A via its USP domain and cysteine at position 41, exerting deubiquitination to maintain the stability of the SR-A protein by removing the K48 ubiquitin chain and preventing proteasomal pathway degradation, thereby mediating the effect of DKK1 on lipid uptake in SMCs. Moreover, DKK1 regulates the transcription of USP53 by facilitating the binding of transcription factor CREB to the USP53 promoter. SMC-specific overexpression of USP53 via adeno-associated virus serotype 2 vectors in DKK1ECKO/APOE-/- mice reversed the alleviation of atherosclerotic plaque burden, SR-A expression and lipid accumulation in SMCs within plaques resulting from DKK1 deficiency. Conclusions: Our findings demonstrate that, endothelial DKK1, induced by pathological low shear stress, acts as an intercellular mediator, promoted the foam cell formation of SMCs. These results suggest that targeted intervention with endothelial DKK1 may confer beneficial effects on atherosclerosis.


Asunto(s)
Aterosclerosis , Células Espumosas , Péptidos y Proteínas de Señalización Intercelular , Miocitos del Músculo Liso , Animales , Aterosclerosis/metabolismo , Ratones , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Células Espumosas/metabolismo , Miocitos del Músculo Liso/metabolismo , Células Endoteliales/metabolismo , Humanos , Ubiquitinación , Masculino , Técnicas de Cocultivo , Ratones Noqueados , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Ratones Endogámicos C57BL
5.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928513

RESUMEN

Arterial macrophage cholesterol accumulation and impaired cholesterol efflux lead to foam cell formation and the development of atherosclerosis. Modified lipoproteins interact with toll-like receptors (TLR), causing an increased inflammatory response and altered cholesterol homeostasis. We aimed to determine the effects of TLR antagonists on cholesterol efflux and foam cell formation in human macrophages. Stimulated monocytes were treated with TLR antagonists (MIP2), and the cholesterol efflux transporter expression and foam cell formation were analyzed. The administration of MIP2 attenuated the foam cell formation induced by lipopolysaccharides (LPS) and oxidized low-density lipoproteins (ox-LDL) in stimulated THP-1 cells (p < 0.001). The expression of ATP-binding cassette transporters A (ABCA)-1, ABCG-1, scavenger receptor (SR)-B1, liver X receptor (LXR)-α, and peroxisome proliferator-activated receptor (PPAR)-γ mRNA and proteins were increased (p < 0.001) following MIP2 administration. A concentration-dependent decrease in the phosphorylation of p65, p38, and JNK was also observed following MIP2 administration. Moreover, an inhibition of p65 phosphorylation enhanced the expression of ABCA1, ABCG1, SR-B1, and LXR-α. TLR inhibition promoted the cholesterol efflux pathway by increasing the expression of ABCA-1, ABCG-1, and SR-B1, thereby reducing foam cell formation. Our results suggest a potential role of the p65/NF-kB/LXR-α/ABCA1 axis in TLR-mediated cholesterol homeostasis.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Colesterol , Células Espumosas , Lipoproteínas LDL , Receptores X del Hígado , Receptores Toll-Like , Humanos , Células Espumosas/metabolismo , Células Espumosas/efectos de los fármacos , Colesterol/metabolismo , Receptores X del Hígado/metabolismo , Receptores Toll-Like/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacología , PPAR gamma/metabolismo , Células THP-1 , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Lipopolisacáridos/farmacología , Receptores Depuradores de Clase B/metabolismo , Receptores Depuradores de Clase B/genética
6.
Biosci Biotechnol Biochem ; 88(7): 759-767, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38719485

RESUMEN

Our previous studies have demonstrated that Mito-Tempol (also known as 4-hydroxy-Tempo), a mitochondrial reactive oxygen species scavenger, alleviates oxidized low-density lipoprotein (ox-LDL)-triggered foam cell formation. Given the effect of oxidative stress on activating the NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome, which promotes foam cell formation, we aimed to explore whether Mito-Tempo inhibits ox-LDL-triggered foam cell formation by regulating NLRP3 inflammasome. The results revealed that Mito-Tempo re-activated Nrf2 and alleviated macrophage foam cell formation induced by ox-LDL, whereas the effects were reversed by ML385 (a specific Nrf2 inhibitor). Mito-Tempo restored the expression and nuclear translocation of Nrf2 by decreasing ox-LDL-induced ubiquitination. Furthermore, Mito-Tempo suppressed ox-LDL-triggered NLRP3 inflammasome activation and subsequent pyroptosis, whereas the changes were blocked by ML385. Mito-Tempo decreased lipoprotein uptake by inhibiting CD36 expression and suppressed foam cell formation by regulating the NLRP3 inflammasome. Taken together, Mito-Tempo exhibits potent anti-atherosclerotic effects by regulating Nrf2/NLRP3 signaling.


