Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.301
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(5): 16, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717425

RESUMEN

Purpose: Research on Alzheimer's disease (AD) and precursor states demonstrates a thinner retinal nerve fiber layer (NFL) compared to age-similar controls. Because AD and age-related macular degeneration (AMD) both impact older adults and share risk factors, we asked if retinal layer thicknesses, including NFL, are associated with cognition in AMD. Methods: Adults ≥ 70 years with normal retinal aging, early AMD, or intermediate AMD per Age-Related Eye Disease Study (AREDS) nine-step grading of color fundus photography were enrolled in a cross-sectional study. Optical coherence tomography (OCT) volumes underwent 11-line segmentation and adjustments by a trained operator. Evaluated thicknesses reflect the vertical organization of retinal neurons and two vascular watersheds: NFL, ganglion cell layer-inner plexiform layer complex (GCL-IPL), inner retina, outer retina (including retinal pigment epithelium-Bruch's membrane), and total retina. Thicknesses were area weighted to achieve mean thickness across the 6-mm-diameter Early Treatment of Diabetic Retinopathy Study (ETDRS) grid. Cognitive status was assessed by the National Institutes of Health Toolbox cognitive battery for fluid and crystallized cognition. Correlations estimated associations between cognition and thicknesses, adjusting for age. Results: Based on 63 subjects (21 per group), thinning of the outer retina was significantly correlated with lower cognition scores (P < 0.05). No other retinal thickness variables were associated with cognition. Conclusions: Only the outer retina (photoreceptors, supporting glia, retinal pigment epithelium, Bruch's membrane) is associated with cognition in aging to intermediate AMD; NFL was not associated with cognition, contrary to AD-associated condition reports. Early and intermediate AMD constitute a retinal disease whose earliest, primary impact is in the outer retina. Our findings hint at a unique impact on the brain from the outer retina in persons with AMD.


Asunto(s)
Envejecimiento , Cognición , Degeneración Macular , Retina , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Masculino , Anciano , Femenino , Estudios Transversales , Envejecimiento/fisiología , Anciano de 80 o más Años , Degeneración Macular/fisiopatología , Cognición/fisiología , Retina/diagnóstico por imagen , Retina/patología , Retina/fisiopatología , Fibras Nerviosas/patología , Células Ganglionares de la Retina/patología
2.
Invest Ophthalmol Vis Sci ; 65(5): 15, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717426

RESUMEN

Purpose: Mutations in the genes encoding type IV collagen alpha 1 (COL4A1) and alpha 2 (COL4A2) cause a multisystem disorder that includes ocular anterior segment dysgenesis (ASD) and glaucoma. We previously showed that transforming growth factor beta (TGFß) signaling was elevated in developing anterior segments from Col4a1 mutant mice and that reducing TGFß signaling ameliorated ASD, supporting a role for the TGFß pathway in disease pathogenesis. Here, we tested whether altered TGFß signaling also contributes to glaucoma-related phenotypes in Col4a1 mutant mice. Methods: To test the role of TGFß signaling in glaucoma-relevant phenotypes, we genetically reduced TGFß signaling using mice with mutated Tgfbr2, which encodes the common receptor for all TGFß ligands in Col4a1+/G1344D mice. We performed slit-lamp biomicroscopy and optical coherence tomography for qualitative and quantitative analyses of anterior and posterior ocular segments, histological analyses of ocular tissues and optic nerves, and intraocular pressure assessments using rebound tonometry. Results: Col4a1+/G1344D mice showed defects of the ocular drainage structures, including iridocorneal adhesions, and phenotypes consistent with glaucomatous neurodegeneration, including thinning of the nerve fiber layer, retinal ganglion cell loss, optic nerve head excavation, and optic nerve degeneration. We found that reducing TGFß receptor 2 (TGFBR2) was protective for ASD, ameliorated ocular drainage structure defects, and protected against glaucomatous neurodegeneration in Col4a1+/G1344D mice. Conclusions: Our results suggest that elevated TGFß signaling contributes to glaucomatous neurodegeneration in Col4a1 mutant mice.


