Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
2.
Neurosci Lett ; 755: 135936, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33910061

RESUMEN

Müller glia can act as endogenous stem cells and regenerate the missing neurons in the injured or degenerating retina in lower vertebrates. However, mammalian Müller glia, although can sometimes express stem cell markers and specific neuronal proteins in response to injury or degeneration, do not differentiate into functional neurons. We asked whether bFGF and insulin would stimulate the Müller glia to migrate, proliferate and differentiate into photoreceptors in rd1 mouse. We administered single or repeated (two or three) intravitreal injections of basic fibroblast growth factor (bFGF;200 µg) and insulin (2 µg) in 2-week-old rd1 mice. Müller glia were checked for proliferation, migration and differentiation using immunostaining. A single injection resulted within 5 days in a decrease in the numbers of Müller glia in the inner nuclear layer (INL) and a corresponding increase in the outer nuclear layer (ONL). The total number of Müller glia in the INL and ONL was unaltered, suggesting that they did not proliferate, but migrated from INL to ONL. However, maintaining the Müller cells in the ONL for two weeks or longer required repeated injections of bFGF and insulin. Interestingly, all Müller cells in the ONL expressed chx10, a stem cell marker. We did not find any immunolabeling for rhodopsin, m-opsin or s-opsin in the Müller glia in the ONL.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Células Ependimogliales/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/administración & dosificación , Insulina/administración & dosificación , Neuroglía/efectos de los fármacos , Células Fotorreceptoras/efectos de los fármacos , Animales , Movimiento Celular/fisiología , Células Ependimogliales/química , Células Ependimogliales/metabolismo , Inyecciones Intravítreas , Ratones , Ratones Endogámicos CBA , Ratones Transgénicos , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Neuroglía/química , Neuroglía/metabolismo , Células Fotorreceptoras/química , Células Fotorreceptoras/metabolismo , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología
3.
Adv Exp Med Biol ; 1293: 167-187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33398813

RESUMEN

In this chapter, we summarize the molecular mechanisms of the linear tetrapyrrole-binding photoreceptors, phytochromes, and cyanobacteriochromes. We especially focus on the color-tuning mechanisms and conformational changes during the photoconversion process. Furthermore, we introduce current status of development of the optogenetic tools based on these molecules. Huge repertoire of these photoreceptors with diverse spectral properties would contribute to development of multiplex optogenetic regulation. Among them, the photoreceptors incorporating the biliverdin IXα chromophore is advantageous for in vivo optogenetics because this is intrinsic in the mammalian cells, and absorbs far-red light penetrating into deep mammalian tissues.


Asunto(s)
Cianobacterias/química , Cianobacterias/metabolismo , Optogenética , Fitocromo/química , Fitocromo/metabolismo , Tetrapirroles/química , Tetrapirroles/metabolismo , Animales , Luz , Células Fotorreceptoras/química , Células Fotorreceptoras/metabolismo , Fitocromo/genética , Tetrapirroles/genética
4.
Photochem Photobiol Sci ; 19(10): 1300-1307, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32812970

RESUMEN

Retinal, the vitamin A aldehyde, is a potent photosensitizer that plays a major role in light-induced damage to vertebrate photoreceptors. 11-Cis retinal is the light-sensitive chromophore of rhodopsin, the photopigment of vertebrate rod photoreceptors. It is isomerized by light to all-trans, activating rhodopsin and beginning the process of light detection. All-trans retinal is released by activated rhodopsin, allowing its regeneration by fresh 11-cis retinal continually supplied to photoreceptors. The released all-trans retinal is reduced to all-trans retinol in a reaction using NADPH. We have examined the photooxidation mediated by 11-cis and all-trans retinal in single living rod photoreceptors isolated from mouse retinas. Photooxidation was measured with fluorescence imaging from the oxidation of internalized BODIPY C11, a fluorescent dye whose fluorescence changes upon oxidation. We found that photooxidation increased with the concentration of exogenously added 11-cis or all-trans retinal to metabolically compromised rod outer segments that lacked NADPH supply. In dark-adapted metabolically intact rod outer segments with access to NADPH, there was no significant increase in photooxidation following exposure of the cell to light, but there was significant increase following addition of exogenous 11-cis retinal. The results indicate that both 11-cis and all-trans retinal can mediate light-induced damage in rod photoreceptors. In metabolically intact cells, the removal of the all-trans retinal generated by light through its reduction to retinol minimizes all-trans retinal-mediated photooxidation. However, because the enzymatic machinery of the rod outer segment cannot remove 11-cis retinal, 11-cis-retinal-mediated photooxidation may play a significant role in light-induced damage to photoreceptor cells.