Asunto(s)
Células Espumosas , Lipoproteínas LDL , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipoproteínas LDL/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Animales , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Piroptosis/efectos de los fármacos , Humanos , Células RAW 264.7 , Óxidos N-Cíclicos/farmacología , Antígenos CD36/metabolismo , Compuestos Organofosforados , Piperidinas
7.
Sci Rep ; 14(1): 10782, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734775

RESUMEN

The inflammatory corpuscle recombinant absents in melanoma 2 (AIM2) and cholesterol efflux protein ATP binding cassette transporter A1(ABCA1) have been reported to play opposing roles in atherosclerosis (AS) plaques. However, the relationship between AIM2 and ABCA1 remains unclear. In this study, we explored the potential connection between AIM2 and ABCA1 in the modulation of AS by bioinformatic analysis combined with in vitro experiments. The GEO database was used to obtain AS transcriptional profiling data; screen differentially expressed genes (DEGs) and construct a weighted gene co-expression network analysis (WGCNA) to obtain AS-related modules. Phorbol myristate acetate (PMA) was used to induce macrophage modelling in THP-1 cells, and ox-LDL was used to induce macrophage foam cell formation. The experiment was divided into Negative Control (NC) group, Model Control (MC) group, AIM2 overexpression + ox-LDL (OE AIM2 + ox-LDL) group, and AIM2 short hairpin RNA + ox-LDL (sh AIM2 + ox-LDL) group. The intracellular cholesterol efflux rate was detected by scintillation counting; high-performance liquid chromatography (HPLC) was used to detect intracellular cholesterol levels; apoptosis levels were detected by TUNEL kit; levels of inflammatory markers (IL-1ß, IL-18, ROS, and GSH) were detected by ELISA kits; and levels of AIM2 and ABCA1 proteins were detected by Western blot. Bioinformatic analysis revealed that the turquoise module correlated most strongly with AS, and AIM2 and ABCA1 were co-expressed in the turquoise module with a trend towards negative correlation. In vitro experiments demonstrated that AIM2 inhibited macrophage cholesterol efflux, resulting in increased intracellular cholesterol levels and foam cell formation. Moreover, AIM2 had a synergistic effect with ox-LDL, exacerbating macrophage oxidative stress and inflammatory response. Silencing AIM2 ameliorated the above conditions. Furthermore, the protein expression levels of AIM2 and ABCA1 were consistent with the bioinformatic analysis, showing a negative correlation. AIM2 inhibits ABCA1 expression, causing abnormal cholesterol metabolism in macrophages and ultimately leading to foam cell formation. Inhibiting AIM2 may reverse this process. Overall, our study suggests that AIM2 is a reliable anti-inflammatory therapeutic target for AS. Inhibiting AIM2 expression may reduce foam cell formation and, consequently, inhibit the progression of AS plaques.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Colesterol , Proteínas de Unión al ADN , Células Espumosas , Lipoproteínas LDL , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Células Espumosas/metabolismo , Humanos , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Células THP-1 , Macrófagos/metabolismo , Biología Computacional/métodos , Apoptosis , Inflamación/metabolismo , Inflamación/patología
8.
Nutrients ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732567

RESUMEN

Imbalances in lipid uptake and efflux and inflammation are major contributors to foam cell formation, which is considered a therapeutic target to protect against atherosclerosis. Naringin, a citrus flavonoid abundant in citrus fruits, has been reported to exert an antiatherogenic function, but its pharmacological mechanism is unclear. Naringin treatment effectively inhibits foam cell formation in THP-1 and RAW264.7 macrophages. In this study, mechanically, naringin maintained lipid homeostasis within macrophages through downregulation of the key genes for lipid uptake (MSR1 and CD36) and the upregulation of ABCA1, ABCG1 and SR-B1, which are responsible for cholesterol efflux. Meanwhile, naringin significantly decreased the cholesterol synthesis-related genes and increased the genes involved in cholesterol metabolism. Subsequently, the results showed that ox-LDL-induced macrophage inflammatory responses were inhibited by naringin by reducing the proinflammatory cytokines IL-1ß, IL-6 and TNF-α, and increasing the anti- inflammatory cytokine IL-10, which was further verified by the downregulation of pro-inflammatory and chemokine-related genes. Additionally, we found that naringin reprogrammed the metabolic phenotypes of macrophages by suppressing glycolysis and promoting lipid oxidation metabolism to restore macrophage phenotypes and functions. These results suggest that naringin is a potential drug for the treatment of AS as it inhibits macrophage foam cell formation by regulating metabolic phenotypes and inflammation.