Asunto(s)
Colágeno Tipo IV , Glaucoma , Presión Intraocular , Receptor Tipo II de Factor de Crecimiento Transformador beta , Transducción de Señal , Tomografía de Coherencia Óptica , Factor de Crecimiento Transformador beta , Animales , Ratones , Colágeno Tipo IV/metabolismo , Colágeno Tipo IV/genética , Transducción de Señal/fisiología , Presión Intraocular/fisiología , Glaucoma/metabolismo , Glaucoma/genética , Glaucoma/patología , Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Modelos Animales de Enfermedad , Enfermedades del Nervio Óptico/metabolismo , Enfermedades del Nervio Óptico/genética , Ratones Endogámicos C57BL , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Segmento Anterior del Ojo/metabolismo , Segmento Anterior del Ojo/patología , Nervio Óptico/patología , Nervio Óptico/metabolismo , Microscopía con Lámpara de Hendidura , Fenotipo , Tonometría Ocular , Mutación
3.
Pol J Pathol ; 75(1): 40-53, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741428

RESUMEN

C1q/TNF-related protein-9 (CTRP9) has been reported to play roles in several types of retinal diseases. However, the role and the potential mechanism of CTRP9 in glaucoma are still incompletely understood. The expression of CTRP9 in OGD/R-induced retinal ganglion cells (RGCs) was detected by quantitative real-time polymerase chain reaction and western blot assay. Cell proliferation was identified by cell counting Kit-8 assay. Flow cytometry, enzyme-linked immunosorbent assay and western blot assay were performed to assess cell apoptosis. Unfolded protein response (UPR), endoplasmic reticulum (ER) stress and the AMPK pathway were evaluated by western blot assay. The data showed that the expression of CTRP9 was significantly downregulated in OGD/R-induced 661W cells. OGD/R treatment reduced cell viability, promoted cell apoptosis and activated the UPR and ER stress. The overexpression of CTRP9 reversed the effects of OGD/R on 661W cell viability, apoptosis, the UPR and ER stress, as well as the AMPK pathway. However, Compound C, an inhibitor of AMPK signaling, reversed the protection of CTRP9 overexpression against injury from OGD/R in 661W cells. In summary, the results revealed that CTRP9 abated the apoptosis and UPR of OGD/R-induced RGCs by regulating the AMPK pathway, which may provide a promising target for the treatment of glaucoma.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Apoptosis , Estrés del Retículo Endoplásmico , Células Ganglionares de la Retina , Transducción de Señal , Respuesta de Proteína Desplegada , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones , Línea Celular , Adiponectina/metabolismo , Supervivencia Celular , Glucosa/metabolismo , Glaucoma/metabolismo , Glaucoma/patología , Glicoproteínas
4.
Invest Ophthalmol Vis Sci ; 65(5): 5, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696189

RESUMEN

Purpose: Neuroinflammation plays a significant role in the pathology of Alzheimer's disease (AD). Mouse models of AD and postmortem biopsy of patients with AD reveal retinal glial activation comparable to central nervous system immunoreactivity. We hypothesized that the surface area of putative retinal gliosis observed in vivo using en face optical coherence tomography (OCT) imaging will be larger in patients with preclinical AD versus controls. Methods: The Spectralis II instrument was used to acquire macular centered 20 × 20 and 30 × 25-degrees spectral domain OCT images of 76 participants (132 eyes). A cohort of 22 patients with preclinical AD (40 eyes, mean age = 69 years, range = 60-80 years) and 20 control participants (32 eyes, mean age = 66 years, range = 58-82 years, P = 0.11) were included for the assessment of difference in surface area of putative retinal gliosis and retinal nerve fiber layer (RNFL) thickness. The surface area of putative retinal gliosis and RNFL thickness for the nine sectors of the Early Treatment Diabetic Retinopathy Study (ETDRS) map were compared between groups using generalized linear mixed models. Results: The surface area of putative retinal gliosis was significantly greater in the preclinical AD group (0.97 ± 0.55 mm2) compared to controls (0.68 ± 0.40 mm2); F(1,70) = 4.41, P = 0.039; Cohen's d = 0.61. There was no significant difference between groups for RNFL thickness in the 9 ETDRS sectors, P > 0.05. Conclusions: Our analysis shows greater putative retinal gliosis in preclinical AD compared to controls. This demonstrates putative retinal gliosis as a potential biomarker for AD-related neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer , Gliosis , Células Ganglionares de la Retina , Tomografía de Coherencia Óptica , Humanos , Gliosis/patología , Gliosis/diagnóstico , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Tomografía de Coherencia Óptica/métodos , Anciano , Femenino , Masculino , Anciano de 80 o más Años , Persona de Mediana Edad , Células Ganglionares de la Retina/patología , Fibras Nerviosas/patología , Enfermedades de la Retina/diagnóstico , Enfermedades de la Retina/etiología , Retina/patología , Retina/diagnóstico por imagen
5.
Acta Neuropathol Commun ; 12(1): 79, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773545