Asunto(s)
Células Fotorreceptoras/química , Retinaldehído/química , Segmento Externo de la Célula en Bastón/química , Vitamina A/química , Animales , Ratones , Ratones Noqueados , Estructura Molecular , Imagen Óptica , Oxidación-Reducción , Procesos Fotoquímicos
5.
J Comp Neurol ; 528(4): 542-558, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31576574

RESUMEN

The well-studied phylogeny and ecology of dragon lizards and their range of visually mediated behaviors provide an opportunity to examine the factors that shape retinal organization. Dragon lizards consist of three evolutionarily stable groups based on their shelter type, including burrows, shrubs, and rocks. This allows us to test whether microhabitat changes are reflected in their retinal organization. We examined the retinae of three burrowing species (Ctenophorus pictus, C. gibba, and C. nuchalis), and three species that shelter in rock crevices (C. ornatus, C. decresii, and C. vadnappa). We used design-based stereology to sample both the photoreceptor array and neurons within the retinal ganglion cell layer to estimate areas specialized for acute vision. All species had two retinal specializations mediating enhanced spatial acuity: a fovea in the retinal center and a visual streak across the retinal equator. Furthermore, all species featured a dorsoventrally asymmetric photoreceptor distribution with higher photoreceptor densities in the ventral retina. This dorsoventral asymmetry may provide greater spatial summation of visual information in the dorsal visual field. Burrow-dwelling species had significantly larger eyes, higher total numbers of retinal cells, higher photoreceptor densities in the ventral retina, and higher spatial resolving power than rock-dwelling species. C. pictus, a secondary burrow-dwelling species, was the only species that changed burrow usage over evolutionary time, and its retinal organization revealed features more similar to rock-dwelling species than other burrow-dwelling species. This suggests that phylogeny may play a substantial role in shaping retinal organization in Ctenophorus species compared to microhabitat occupation.


Asunto(s)
Biodiversidad , Ecosistema , Lagartos/fisiología , Células Fotorreceptoras/fisiología , Retina/fisiología , Animales , Topografía de la Córnea/métodos , Lagartos/anatomía & histología , Células Fotorreceptoras/química , Retina/anatomía & histología , Retina/química
6.
J Exp Biol ; 222(Pt 15)2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31262786

RESUMEN

Among animals with visual processing mechanisms, the leech Hirudo verbana is a rare example in which all neurons can be identified. However, little is known about its visual system, which is composed of several pigmented head eyes and photosensitive non-pigmented sensilla that are distributed across its entire body. Although several interneurons are known to respond to visual stimuli, their response properties are poorly understood. Among these, the S-cell system is especially intriguing: it is multimodal, spans the entire body of the leech and is thought to be involved in sensory integration. To improve our understanding of the role of this system, we tested its spectral sensitivity, spatial integration and adaptation properties. The response of the S-cell system to visual stimuli was found to be strongly dependent on the size of the area stimulated, and adaptation was local. Furthermore, an adaptation experiment demonstrated that at least two color channels contributed to the response, and that their contribution was dependent on the adaptation to the background. The existence of at least two color channels was further supported by transcriptomic evidence, which indicated the existence of at least two distinct groups of putative opsins for leeches. Taken together, our results show that the S-cell system has response properties that could be involved in the processing of spatial and color information of visual stimuli. We propose the leech as a novel system to understand visual processing mechanisms with many practical advantages.