Asunto(s)
Flavanonas , Células Espumosas , Homeostasis , Metabolismo de los Lípidos , Fenotipo , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Flavanonas/farmacología , Ratones , Metabolismo de los Lípidos/efectos de los fármacos , Animales , Humanos , Homeostasis/efectos de los fármacos , Células RAW 264.7 , Citocinas/metabolismo , Colesterol/metabolismo , Células THP-1 , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico
9.
Sci Rep ; 14(1): 10176, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702476

RESUMEN

Experimental evidence indicates that follicle-stimulating hormone (FSH), an essential hormone for reproduction, can act directly on endothelial cells inducing atherosclerosis activation and development. However, it remains unknown whether the FSH-receptor (FSHR) is expressed in human atherosclerosis plaques. To demonstrate the FSHR presence, we used immunohistochemical and immunoelectron microscopy involving a specific monoclonal antibody FSHR1A02 that recognizes an epitope present in the FSHR-ectodomain. In all 55 patients with atherosclerotic plaques located in carotid, coronary, femoral arteries, and iliac aneurysm, FSHR was selectively expressed in arterial endothelium covering atherosclerotic plaques and endothelia lining intraplaque neovessels. Lymphatic neovessels were negative for FSHR. M1-macrophages, foam cells, and giant multinucleated cells were also FSHR-positive. FSHR was not detected in normal internal thoracic artery. Immunoelectron microscopy performed in ApoEKO/hFSHRKI mice with atherosclerotic plaques, after injection in vivo with mouse anti-hFSHR monoclonal antibody FSHR1A02 coupled to colloidal gold, showed FSHR presence on the luminal surface of arterial endothelial cells covering atherosclerotic plaques. Therefore, FSHR can bind, internalize, and deliver into the plaque circulating ligands to FSHR-positive cells. In conclusion, we report FSHR expression in endothelial cells, M1-macrophages, M1-derived foam cells, giant multinucleated macrophages, and osteoclasts associated with human atherosclerotic plaques.


Asunto(s)
Placa Aterosclerótica , Receptores de HFE , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Humanos , Receptores de HFE/metabolismo , Animales , Ratones , Femenino , Masculino , Macrófagos/metabolismo , Anciano , Persona de Mediana Edad , Células Endoteliales/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patología
10.
Arterioscler Thromb Vasc Biol ; 44(7): 1646-1657, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695172

RESUMEN

BACKGROUND: Trem2 (triggering receptor on myeloid cells 2), a surface lipid receptor, is expressed on foamy macrophages within atherosclerotic lesions and regulates cell survival, proliferation, and anti-inflammatory responses. Studies examining the role of Trem2 in atherosclerosis have shown that deletion of Trem2 leads to impaired foamy macrophage lipid uptake, proliferation, survival, and cholesterol efflux. Thus, we tested the hypothesis that administration of a Trem2 agonist antibody (AL002a) to atherogenic mice would enhance macrophage survival and decrease necrotic core formation to improve plaque stability. METHODS: To model a therapeutic intervention approach, atherosclerosis-prone mice (Ldlr [low-density lipoprotein receptor]-/-) were fed a high-fat diet for 8 weeks, then transitioned to treatment with AL002a or isotype control for an additional 8 weeks while continuing on a high-fat diet. RESULTS: AL002a-treated mice had increased lesion size in both the aortic root and whole mount aorta, which correlated with an expansion of plaque macrophage area. This expansion was due to increased macrophage survival and proliferation in plaques. Importantly, plaques from AL002a-treated mice showed improved features of plaque stability, including smaller necrotic cores, increased fibrous caps, and greater collagen deposition. Single-cell RNA sequencing of whole aorta suspensions from isotype- and AL002a-treated atherosclerotic mice revealed that Trem2 agonism dramatically altered foamy macrophage transcriptome. This included upregulation of oxidative phosphorylation and increased expression of collagen genes. In vitro studies validated that Trem2 agonism with AL002a promoted foamy macrophage oxidized low-density lipoprotein uptake, survival, and cholesterol efflux. CONCLUSIONS: Trem2 agonism expands atherosclerotic plaque macrophages by promoting cell survival and proliferation but improves features of plaque stability by rewiring foamy macrophage function to enhance cholesterol efflux and collagen deposition.


Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Células Espumosas , Glicoproteínas de Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica , Receptores Inmunológicos , Animales , Receptores Inmunológicos/agonistas , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Células Espumosas/metabolismo , Células Espumosas/patología , Células Espumosas/efectos de los fármacos , Masculino , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores de LDL/deficiencia , Proliferación Celular/efectos de los fármacos , Dieta Alta en Grasa , Supervivencia Celular/efectos de los fármacos , Necrosis , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/prevención & control
11.
J Mol Med (Berl) ; 102(7): 887-897, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733386

RESUMEN

Atherosclerosis (AS) is a chronic inflammatory arterial disease, in which abnormal lipid metabolism and foam cell formation play key roles. Histamine is a vital biogenic amine catalyzed by histidine decarboxylase (HDC) from L-histidine. Histamine H1 receptor (H1R) antagonist is a commonly encountered anti-allergic agent in the clinic. However, the role and mechanism of H1R in atherosclerosis have not been fully elucidated. Here, we explored the effect of H1R on atherosclerosis using Apolipoprotein E-knockout (ApoE-/-) mice with astemizole (AST, a long-acting H1R antagonist) treatment. The results showed that AST increased atherosclerotic plaque area and hepatic lipid accumulation in mice. The result of microarray study identified a significant change of endothelial lipase (LIPG) in CD11b+ myeloid cells derived from HDC-knockout (HDC-/-) mice compared to WT mice. Blocking H1R promoted the formation of foam cells from bone marrow-derived macrophages (BMDMs) of mice by up-regulating p38 mitogen-activated protein kinase (p38 MAPK) and LIPG signaling pathway. Taken together, these findings demonstrate that blocking H1R signal aggravates atherosclerosis by promoting abnormal lipid metabolism and macrophage-derived foam cell formation via p38 MAPK-LIPG signaling pathway. KEY MESSAGES: Blocking H1R signal with AST aggravated atherosclerosis and increased hepatic lipid accumulation in high-fat diet (HFD)-fed ApoE-/- mice. Blocking H1R signal promoted macrophage-derived foam cell formation via p38 MAPK-LIPG signaling pathway.


Asunto(s)
Aterosclerosis , Células Espumosas , Inflamación , Ratones Noqueados , Receptores Histamínicos H1 , Transducción de Señal , Animales , Células Espumosas/metabolismo , Células Espumosas/patología , Aterosclerosis/metabolismo , Aterosclerosis/etiología , Aterosclerosis/patología , Ratones , Inflamación/metabolismo , Inflamación/patología , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H1/genética , Masculino , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Ratones Endogámicos C57BL , Metabolismo de los Lípidos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Modelos Animales de Enfermedad , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Dieta Alta en Grasa/efectos adversos
12.
Phytomedicine ; 130: 155668, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38776739

RESUMEN

BACKGROUND: Baoyuan decoction (BYD) has been widely utilized as a traditional prescription for the treatment of various conditions such as coronary heart disease, aplastic anemia, and chronic renal failure. However, its potential efficacy in improving atherosclerosis has not yet been investigated. PURPOSE: Our research aimed to assess the potential of BYD as an inhibitor of atherosclerosis and uncover the underlying mechanism by which it acts on foam cell formation. STUDY DESIGN AND METHODS: High-fat diet-induced ApoE-/- mice were employed to explore the effect of BYD on atherosclerosis. The differential metabolites in feces were identified and analyzed by LC-Qtrap-MS. In addition, we utilized pharmacological inhibition of BYD on foam cell formation induced by oxLDL in THP-1 cells to elucidate the underlying mechanisms specifically in macrophages. RESULTS: The atherosclerotic plaque burden in the aortic sinus of ApoE-/- mice was notably reduced with BYD treatment, despite no significant alterations in plasma lipids. Metabolomic analysis revealed that BYD suppressed the increased levels of peroxidized fatty acids, specifically 9/13-hydroxyoctadecadienoic acid (9/13-HODE), in the feces of mice. As a prominent peroxidized fatty acid found in oxLDL, we confirmed that 9/13-HODE induced the overexpression of CD36 in THP-1 macrophages by upregulating PPARγ. In subsequent experiments, the decreased levels of CD36 triggered by oxLDL were observed after BYD treatment. This decrease occurred through the regulation of the Src/MMK4/JNK pathway, resulting in the suppression of lipid deposition in THP-1 macrophages. CONCLUSIONS: These results illustrate that BYD exhibits potential anti-atherosclerotic effects by inhibiting CD36 expression to prevent foam cell formation.