RESUMEN

Neurodegenerative diseases have common underlying pathological mechanisms including progressive neuronal dysfunction, axonal and dendritic retraction, and mitochondrial dysfunction resulting in neuronal death. The retina is often affected in common neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Studies have demonstrated that the retina in patients with Parkinson's disease undergoes changes that parallel the dysfunction in the brain. These changes classically include decreased levels of dopamine, accumulation of alpha-synuclein in the brain and retina, and death of dopaminergic nigral neurons and retinal amacrine cells leading to gross neuronal loss. Exploring this disease's retinal phenotype and vision-related symptoms is an important window for elucidating its pathophysiology and progression, and identifying novel ways to diagnose and treat Parkinson's disease. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson's disease in animal models. MPTP is a neurotoxin converted to its toxic form by astrocytes, transported to neurons through the dopamine transporter, where it causes mitochondrial Complex I inhibition and neuron degeneration. Systemic administration of MPTP induces retinal changes in different animal models. In this study, we assessed the effects of MPTP on the retina directly via intravitreal injection in mice (5 mg/mL and 50 mg/mL to 7, 14 and 21 days post-injection). MPTP treatment induced the reduction of retinal ganglion cells-a sensitive neuron in the retina-at all time points investigated. This occurred without a concomitant loss of dopaminergic amacrine cells or neuroinflammation at any of the time points or concentrations tested. The observed neurodegeneration which initially affected retinal ganglion cells indicated that this method of MPTP administration could yield a fast and straightforward model of retinal ganglion cell neurodegeneration. To assess whether this model could be amenable to neuroprotection, mice were treated orally with nicotinamide (a nicotinamide adenine dinucleotide precursor) which has been demonstrated to be neuroprotective in several retinal ganglion cell injury models. Nicotinamide was strongly protective following intravitreal MPTP administration, further supporting intravitreal MPTP use as a model of retinal ganglion cell injury. As such, this model could be utilized for testing neuroprotective treatments in the context of Parkinson's disease and retinal ganglion cell injury.


Asunto(s)
Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Niacinamida , Células Ganglionares de la Retina , Animales , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Niacinamida/farmacología , Niacinamida/administración & dosificación , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Masculino , Ratones , Administración Oral , Inyecciones Intravítreas , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/tratamiento farmacológico , Intoxicación por MPTP/patología , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/tratamiento farmacológico
6.
Transl Vis Sci Technol ; 13(5): 8, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38739084

RESUMEN

Purpose: This study aimed to evaluate the ocular characteristics associated with spontaneously high myopia in adult nonhuman primates (NHPs). Methods: A total of 537 eyes of 277 macaques with an average age of 18.53 ± 3.01 years (range = 5-26 years), raised in a controlled environment, were included. We measured ocular parameters, including spherical equivalent (SE), axial length (AXL), and intraocular pressure. The 45-degree fundus images centered on the macula and the disc assessed the fundus tessellation and parapapillary atrophy (PPA). Additionally, optical coherence tomography (OCT) was used to measure the thickness of the retinal nerve fiber layer (RNFL). Results: The mean SE was -1.58 ± 3.71 diopters (D). The mean AXL was 18.76 ± 0.86 mm. The prevalence rate of high myopia was 17.7%. As myopia aggravated, the AXL increased (r = -0.498, P < 0.001). Compared with non-high myopia, highly myopic eyes had a greater AXL (P < 0.001), less RNFL thickness (P = 0.004), a higher incidence of PPA (P < 0.001), and elevated grades of fundus tessellation (P < 0.001). The binary logistic regression was performed, which showed PPA (odds ratio [OR] = 4.924, 95% confidence interval [CI] = 2.375-10.207, P < 0.001) and higher grades of fundus tessellation (OR = 1.865, 95% CI = 1.474-2.361, P < 0.001) were independent risk characteristics for high myopia. Conclusions: In NHPs, a higher grade of fundus tessellation and PPA were significant biomarkers of high myopia. Translational Relevance: The study demonstrates adult NHPs raised in conditioned rooms have a similar prevalence and highly consistent fundus changes with human beings, which strengthens the foundation for utilizing macaques as an animal model in high myopic studies.