Asunto(s)
Sanguijuelas/fisiología , Células Fotorreceptoras/clasificación , Transcriptoma , Animales , Visión de Colores , Fenómenos Electrofisiológicos , Interneuronas/fisiología , Sanguijuelas/genética , Sanguijuelas/metabolismo , Opsinas/aislamiento & purificación , Estimulación Luminosa , Células Fotorreceptoras/química , Células Fotorreceptoras/citología
7.
J Comp Neurol ; 527(18): 3073-3086, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31226228

RESUMEN

Visual opsins coupled with Gq -type G protein have been considered to be responsible for the vision in mollusks. Recent transcriptomic studies, however, revealed the presence of opsin mRNA belonging to different groups of opsin subfamilies in the eyes of mollusks. In the present study, we found that at least three different opsins, Gq -coupled rhodopsin, opsin5A, and xenopsin, are co-expressed in the rhabdomeric photoreceptor cell in the eyes of the terrestrial slug Limax valentianus. These opsins were all localized to the microvilli of the rhabdomere. Co-expression of rhodopsin and opsin5A mRNA was also demonstrated by dual fluorescence in situ hybridization. Co-expression of multiple opsins in the rhabdomeric photoreceptors cells may explain the previously reported shift in the action spectra of the electroretinogram of eyes of Limax flavus between the light- and dark-adapted states, which was also reproduced in the present study in L. valentianus.


Asunto(s)
Opsinas/biosíntesis , Opsinas/genética , Células Fotorreceptoras de Invertebrados/química , Células Fotorreceptoras de Invertebrados/metabolismo , Animales , Gastrópodos , Expresión Génica , Células HEK293 , Humanos , Células Fotorreceptoras/química , Células Fotorreceptoras/metabolismo , Filogenia
8.
Biochim Biophys Acta Biomembr ; 1861(10): 183000, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31152688

RESUMEN

The supramolecular organization of the visual pigment rhodopsin in the photoreceptor membrane remains contentious. Specifically, whether this G protein-coupled receptor functions as a monomer or dimer remains unknown, as does the presence or absence of ordered packing of rhodopsin molecules in the photoreceptor membrane. Completely opposite opinions have been expressed on both issues. Herein, using small-angle neutron and X-ray scattering approaches, we performed a comparative analysis of the structural characteristics of the photoreceptor membrane samples in buffer, both in the outer segment of photoreceptor cells, and in the free photoreceptor disks. The average distance between the centers of two neighboring rhodopsin molecules was found to be ~5.8 nm in both cases. The results indicate an unusually high packing density of rhodopsin molecules in the photoreceptor membrane, but molecules appear to be randomly distributed in the membrane without any regular ordering.


Asunto(s)
Células Fotorreceptoras/química , Células Fotorreceptoras/fisiología , Rodopsina/química , Animales , Bovinos , Membrana Celular/química , Membranas , Difracción de Neutrones/métodos , Neutrones , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/ultraestructura , Retina/metabolismo , Rodopsina/metabolismo , Rodopsina/ultraestructura , Dispersión del Ángulo Pequeño
9.
J Histochem Cytochem ; 67(10): 745-757, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31246149

RESUMEN

Drosophila photoreceptor cells are employed as a model system for studying membrane protein transport. Phototransduction proteins like rhodopsin and the light-activated TRPL ion channel are transported within the photoreceptor cell, and they change their subcellular distribution in a light-dependent way. Investigating the transport mechanisms for rhodopsin and ion channels requires accurate histochemical methods for protein localization. By using immunocytochemistry the light-triggered translocation of TRPL has been described as a two-stage process. In stage 1, TRPL accumulates at the rhabdomere base and the adjacent stalk membrane a few minutes after onset of illumination and is internalized in stage 2 by endocytosis after prolonged light exposure. Here, we show that a commonly observed crescent shaped antibody labeling pattern suggesting a fast translocation of rhodopsin, TRP, and TRPL to the rhabdomere base is a light-dependent antibody staining artifact. This artifact is most probably caused by the profound structural changes in the microvillar membranes of rhabdomeres that result from activation of the signaling cascade. By using alternative labeling methods, either eGFP-tags or the self-labeling SNAP-tag, we show that light activation of TRPL transport indeed results in fast changes of the TRPL distribution in the rhabdomere but not in the way described previously.