Asunto(s)
Aterosclerosis , Antígenos CD36 , Medicamentos Herbarios Chinos , Células Espumosas , Lipoproteínas LDL , Animales , Aterosclerosis/tratamiento farmacológico , Antígenos CD36/metabolismo , Medicamentos Herbarios Chinos/farmacología , Humanos , Masculino , Ratones , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Dieta Alta en Grasa , Ácidos Grasos , Ratones Endogámicos C57BL , Células THP-1 , Placa Aterosclerótica/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Apolipoproteínas E
13.
Brain Behav Immun ; 119: 431-453, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636566

RESUMEN

Spinal cord injury (SCI) triggers a complex cascade of events, including myelin loss, neuronal damage, neuroinflammation, and the accumulation of damaged cells and debris at the injury site. Infiltrating bone marrow derived macrophages (BMDMϕ) migrate to the epicenter of the SCI lesion, where they engulf cell debris including abundant myelin debris to become pro-inflammatory foamy macrophages (foamy Mϕ), participate neuroinflammation, and facilitate the progression of SCI. This study aimed to elucidate the cellular and molecular mechanisms underlying the functional changes in foamy Mϕ and their potential implications for SCI. Contusion at T10 level of the spinal cord was induced using a New York University (NYU) impactor (5 g rod from a height of 6.25 mm) in male mice. ABCA1, an ATP-binding cassette transporter expressed by Mϕ, plays a crucial role in lipid efflux from foamy cells. We observed that foamy Mϕ lacking ABCA1 exhibited increased lipid accumulation and a higher presence of lipid-accumulated foamy Mϕ as well as elevated pro-inflammatory response in vitro and in injured spinal cord. We also found that both genetic and pharmacological enhancement of ABCA1 expression accelerated lipid efflux from foamy Mϕ, reduced lipid accumulation and inhibited the pro-inflammatory response of foamy Mϕ, and accelerated clearance of cell debris and necrotic cells, which resulted in functional recovery. Our study highlights the importance of understanding the pathologic role of foamy Mϕ in SCI progression and the potential of ABCA1 as a therapeutic target for modulating the inflammatory response, promoting lipid metabolism, and facilitating functional recovery in SCI.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Macrófagos , Traumatismos de la Médula Espinal , Animales , Transportador 1 de Casete de Unión a ATP/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Ratones , Masculino , Macrófagos/metabolismo , Células Espumosas/metabolismo , Ratones Endogámicos C57BL , Médula Espinal/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad
14.
Anal Chem ; 96(18): 6968-6977, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38662948

RESUMEN

The assessment of atherosclerosis (AS) progression has emerged as a prominent area of research. Monitoring various pathological features of foam cell (FC) formation is imperative to comprehensively assess AS progression. Herein, a simple benzospiropyran-julolidine-based probe, BSJD, with switchable dual-color imaging ability was developed. This probe can dynamically and reversibly adjust its molecular structure and fluorescent properties in different polar and pH environments. Such a polarity and pH dual-responsive characteristic makes it superior to single-responsive probes in dual-color imaging of lipid droplets (LDs) and lysosomes as well as monitoring their interaction. By simultaneously tracking various pathological features, including LD accumulation and size changes, lysosome dysfunction, and dynamically regulated lipophagy, more comprehensive information can be obtained for multiparameter assessment of FC formation progression. Using BSJD, not only the activation of lipophagy in the early stages and inhibition in the later phases during FC formation are clearly observed but also the important roles of lipophagy in regulating lipid metabolism and alleviating FC formation are demonstrated. Furthermore, BSJD is demonstrated to be capable of rapidly imaging FC plaque sites in AS mice with fast pharmacokinetics. Altogether, BSJD holds great promise as a dual-color organelle-imaging tool for investigating disease-related LD and lysosome changes and their interactions.


Asunto(s)
Colorantes Fluorescentes , Células Espumosas , Gotas Lipídicas , Colorantes Fluorescentes/química , Células Espumosas/metabolismo , Células Espumosas/patología , Animales , Ratones , Gotas Lipídicas/metabolismo , Gotas Lipídicas/química , Lisosomas/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Imagen Óptica , Humanos , Células RAW 264.7 , Concentración de Iones de Hidrógeno , Color
15.
J Physiol ; 602(9): 1939-1951, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38606903