Asunto(s)
Fondo de Ojo , Tomografía de Coherencia Óptica , Animales , Masculino , Femenino , Modelos Animales de Enfermedad , Disco Óptico/patología , Disco Óptico/diagnóstico por imagen , Atrofia Óptica/patología , Atrofia Óptica/epidemiología , Presión Intraocular/fisiología , Miopía Degenerativa/patología , Miopía Degenerativa/epidemiología , Fibras Nerviosas/patología , Longitud Axial del Ojo/patología , Células Ganglionares de la Retina/patología , Miopía/patología , Miopía/epidemiología , Miopía/veterinaria
7.
Transl Vis Sci Technol ; 13(5): 9, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38743409

RESUMEN

Purpose: To assess the diagnostic performance and structure-function association of retinal retardance (RR), a customized metric measured by a prototype polarization-sensitive optical coherence tomography (PS-OCT), across various stages of glaucoma. Methods: This cross-sectional pilot study analyzed 170 eyes from 49 healthy individuals and 68 patients with glaucoma. The patients underwent PS-OCT imaging and conventional spectral-domain optical coherence tomography (SD-OCT), as well as visual field (VF) tests. Parameters including RR and retinal nerve fiber layer thickness (RNFLT) were extracted from identical circumpapillary regions of the fundus. Glaucomatous eyes were categorized into early, moderate, or severe stages based on VF mean deviation (MD). The diagnostic performance of RR and RNFLT in discriminating glaucoma from controls was assessed using receiver operating characteristic (ROC) curves. Correlations among VF-MD, RR, and RNFLT were evaluated and compared within different groups of disease severity. Results: The diagnostic performance of both RR and RNFLT was comparable for glaucoma detection (RR AUC = 0.98, RNFLT AUC = 0.97; P = 0.553). RR showed better structure-function association with VF-MD than RNFLT (RR VF-MD = 0.68, RNFLT VF-MD = 0.58; z = 1.99; P = 0.047) in glaucoma cases, especially in severe glaucoma, where the correlation between VF-MD and RR (r = 0.73) was significantly stronger than with RNFLT (r = 0.43, z = 1.96, P = 0.050). In eyes with early and moderate glaucoma, the structure-function association was similar when using RNFLT and RR. Conclusions: RR and RNFLT have similar performance in glaucoma diagnosis. However, in patients with glaucoma especially severe glaucoma, RR showed a stronger correlation with VF test results. Further research is needed to validate RR as an indicator for severe glaucoma evaluation and to explore the benefits of using PS-OCT in clinical practice. Translational Relevance: We demonstrated that PS-OCT has the potential to evaluate the status of RNFL structural damage in eyes with severe glaucoma, which is currently challenging in clinics.


Asunto(s)
Glaucoma , Fibras Nerviosas , Células Ganglionares de la Retina , Tomografía de Coherencia Óptica , Campos Visuales , Humanos , Tomografía de Coherencia Óptica/métodos , Estudios Transversales , Masculino , Femenino , Persona de Mediana Edad , Fibras Nerviosas/patología , Proyectos Piloto , Campos Visuales/fisiología , Glaucoma/fisiopatología , Glaucoma/diagnóstico por imagen , Anciano , Células Ganglionares de la Retina/patología , Curva ROC , Pruebas del Campo Visual/métodos , Adulto , Presión Intraocular/fisiología
8.
Invest Ophthalmol Vis Sci ; 65(5): 36, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776115