Asunto(s)
Artefactos , Proteínas de Drosophila/análisis , Drosophila/metabolismo , Inmunohistoquímica/métodos , Luz , Células Fotorreceptoras/química , Animales , Drosophila/química , Proteínas de Drosophila/metabolismo , Endocitosis , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Fototransducción , Microscopía Fluorescente , Transporte de Proteínas , Rodopsina/metabolismo , Transducción de Señal , Canales de Potencial de Receptor Transitorio/metabolismo
10.
Anal Chem ; 91(11): 7226-7235, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31074606

RESUMEN

Membrane proteins, including G protein-coupled receptors (GPCRs), present a challenge in studying their structural properties under physiological conditions. Moreover, to better understand the activity of proteins requires examination of single molecule behaviors rather than ensemble averaged behaviors. Force-distance curve-based AFM (FD-AFM) was utilized to directly probe and localize the conformational states of a GPCR within the membrane at nanoscale resolution based on the mechanical properties of the receptor. FD-AFM was applied to rhodopsin, the light receptor and a prototypical GPCR, embedded in native rod outer segment disc membranes from photoreceptor cells of the retina in mice. Both FD-AFM and computational studies on coarse-grained models of rhodopsin revealed that the active state of the receptor has a higher Young's modulus compared to the inactive state of the receptor. Thus, the inactive and active states of rhodopsin could be differentiated based on the stiffness of the receptor. Differentiating the states based on the Young's modulus allowed for the mapping of the different states within the membrane. Quantifying the active states present in the membrane containing the constitutively active G90D rhodopsin mutant or apoprotein opsin revealed that most receptors adopt an active state. Traditionally, constitutive activity of GPCRs has been described in terms of two-state models where the receptor can achieve only a single active state. FD-AFM data are inconsistent with a two-state model but instead require models that incorporate multiple active states.


Asunto(s)
Pigmentos Retinianos/química , Rodopsina/química , Animales , Membrana Celular/química , Membrana Celular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía de Fuerza Atómica , Células Fotorreceptoras/química , Células Fotorreceptoras/metabolismo , Pigmentos Retinianos/genética , Pigmentos Retinianos/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
11.
Am J Physiol Cell Physiol ; 316(1): C121-C133, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462537

RESUMEN

The retina is one of the most metabolically active tissues in the body and utilizes glucose to produce energy and intermediates required for daily renewal of photoreceptor cell outer segments. Glucose transporter 1 (GLUT1) facilitates glucose transport across outer blood retinal barrier (BRB) formed by the retinal pigment epithelium (RPE) and the inner BRB formed by the endothelium. We used conditional knockout mice to study the impact of reducing glucose transport across the RPE on photoreceptor and Müller glial cells. Transgenic mice expressing Cre recombinase under control of the Bestrophin1 ( Best1) promoter were bred with Glut1flox/flox mice to generate Tg-Best1-Cre:Glut1flox/flox mice ( RPEΔGlut1). The RPEΔGlut1 mice displayed a mosaic pattern of Cre expression within the RPE that allowed us to analyze mice with ~50% ( RPEΔGlut1m) recombination and mice with >70% ( RPEΔGlut1h) recombination separately. Deletion of GLUT1 from the RPE did not affect its carrier or barrier functions, indicating that the RPE utilizes other substrates to support its metabolic needs thereby sparing glucose for the outer retina. RPEΔGlut1m mice had normal retinal morphology, function, and no cell death; however, where GLUT1 was absent from a span of RPE greater than 100 µm, there was shortening of the photoreceptor cell outer segments. RPEΔGlut1h mice showed outer segment shortening, cell death of photoreceptors, and activation of Müller glial cells. The severe phenotype seen in RPEΔGlut1h mice indicates that glucose transport via the GLUT1 transporter in the RPE is required to meet the anabolic and catabolic requirements of photoreceptors and maintain Müller glial cells in a quiescent state.