RESUMEN

Recombinant human proteoglycan 4 (rhPRG4) is a macromolecular mucin-like glycoprotein that is classically studied as a lubricant within eyes and joints. Given that endogenously produced PRG4 is present within atherosclerotic lesions and genetic PRG4 deficiency increases atherosclerosis susceptibility in mice, in the current study we investigated the anti-atherogenic potential of chronic rhPRG4 treatment. Female low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet for 6 weeks and injected three times per week intraperitoneally with 0.5 mg rhPRG4 or PBS as control. Treatment with rhPRG4 was associated with a small decrease in plasma-free cholesterol levels, without a change in cholesteryl ester levels. A marked increase in the number of peritoneal foam cells was detected in response to the peritoneal rhPRG4 administration, which could be attributed to elevated peritoneal leukocyte MSR1 expression levels. However, rhPRG4-treated mice exhibited significantly smaller aortic root lesions of 278 ± 21 × 103 µm2 compared with 339 ± 15 × 103 µm2 in the aortic root of control mice. The overall decreased atherosclerosis susceptibility coincided with a shift in the monocyte and macrophage polarization states towards the patrolling and anti-inflammatory M2-like phenotypes, respectively. Furthermore, rhPRG4 treatment significantly reduced macrophage gene expression levels as well as plasma protein levels of the pro-inflammatory/pro-atherogenic cytokine TNF-alpha. In conclusion, we have shown that peritoneal administration and subsequent systemic exposure to rhPRG4 beneficially impacts the inflammatory state and reduces atherosclerosis susceptibility in mice. Our findings highlight that PRG4 is not only a lubricant but also acts as an anti-inflammatory agent. KEY POINTS: Endogenously produced proteoglycan 4 is found in atherosclerotic lesions and its genetic deficiency in mice is associated with enhanced atherosclerosis susceptibility. In this study we investigated the anti-atherogenic potential of chronic treatment with recombinant human PRG4 in hypercholesterolaemic female low-density lipoprotein receptor knockout mice. We show that recombinant human PRG4 stimulates macrophage foam cell formation, but also dampens the pro-inflammatory state of monocyte/macrophages, eventually leading to a significant reduction in plasma TNF-alpha levels and a lowered atherosclerosis susceptibility. Our findings highlight that peritoneal recombinant human PRG4 treatment can execute effects both locally and systemically and suggest that it will be of interest to study whether rhPRG4 treatment is also able to inhibit the progression and/or induce regression of previously established atherosclerotic lesions.


Asunto(s)
Aterosclerosis , Inflamación , Ratones Noqueados , Proteoglicanos , Receptores de LDL , Proteínas Recombinantes , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Femenino , Proteoglicanos/farmacología , Proteoglicanos/metabolismo , Proteoglicanos/genética , Receptores de LDL/genética , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/administración & dosificación , Ratones , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones Endogámicos C57BL , Aorta/metabolismo , Aorta/efectos de los fármacos , Aorta/patología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Células Espumosas/metabolismo , Células Espumosas/efectos de los fármacos
16.
Cells ; 13(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38667273

RESUMEN

Vascular smooth muscle cells (VSMCs), in their contractile and differentiated state, are fundamental for maintaining vascular function. Upon exposure to cholesterol (CHO), VSMCs undergo dedifferentiation, adopting characteristics of foam cells-lipid-laden, macrophage-like cells pivotal in atherosclerotic plaque formation. CHO uptake by VSMCs leads to two primary pathways: ABCA1-mediated efflux or storage in lipid droplets as cholesterol esters (CEs). CE formation, involving the condensation of free CHO and fatty acids, is catalyzed by sterol O-acyltransferase 1 (SOAT1). The necessary fatty acids are synthesized by the lipogenic enzyme fatty acid synthase (FASN), which we found to be upregulated in atherosclerotic human coronary arteries. This observation led us to hypothesize that FASN-mediated fatty acid biosynthesis is crucial in the transformation of VSMCs into foam cells. Our study reveals that CHO treatment upregulates FASN in human aortic SMCs, concurrent with increased expression of CD68 and upregulation of KLF4, markers associated with the foam cell transition. Crucially, downregulation of FASN inhibits the CHO-induced upregulation of CD68 and KLF4 in VSMCs. Additionally, FASN-deficient VSMCs exhibit hindered lipid accumulation and an impaired transition to the foam cell phenotype following CHO exposure, while the addition of the fatty acid palmitate, the main FASN product, exacerbates this transition. FASN-deficient cells also show decreased SOAT1 expression and elevated ABCA1. Notably, similar effects are observed in KLF4-deficient cells. Our findings demonstrate that FASN plays an essential role in the CHO-induced upregulation of KLF4 and the VSMC to foam cell transition and suggest that targeting FASN could be a novel therapeutic strategy to regulate VSMC phenotypic modulation.