RESUMEN

Purpose: The purpose of this study was to investigate the protective effect of CD38 deletion on retinal ganglion cells (RGCs) in a mouse retinal ischemia/reperfusion (I/R) model and an optic nerve crush (ONC) model, and to elucidate the underlying molecular mechanisms. Methods: Retinal I/R and ONC models were constructed in mice. PCR was used to identify the deletion of CD38 gene in mice, hematoxylin and eosin (H&E) staining was used to evaluate the changes in retinal morphology, and electroretinogram (ERG) was used to evaluate the changes in retinal function. The survival of RGCs and activation of retinal macroglia were evaluated by immunofluorescence staining. The expression of Sirt1, CD38, Ac-p65, Ac-p53, TNF-α, IL-1ß, and Caspase3 proteins in the retina was further evaluated by protein imprinting. Results: In retinal I/R and ONC models, CD38 deficiency reduced the loss of RGCs and activation of macroglia and protected the retinal function. CD38 deficiency increased the concentration of NAD+, reduced the degree of acetylation of NF-κB p65 and p53, and reduced expression of the downstream inflammatory cytokines TNFα, IL-1ß, and apoptotic protein Caspase3 in the retina in the ONC model. Intraperitoneal injection of the Sirt1 inhibitor EX-527 partially counteracted the effects of CD38 deficiency, suggesting that CD38 deficiency acts at least in part through the NAD+/Sirt1 pathway. Conclusions: CD38 plays an important role in the pathogenesis of retinal I/R and ONC injury. CD38 deletion protects RGCs by attenuating inflammatory responses and apoptosis through the NAD+/Sirt1 pathway.


Asunto(s)
ADP-Ribosil Ciclasa 1 , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , NAD , Traumatismos del Nervio Óptico , Daño por Reperfusión , Células Ganglionares de la Retina , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , ADP-Ribosil Ciclasa 1/metabolismo , ADP-Ribosil Ciclasa 1/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Ratones , NAD/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Electrorretinografía , Compresión Nerviosa , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Masculino , Transducción de Señal/fisiología
9.
Int Ophthalmol ; 44(1): 226, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758396

RESUMEN

PURPOSE: Glaucoma and multiple sclerosis (MS) can cause optic disc pathology and, in this way, affect optical coherence tomography (OCT) data. In this context, the objective of this study is to investigate the changes in the mean, quadrant, and sector data measured by OCT in glaucoma and MS patients. METHODS: The sample of this prospective cohort study consisted of 42 MS patients (84 eyes), 34 Primary open-angle glaucomas patients (67 eyes), and 24 healthy control subjects (48 eyes). The MS group was divided into two groups according to the presence of a history of optic neuritis. Accordingly, those with a history of optic neuritis were included in the MS ON group, and those without a history of optic neuritis were included in the MS NON group. The differences between these groups in the mean, quadrant, and sector data related to the retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) were evaluated. RESULTS: Superior nasal (SN), superior temporal (ST), inferior nasal (IN), and superior quadrant (SUP) values were significantly lower in the glaucoma group than in the MS group (p < 0.05). The mean superior GCC (GCC SUP) value was significantly lower in the MS ON group than in the glaucoma group (p < 0.05). On the other hand, SN, ST, inferior temporal (IT), IN, average RNFL (AVE RNFL), semi-average superior RNFL (SUP AVE RNFL), semi-average inferior RNFL (INF AVE RNFL), SUP, and inferior quadrant RNFL (INF) values were significantly lower in the glaucoma group than in the MS NON group (p < 0.05). CONCLUSION: RNFL and GCC parameters get thinner in MS and glaucoma patients. While the inferior and superior RNFL quadrants are more frequently affected in glaucoma patients, the affected quadrants vary according to the presence of a history of optic neuritis in MS patients. It is noteworthy that the GCC superior quadrant was thin in MS ON patients. The findings of this study indicate that OCT data may be valuable in the differential diagnosis of glaucoma and MS.


Asunto(s)
Presión Intraocular , Esclerosis Múltiple , Fibras Nerviosas , Disco Óptico , Células Ganglionares de la Retina , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Femenino , Masculino , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/complicaciones , Estudios Prospectivos , Células Ganglionares de la Retina/patología , Fibras Nerviosas/patología , Disco Óptico/patología , Disco Óptico/diagnóstico por imagen , Persona de Mediana Edad , Adulto , Presión Intraocular/fisiología , Glaucoma de Ángulo Abierto/diagnóstico , Campos Visuales/fisiología , Neuritis Óptica/diagnóstico
10.
Sci Rep ; 14(1): 10096, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698014