Asunto(s)
Células Ependimogliales/metabolismo , Transportador de Glucosa de Tipo 1/biosíntesis , Glucosa/metabolismo , Células Fotorreceptoras/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Células Ependimogliales/química , Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Células Fotorreceptoras/química , Epitelio Pigmentado de la Retina/química
12.
Proc Natl Acad Sci U S A ; 115(10): 2299-2304, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463710

RESUMEN

The eyes of some aquatic animals form images through reflective optics. Shrimp, lobsters, crayfish, and prawns possess reflecting superposition compound eyes, composed of thousands of square-faceted eye units (ommatidia). Mirrors in the upper part of the eye (the distal mirror) reflect light collected from many ommatidia onto the photosensitive elements of the retina, the rhabdoms. A second reflector, the tapetum, underlying the retina, back-scatters dispersed light onto the rhabdoms. Using microCT and cryo-SEM imaging accompanied by in situ micro-X-ray diffraction and micro-Raman spectroscopy, we investigated the hierarchical organization and materials properties of the reflective systems at high resolution and under close-to-physiological conditions. We show that the distal mirror consists of three or four layers of plate-like nanocrystals. The tapetum is a diffuse reflector composed of hollow nanoparticles constructed from concentric lamellae of crystals. Isoxanthopterin, a pteridine analog of guanine, forms both the reflectors in the distal mirror and in the tapetum. The crystal structure of isoxanthopterin was determined from crystal-structure prediction calculations and verified by comparison with experimental X-ray diffraction. The extended hydrogen-bonded layers of the molecules result in an extremely high calculated refractive index in the H-bonded plane, n = 1.96, which makes isoxanthopterin crystals an ideal reflecting material. The crystal structure of isoxanthopterin, together with a detailed knowledge of the reflector superstructures, provide a rationalization of the reflective optics of the crustacean eye.


Asunto(s)
Decápodos/fisiología , Células Fotorreceptoras/química , Retina/química , Xantopterina/química , Animales , Cristalografía por Rayos X , Nanopartículas/química , Retina/citología
13.
Photochem Photobiol Sci ; 16(10): 1502-1511, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28636018

RESUMEN

The step-up photophobic response of the heterotrich ciliate Blepharisma japonicum is mediated by a hypericinic pigment, blepharismin, which is not present in any of the known six families of photoreceptors, namely rhodopsins, phytochromes, xanthopsins, cryptochromes, phototropins, and BLUF proteins. Upon irradiation, native cells become light-adapted (blue) by converting blepharismin into the photochemically stable oxyblepharismin (OxyBP). So far, OxyBP has been investigated mainly from a photophysical point of view in vitro, either alone or complexed with proteins. In this work, we exploit the vivid fluorescence of OxyBP to characterize its lifetime emission in blue B. Japonicum cells, on account of the recognized role of the fluorescence lifetime to provide physicochemical insights into the fluorophore environment at the nanoscale. In a biological context, OxyBP modifies its emission lifetime as compared to isotropic media. The phasor approach to fluorescence lifetime microscopy in confocal mode highlights that fluorescence originates from two excited states, whose relative balance changes throughout the cell body. Additionally, Cilia and kinetids, i.e., the organelles involved in photomovement, display lifetime asymmetry between the anterior and posterior part of the cell. From these data, some hypotheses on the phototransduction mechanism are proposed.