Asunto(s)
Células Espumosas , Factor 4 Similar a Kruppel , Músculo Liso Vascular , Animales , Humanos , Aterosclerosis/patología , Aterosclerosis/metabolismo , Colesterol/metabolismo , Ácido Graso Sintasas/metabolismo , Ácido Graso Sintasas/genética , Ácidos Grasos/metabolismo , Células Espumosas/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo
17.
Phytomedicine ; 129: 155617, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614041

RESUMEN

BACKGROUND: Atherosclerosis (AS) is the leading cause of global death, which manifests as arterial lipid stack and plaque formation. Geniposide is an iridoid glycoside extract from Gardenia jasminoides J.Ellis that ameliorates AS by mediating autophagy. However, how Geniposide regulates autophagy and treats AS remains unclear. PURPOSE: To evaluate the efficacy and mechanism of Geniposide in treating AS. STUDY DESIGN AND METHODS: Geniposide was administered to high-fat diet-fed ApoE-/- mice and oxidized low-density lipoprotein-incubated primary vascular smooth muscle cells (VSMCs). AS was evaluated with arterial lipid stack, plaque progression, and collagen loss in the artery. Foam cell formation was detected by lipid accumulation, inflammation, apoptosis, and the expression of foam cell markers. The mechanism of Geniposide in treating AS was assessed using network pharmacology. Lipophagy was measured by lysosomal activity, expression of lipophagy markers, and the co-localization of lipids and lipophagy markers. The effects of lipophagy were blocked using Chloroquine. The role of PARP1 was assessed by Olaparib (a PARP1 inhibitor) intervention and PARP1 overexpression. RESULTS: In vivo, Geniposide reversed high-fat diet-induced hyperlipidemia, plaque progression, and inflammation. In vitro, Geniposide inhibited VSMC-derived foam cell formation by suppressing lipid stack, apoptosis, and the expressions of foam cell markers. Network pharmacological analysis and in vitro validation suggested that Geniposide treated AS by enhancing lipophagy via suppressing the PI3K/AKT signaling pathway. The benefits of Geniposide in alleviating AS were offset by Chloroquine in vivo and in vitro. Inhibiting PARP1 using Olaparib promoted lipophagy and alleviated AS progression, while PARP1 overexpression exacerbated foam cell formation and lipophagy blockage. The above effects of PARP1 were weakened by PI3K inhibitor LY294002. PARP1 also inhibited the combination of the ABCG1 and PLIN1. CONCLUSION: Geniposide alleviated AS by restoring PARP1/PI3K/AKT signaling pathway-suppressed lipophagy. This study is the first to present the lipophagy-inducing effect of Geniposide and the binding of ABCG1 and PLIN1 inhibited by PARP1.


Asunto(s)
Aterosclerosis , Dieta Alta en Grasa , Iridoides , Fosfatidilinositol 3-Quinasas , Poli(ADP-Ribosa) Polimerasa-1 , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Iridoides/farmacología , Aterosclerosis/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Autofagia/efectos de los fármacos , Gardenia/química , Músculo Liso Vascular/efectos de los fármacos , Ratones Endogámicos C57BL , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Farmacología en Red , Lipoproteínas LDL
18.
J Ethnopharmacol ; 328: 118125, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38561055

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huanglian Jiedu Decoction (HLJDD) is a Chinese medicine with a long history of therapeutic application. It is widely used in treating atherosclerosis (AS) in Chinese medicine theory and clinical practice. However, the mechanism of HLJDD in treating AS remains unclear. AIM OF THE STUDY: To investigate the efficacy and mechanism of HLJDD in treating AS. MATERIALS AND METHODS: AS was induced on high-fat diet-fed ApoE-/- mice, with the aorta pathological changes evaluated with lipid content and plaque progression. In vitro, foam cells were induced by subjecting primary mouse aortic vascular smooth muscle cells (VSMCs) to oxLDL incubation. After HLJDD intervention, VSMCs were assessed with lipid stack, apoptosis, oxidative stress, and the expression of foam cell markers. The effects of P2RY12 were tested by adopting clopidogrel hydrogen sulfate (CDL) in vivo and transfecting P2RY12 over-expressive plasmid in vitro. Autophagy was inhibited by Chloroquine or transfecting siRNA targeting ATG7 (siATG7). The mechanism of HLJDD treating atherosclerosis was explored using network pharmacology and validated with molecular docking and co-immunoprecipitation. RESULTS: HLJDD exhibited a dose-dependent reduction in lipid deposition, collagen loss, and necrosis within plaques. It also reversed lipid accumulation and down-regulated the expression of foam cell markers. P2RY12 inhibition alleviated AS, while P2RY12 overexpression enhanced foam cell formation and blocked the therapeutic effects of HLJDD. Network pharmacological analysis suggested that HLJDD might mediate PI3K/AKT signaling pathway-induced autophagy. P2RY12 overexpression also impaired autophagy. Similarly, inhibiting autophagy counteracted the effect of CDL, exacerbated AS in vivo, and promoted foam cell formation in vitro. However, HLJDD treatment mitigated these detrimental effects by suppressing the PI3K/AKT signaling pathway. Immunofluorescence and molecular docking revealed a high affinity between P2RY12 and PIK3CB, while co-immunoprecipitation assays illustrated their interaction. CONCLUSIONS: HLJDD inhibited AS in vivo and foam cell formation in vitro by restoring P2RY12/PI3K/AKT signaling pathway-suppressed autophagy. This study is the first to reveal an interaction between P2RY12 and PI3K3CB.


Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Placa Aterosclerótica , Ratones , Animales , Células Espumosas , Músculo Liso Vascular , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Aterosclerosis/tratamiento farmacológico , Placa Aterosclerótica/tratamiento farmacológico , Autofagia
19.
Scand J Immunol ; 99(5): e13362, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605563

RESUMEN

T cells contribute to the pathogenesis of atherosclerosis. However, the presence and function of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in atherosclerosis development is unknown. This study aims to characterize the phenotype and function of ThGM cells in experimental atherosclerosis. Atherosclerosis was induced by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Aortic ThGM cells were detected and sorted by flow cytometry. The effect of oxidized low-density lipoprotein (oxLDL) on ThGM cells and the impact of ThGM cells on macrophages were evaluated by flow cytometry, quantitative RT-PCR, oxLDL binding/uptake assay, immunoblotting and foam cell formation assay. We found that GM-CSF+IFN-γ- ThGM cells existed in atherosclerotic aortas. Live ThGM cells were enriched in aortic CD4+CCR6-CCR8-CXCR3-CCR10+ T cells. Aortic ThGM cells triggered the expression of interleukin-1ß (IL-1ß), tumour necrosis factor (TNF), interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in macrophages. Besides, aortic ThGM cells expressed higher CD69 than other T cells and bound to oxLDL. oxLDL suppressed the cytokine expression in ThGM cells probably via inhibiting the signal transducer and activator of transcription 5 (STAT5) signalling. Furthermore, oxLDL alleviated the effect of ThGM cells on inducing macrophages to produce pro-inflammatory cytokines and generate foam cells. The nuclear receptor subfamily 4 group A (NR4A) members NR4A1 and NR4A2 were involved in the suppressive effect of oxLDL on ThGM cells. Collectively, oxLDL suppressed the supportive effect of ThGM cells on pro-atherosclerotic macrophages.


Asunto(s)
Aterosclerosis , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Lipoproteínas LDL , Macrófagos , Linfocitos T Colaboradores-Inductores , Animales , Ratones , Aterosclerosis/genética , Citocinas/metabolismo , Células Espumosas/patología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Interleucina-6/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo
20.
Cells ; 13(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38534380

RESUMEN

Cholesterol biosynthesis inhibitors (statins) protect hypercholesterolemic patients against developing active tuberculosis, suggesting that these drugs could help the host to control the pathogen at the initial stages of the disease. This work studies the effect of fluvastatin on the early response of healthy peripheral blood mononuclear cells (PBMCs) to inactivated Mycobacterium tuberculosis (Mtb) H37Ra. We found that in fluvastatin-treated PBMCs, most monocytes/macrophages became foamy cells that overproduced NLRP3 inflammasome components in the absence of immune stimulation, evidencing important cholesterol metabolism/immunity connections. When both fluvastatin-treated and untreated PBMCs were exposed to Mtb H37Ra, a small subset of macrophages captured large amounts of bacilli and died, concentrating the bacteria in necrotic areas. In fluvastatin-untreated cultures, most of the remaining macrophages became epithelioid cells that isolated these areas of cell death in granulomatous structures that barely produced IFNγ. By contrast, in fluvastatin-treated cultures, foamy macrophages surrounded the accumulated bacteria, degraded them, markedly activated caspase-1 and elicited a potent IFNγ/cytotoxic response. In rabbits immunized with the same bacteria, fluvastatin increased the tuberculin test response. We conclude that statins may enhance macrophage efficacy to control Mtb, with the help of adaptive immunity, offering a promising tool in the design of alternative therapies to fight tuberculosis.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Mycobacterium tuberculosis , Tuberculosis , Animales , Humanos , Conejos , Fluvastatina/metabolismo , Células Espumosas/metabolismo , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...