RESUMEN

Pou6f2 is a genetic connection between central corneal thickness (CCT) in the mouse and a risk factor for developing primary open-angle glaucoma. POU6F2 is also a risk factor for several conditions in humans, including glaucoma, myopia, and dyslexia. Recent findings demonstrate that POU6F2-positive retinal ganglion cells (RGCs) comprise a number of RGC subtypes in the mouse, some of which also co-stain for Cdh6 and Hoxd10. These POU6F2-positive RGCs appear to be novel of ON-OFF directionally selective ganglion cells (ooDSGCs) that do not co-stain with CART or SATB2 (typical ooDSGCs markers). These POU6F2-positive cells are sensitive to damage caused by elevated intraocular pressure. In the DBA/2J mouse glaucoma model, heavily-labeled POU6F2 RGCs decrease by 73% at 8 months of age compared to only 22% loss of total RGCs (labeled with RBPMS). Additionally, Pou6f2-/- mice suffer a significant loss of acuity and spatial contrast sensitivity along with an 11.4% loss of total RGCs. In the rhesus macaque retina, POU6F2 labels the large parasol ganglion cells that form the magnocellular (M) pathway. The association of POU6F2 with the M-pathway may reveal in part its role in human glaucoma, myopia, and dyslexia.


Asunto(s)
Dislexia , Glaucoma , Miopía , Células Ganglionares de la Retina , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Dislexia/genética , Dislexia/metabolismo , Dislexia/patología , Glaucoma/patología , Glaucoma/metabolismo , Glaucoma/genética , Presión Intraocular , Ratones Endogámicos DBA , Ratones Noqueados , Miopía/patología , Miopía/metabolismo , Miopía/genética , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Factores de Riesgo
11.
Am J Ophthalmol ; 259: 7-14, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38708401

RESUMEN

Purpose: To evaluate the diagnostic accuracy of retinal nerve fiber layer thickness (RNFLT) by spectral-domain optical coherence tomography (OCT) in primary open-angle glaucoma (POAG) in eyes of African (AD) and European descent (ED). Design: Comparative diagnostic accuracy analysis by race. Participants: 379 healthy eyes (125 AD and 254 ED) and 442 glaucomatous eyes (226 AD and 216 ED) from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. Methods: Spectralis (Heidelberg Engineering GmbH) and Cirrus (Carl Zeiss Meditec) OCT scans were taken within one year from each other. Main Outcome Measures: Diagnostic accuracy of RNFLT measurements. Results: Diagnostic accuracy for Spectralis-RNFLT was significantly lower in eyes of AD compared to those of ED (area under the receiver operating curve [AUROC]: 0.85 and 0.91, respectively, P=0.04). Results for Cirrus-RNFLT were similar but did not reach statistical significance (AUROC: 0.86 and 0.90 in AD and ED, respectively, P =0.33). Adjustments for age, central corneal thickness, axial length, disc area, visual field mean deviation, and intraocular pressure yielded similar results. Conclusions: OCT-RNFLT has lower diagnostic accuracy in eyes of AD compared to those of ED. This finding was generally robust across two OCT instruments and remained after adjustment for many potential confounders. Further studies are needed to explore the potential sources of this difference.


Asunto(s)
Glaucoma de Ángulo Abierto , Presión Intraocular , Fibras Nerviosas , Disco Óptico , Curva ROC , Células Ganglionares de la Retina , Tomografía de Coherencia Óptica , Campos Visuales , Población Blanca , Humanos , Glaucoma de Ángulo Abierto/etnología , Glaucoma de Ángulo Abierto/diagnóstico , Tomografía de Coherencia Óptica/métodos , Fibras Nerviosas/patología , Células Ganglionares de la Retina/patología , Femenino , Masculino , Persona de Mediana Edad , Presión Intraocular/fisiología , Campos Visuales/fisiología , Población Blanca/etnología , Reproducibilidad de los Resultados , Anciano , Disco Óptico/patología , Disco Óptico/diagnóstico por imagen , Enfermedades del Nervio Óptico/diagnóstico , Enfermedades del Nervio Óptico/etnología , Negro o Afroamericano/etnología , Área Bajo la Curva , Sensibilidad y Especificidad
12.
PLoS One ; 19(5): e0300621, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696393