Asunto(s)
Cilióforos/química , Cilióforos/efectos de la radiación , Color , Luz , Perileno/análogos & derivados , Células Fotorreceptoras/química , Células Fotorreceptoras/efectos de la radiación , Cilióforos/citología , Microscopía Fluorescente , Estructura Molecular , Perileno/química , Perileno/efectos de la radiación , Procesos Fotoquímicos
14.
Biochim Biophys Acta Biomembr ; 1859(5): 931-940, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28188742

RESUMEN

Vesicular glutamate transporter (VGLUT) is an active transporter responsible for vesicular storage of glutamate in synaptic vesicles and plays an essential role in glutamatergic neurotransmission. VGLUT consists of three isoforms, VGLUT1, VGLUT2, and VGLUT3. The VGLUT1 variant, VGLUT1v, with an additional 75-base pair sequence derived from a second intron between exons 2 and 3, which corresponds to 25 amino acid residues in the 1st loop of VGLUT1, is the only splicing variant among VGLUTs, although whether VGLUT1v protein is actually translated at the protein level remains unknown. In the present study, VGLUT1v was expressed in insect cells, solubilized, purified to near homogeneity, and its transport activity was examined. Proteoliposomes containing purified VGLUT1v were shown to accumulate glutamate upon imposition of an inside-positive membrane potential (Δψ). The Δψ-driven glutamate uptake activity requires Cl- and its pharmacological profile and kinetics are comparable to those of other VGLUTs. The retinal membrane contained two VGLUT1 moieties with apparent molecular masses of 65 and 57kDa. VGLUT1v-specific antibodies against an inserted 25-amino acid residue sequence identified a 65-kDa immunoreactive polypeptide. Immunohistochemical analysis indicated that VGLUT1v immunoreactivity is present in photoreceptor cells and is associated with synaptic vesicles. VGLUT1v immunoreactivity is also present in pinealocytes, but not in other areas, including the brain. These results indicated that VGLUT1v exists in a functional state in rat photosensitive cells and is involved in glutamatergic chemical transmission.


Asunto(s)
Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Animales , Ácido Glutámico/metabolismo , Inmunohistoquímica , Potenciales de la Membrana , Células Fotorreceptoras/química , Glándula Pineal/química , Empalme del ARN , Ratas , Vesículas Sinápticas/química , Proteína 1 de Transporte Vesicular de Glutamato/análisis
15.
Mitochondrion ; 31: 20-32, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27581213

RESUMEN

Earlier studies reported accumulation of mitochondrial DNA mutations in ageing and age-related macular degeneration. To know about the mitochondrial status with age, we examined immunoreactivity (IR) to markers of mitochondria (anti-mitochondrial antibody and voltage-dependent anion channel-1) and complex I-V (that mediate oxidative phosphorylation, OXPHOS) in donor human retinas (age: 19-94years; N=26; right eyes). In all samples, at all ages, IR to anti-mitochondrial antibody and voltage-dependent anion channel-1 was prominent in photoreceptor cells. Between second and seventh decade of life, strong IR to complex I-V was present in photoreceptors over macular to peripheral retina. With progressive ageing, the photoreceptors showed a decrease in complex I-IR (subunit NDUFB4) at eighth decade, and a weak or absence of IR in 10 retinas between ninth and tenth decade. Patchy IR to complex III and complex IV was detected at different ages. IR to ND1 (complex I) and complex II and V remained unaltered with ageing. Nitrosative stress (evaluated by IR to a nitro-tyrosine antibody) was found in photoreceptors. Superoxide dismutase-2 was found upregulated in photoreceptors with ageing. Mitochondrial ultrastructure was examined in two young retinas with intact complex IR and six aged retinas whose counterparts showed weak to absence of IR. Observations revealed irregular, photoreceptor inner segment mitochondria in aged maculae and mid-peripheral retina between eighth and ninth decade; many cones possessed autophagosomes with damaged mitochondria, indicating age-related alterations. A trend in age-dependent reduction of complex I-IR was evident in aged photoreceptors, whereas patchy complex IV-IR (subunits I and II) was age-independent, suggesting that the former is prone to damage with ageing perhaps due to oxidative stress. These changes in OXPHOS system may influence the energy budget of human photoreceptors, affecting their viability.