RESUMEN

The prone position reduces mortality in severe cases of COVID-19 with acute respiratory distress syndrome. However, visual loss and changes to the peripapillary retinal nerve fiber layer (p-RNFL) and the macular ganglion cell layer and inner plexiform layer (m-GCIPL) have occurred in patients undergoing surgery in the prone position. Moreover, COVID-19-related eye problems have been reported. This study compared the p-RNFL and m-GCIPL thicknesses of COVID-19 patients who were placed in the prone position with patients who were not. This prospective longitudinal and case-control study investigated 15 COVID-19 patients placed in the prone position (the "Prone Group"), 23 COVID-19 patients not in the prone position (the "Non-Prone Group"), and 23 healthy, non-COVID individuals without ocular disease or systemic conditions (the "Control Group"). The p-RNFL and m-GCIPL thicknesses of the COVID-19 patients were measured at 1, 3, and 6 months and compared within and between groups. The result showed that the Prone and Non-Prone Groups had no significant differences in their p-RNFL thicknesses at the 3 follow-ups. However, the m-GCIPL analysis revealed significant differences in the inferior sector of the Non-Prone Group between months 1 and 3 (mean difference, 0.74 µm; P = 0.009). The p-RNFL analysis showed a significantly greater thickness at 6 months for the superior sector of the Non-Prone Group (131.61 ± 12.08 µm) than for the Prone Group (118.87 ± 18.21 µm; P = 0.039). The m-GCIPL analysis revealed that the inferior sector was significantly thinner in the Non-Prone Group than in the Control Group (at 1 month 80.57 ± 4.60 versus 83.87 ± 5.43 µm; P = 0.031 and at 6 months 80.48 ± 3.96 versus 83.87 ± 5.43 µm; P = 0.044). In conclusion, the prone position in COVID-19 patients can lead to early loss of p-RNFL thickness due to rising intraocular pressure, which is independent of the timing of prone positioning. Consequently, there is no increase in COVID-19 patients' morbidity burden.


Asunto(s)
COVID-19 , Fibras Nerviosas , Células Ganglionares de la Retina , Humanos , COVID-19/patología , COVID-19/complicaciones , Masculino , Posición Prona , Femenino , Persona de Mediana Edad , Células Ganglionares de la Retina/patología , Estudios de Casos y Controles , Fibras Nerviosas/patología , Estudios Prospectivos , SARS-CoV-2 , Adulto , Anciano , Tomografía de Coherencia Óptica , Retina/patología , Estudios Longitudinales
13.
Cells ; 13(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727311

RESUMEN

Glaucoma is a heterogeneous group of optic neuropathies characterized by a progressive degeneration of the retinal ganglion cells (RGCs), leading to irreversible vision loss. Nowadays, the traditional therapeutic approach to glaucoma consists of lowering the intraocular pressure (IOP), which does not address the neurodegenerative features of the disease. Besides animal models of glaucoma, there is a considerable need for in vitro experimental models to propose new therapeutic strategies for this ocular disease. In this study, we elucidated the pathological mechanisms leading to neuroretinal R28 cell death after exposure to glutamate and hydrogen peroxide (H2O2) in order to develop new therapeutic approaches for oxidative stress-induced retinal diseases, including glaucoma. We were able to show that glutamate and H2O2 can induce a decrease in R28 cell viability in a concentration-dependent manner. A cell viability of about 42% was found after exposure to 3 mM of glutamate and about 56% after exposure to 100 µM of H2O2 (n = 4). Label-free quantitative mass spectrometry analysis revealed differential alterations of 193 and 311 proteins in R28 cells exposed to 3 mM of glutamate and 100 µM of H2O2, respectively (FDR < 1%; p < 0.05). Bioinformatics analysis indicated that the protein changes were associated with the dysregulation of signaling pathways, which was similar to those observed in glaucoma. Thus, the proteomic alteration induced by glutamate was associated with the inhibition of the PI3K/AKT signaling pathway. On the other hand, H2O2-induced toxicity in R28 cells was linked to the activation of apoptosis signaling and the inhibition of the mTOR and ERK/MAPK signaling pathways. Furthermore, the data show a similarity in the inhibition of the EIF2 and AMPK signaling pathways and the activation of the sumoylation and WNT/ß-catenin signaling pathways in both groups. Our findings suggest that the exposure of R28 cells to glutamate and H2O2 could induce glaucoma-like neurodegenerative features and potentially provide a suitable tool for the development of new therapeutic strategies for retinal diseases.