Asunto(s)
Envejecimiento , Proteínas del Complejo de Cadena de Transporte de Electrón/análisis , Mitocondrias/química , Mitocondrias/ultraestructura , Células Fotorreceptoras/química , Retina/química , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
16.
J Neurosci ; 36(8): 2473-93, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26911694

RESUMEN

Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) in humans. In the retina, Tulp1 is mainly expressed in photoreceptors that use ribbon synapses to communicate with the inner retina. In the present study, we demonstrate that Tulp1 is highly enriched in the periactive zone of photoreceptor presynaptic terminals where Tulp1 colocalizes with major endocytic proteins close to the synaptic ribbon. Analyses of Tulp1 knock-out mice demonstrate that Tulp1 is essential to keep endocytic proteins enriched at the periactive zone and to maintain high levels of endocytic activity close to the synaptic ribbon. Moreover, we have discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE, which is important to maintain synaptic ribbon integrity. The current findings suggest a new model for Tulp1-mediated localization of the endocytic machinery at the periactive zone of ribbon synapses and offer a new rationale and mechanism for vision loss associated with genetic defects in Tulp1.


Asunto(s)
Endocitosis/fisiología , Proteínas del Ojo/metabolismo , Células Fotorreceptoras/metabolismo , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Proteínas del Ojo/análisis , Proteínas del Ojo/genética , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Técnicas de Cultivo de Órganos , Células Fotorreceptoras/química , Retina/química , Retina/metabolismo , Sinapsis/química , Sinapsis/genética
17.
PLoS One ; 10(9): e0135381, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26351853

RESUMEN

Cephalopods are famous for their ability to change color and pattern rapidly for signaling and camouflage. They have keen eyes and remarkable vision, made possible by photoreceptors in their retinas. External to the eyes, photoreceptors also exist in parolfactory vesicles and some light organs, where they function using a rhodopsin protein that is identical to that expressed in the retina. Furthermore, dermal chromatophore organs contain rhodopsin and other components of phototransduction (including retinochrome, a photoisomerase first found in the retina), suggesting that they are photoreceptive. In this study, we used a modified whole-mount immunohistochemical technique to explore rhodopsin and retinochrome expression in a number of tissues and organs in the longfin squid, Doryteuthis pealeii. We found that fin central muscles, hair cells (epithelial primary sensory neurons), arm axial ganglia, and sucker peduncle nerves all express rhodopsin and retinochrome proteins. Our findings indicate that these animals possess an unexpected diversity of extraocular photoreceptors and suggest that extraocular photoreception using visual opsins and visual phototransduction machinery is far more widespread throughout cephalopod tissues than previously recognized.


Asunto(s)
Decapodiformes/química , Decapodiformes/ultraestructura , Células Fotorreceptoras/química , Pigmentos Retinianos/análisis , Rodopsina/análisis , Aletas de Animales/química , Aletas de Animales/ultraestructura , Animales , Ganglios/química , Ganglios/ultraestructura , Inmunohistoquímica , Células Fotorreceptoras/ultraestructura , Retina/química , Retina/ultraestructura
18.
Biotechnol J ; 10(2): 273-83, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25216399

RESUMEN

Molecular signals are sensed by their respective receptors and information is transmitted and processed by a sophisticated intracellular network controlling various biological functions. Optogenetic tools allow the targeting of specific signaling nodes for a precise spatiotemporal control of downstream effects. These tools are based on photoreceptors such as phytochrome B (PhyB), cryptochrome 2, or light-oxygen-voltage-sensing domains that reversibly bind to specific interaction partners in a light-dependent manner. Fusions of a protein of interest to the photoreceptor or their interaction partners may enable the control of the protein function by light-mediated dimerization, a change of subcellular localization, or due to photocaging/-uncaging of effectors. In this review, we summarize the photoreceptors and the light-based mechanisms utilized for the modulation of signaling events in mammalian cells focusing on non-neuronal applications. We discuss in detail optogenetic tools and approaches applied to control signaling events mediated by second messengers, Rho GTPases and growth factor-triggered signaling cascades namely the RAS/RAF and phosphatidylinositol-3-kinase pathways. Applying the latest generation of optogenetic tools allows to control cell fate decisions such as proliferation and differentiation or to deliver therapeutic substances in a spatiotemporally controlled manner.


Asunto(s)
Optogenética/métodos , Células Fotorreceptoras/química , Células Fotorreceptoras/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Proliferación Celular , Criptocromos/química , Criptocromos/metabolismo , Humanos , Modelos Moleculares , Fitocromo B/química , Fitocromo B/metabolismo
19.
J Vis Exp ; (92): e52164, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25407118

RESUMEN

Atomic force microscopy (AFM) uses a pyramidal tip attached to a cantilever to probe the force response of a surface. The deflections of the tip can be measured to ~10 pN by a laser and sectored detector, which can be converted to image topography. Amplitude modulation or "tapping mode" AFM involves the probe making intermittent contact with the surface while oscillating at its resonant frequency to produce an image. Used in conjunction with a fluid cell, tapping-mode AFM enables the imaging of biological macromolecules such as proteins in physiologically relevant conditions. Tapping-mode AFM requires manual tuning of the probe and frequent adjustments of a multitude of scanning parameters which can be challenging for inexperienced users. To obtain high-quality images, these adjustments are the most time consuming. PeakForce Quantitative Nanomechanical Property Mapping (PF-QNM) produces an image by measuring a force response curve for every point of contact with the sample. With ScanAsyst software, PF-QNM can be automated. This software adjusts the set-point, drive frequency, scan rate, gains, and other important scanning parameters automatically for a given sample. Not only does this process protect both fragile probes and samples, it significantly reduces the time required to obtain high resolution images. PF-QNM is compatible for AFM imaging in fluid; therefore, it has extensive application for imaging biologically relevant materials. The method presented in this paper describes the application of PF-QNM to obtain images of a bacterial red-light photoreceptor, RpBphP3 (P3), from photosynthetic R. palustris in its light-adapted state. Using this method, individual protein dimers of P3 and aggregates of dimers have been observed on a mica surface in the presence of an imaging buffer. With appropriate adjustments to surface and/or solution concentration, this method may be generally applied to other biologically relevant macromolecules and soft materials.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Células Fotorreceptoras/química , Fitocromo/química , Silicatos de Aluminio/química , Fenómenos Mecánicos , Microscopía de Fuerza Atómica/instrumentación , Nanotecnología
20.
Vis Neurosci ; 31(1): 11-23, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24801620

RESUMEN

Ultrastructural examination of photoreceptor inner segment ellipsoids in larval (4, 8, and 15 days postfertilization; dpf) and adult zebrafish identified morphologically different types of mitochondria. All photoreceptors had mitochondria of different sizes (large and small). At 4 dpf, rods had small, moderately stained electron-dense mitochondria (E-DM), and two cone types could be distinguished: (1) those with electron-lucent mitochondria (E-LM) and (2) those with mitochondria of moderate electron density. These distinctions were also apparent at later ages (8 and 15 dpf). Rods from adult fish had fewer mitochondria than their corresponding cones. The ellipsoids of some fully differentiated single and double cones contained large E-DM with few cristae; these were surrounded by small E-LM with typical internal morphology. The mitochondria within the ellipsoids of other single cones showed similar electron density. Microspectrophotometry of cone ellipsoids from adult fish indicated that the large E-DM had a small absorbance peak (∼0.03 OD units) and did not contain cytochrome-c, but crocetin, a carotenoid found in old world monkeys. Crocetin functions to prevent oxidative damage to photoreceptors, suggesting that the ellipsoid mitochondria in adult zebrafish cones protect against apoptosis and function metabolically, rather than as a light filter.


Asunto(s)
Mitocondrias/ultraestructura , Células Fotorreceptoras/ultraestructura , Pez Cebra/crecimiento & desarrollo , Animales , Larva , Microespectrofotometría , Mitocondrias/química , Mitocondrias/clasificación , Células Fotorreceptoras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...