Asunto(s)
Glaucoma , Ácido Glutámico , Peróxido de Hidrógeno , Estrés Oxidativo , Glaucoma/metabolismo , Glaucoma/patología , Glaucoma/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Animales , Peróxido de Hidrógeno/farmacología , Ácido Glutámico/metabolismo , Supervivencia Celular/efectos de los fármacos , Ratas , Línea Celular , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Transducción de Señal/efectos de los fármacos , Modelos Biológicos , Humanos
14.
J Transl Med ; 22(1): 447, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741132

RESUMEN

BACKGROUND: Retinal ischemia/reperfusion (RIR) is implicated in various forms of optic neuropathies, yet effective treatments are lacking. RIR leads to the death of retinal ganglion cells (RGCs) and subsequent vision loss, posing detrimental effects on both physical and mental health. Apigenin (API), derived from a wide range of sources, has been reported to exert protective effects against ischemia/reperfusion injuries in various organs, such as the brain, kidney, myocardium, and liver. In this study, we investigated the protective effect of API and its underlying mechanisms on RGC degeneration induced by retinal ischemia/reperfusion (RIR). METHODS: An in vivo model was induced by anterior chamber perfusion following intravitreal injection of API one day prior to the procedure. Meanwhile, an in vitro model was established through 1% oxygen and glucose deprivation. The neuroprotective effects of API were evaluated using H&E staining, spectral-domain optical coherence tomography (SD-OCT), Fluoro-Gold retrograde labeling, and Photopic negative response (PhNR). Furthermore, transmission electron microscopy (TEM) was employed to observe mitochondrial crista morphology and integrity. To elucidate the underlying mechanisms of API, the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, flow cytometry assay, western blot, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, JC-1 kit assay, dichlorofluorescein-diacetate (DCFH-DA) assay, as well as TMRE and Mito-tracker staining were conducted. RESULTS: API treatment protected retinal inner plexiform layer (IPL) and ganglion cell complex (GCC), and improved the function of retinal ganglion cells (RGCs). Additionally, API reduced RGC apoptosis and decreased lactate dehydrogenase (LDH) release by upregulating Bcl-2 and Bcl-xL expression, while downregulating Bax and cleaved caspase-3 expression. Furthermore, API increased mitochondrial membrane potential (MMP) and decreased extracellular reactive oxygen species (ROS) production. These effects were achieved by enhancing mitochondrial function, restoring mitochondrial cristae morphology and integrity, and regulating the expression of OPA1, MFN2, and DRP1, thereby regulating mitochondrial dynamics involving fusion and fission. CONCLUSION: API protects RGCs against RIR injury by modulating mitochondrial dynamics, promoting mitochondrial fusion and fission.


Asunto(s)
Apigenina , Dinámicas Mitocondriales , Fármacos Neuroprotectores , Daño por Reperfusión , Células Ganglionares de la Retina , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Apigenina/farmacología , Apigenina/uso terapéutico , Animales , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Dinámicas Mitocondriales/efectos de los fármacos , Masculino , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Modelos Biológicos , Ratones Endogámicos C57BL
15.
Exp Eye Res ; 243: 109907, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649019

RESUMEN

Sleep loss is common in modern society and is increasingly associated with eye diseases. However, the precise effects of sleep loss on retinal structure and function, particularly on the retinal circadian system, remain largely unexplored. This study investigates these effects using a chronic sleep deprivation (CSD) model in mice. Our investigation reveals that CSD significantly alters the retinal circadian transcriptome, leading to remarkable changes in the temporal patterns of enriched pathways. This perturbation extends to metabolic and immune-related transcriptomes, coupled with an accumulation of reactive oxygen species in the retina. Notably, CSD rhythmically affects the thickness of the ganglion cell complex, along with diurnal shifts in microglial migration and morphology within the retina. Most critically, we observe a marked decrease in both scotopic and photopic retinal function under CSD conditions. These findings underscore the broad impact of sleep deprivation on retinal health, highlighting its role in altering circadian gene expression, metabolism, immune response, and structural integrity. Our study provides new insights into the broader impact of sleep loss on retinal health.


Asunto(s)
Ritmo Circadiano , Ratones Endogámicos C57BL , Retina , Privación de Sueño , Transcriptoma , Animales , Privación de Sueño/fisiopatología , Privación de Sueño/metabolismo , Privación de Sueño/genética , Ratones , Ritmo Circadiano/fisiología , Masculino , Retina/metabolismo , Retina/fisiopatología , Modelos Animales de Enfermedad , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Electrorretinografía , Regulación de la Expresión Génica , Enfermedad Crónica
18.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 219-224, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650130

RESUMEN

Mitochondrial DNA damage in retinal ganglion cells (RGCs) may be closely related to lesions of glaucoma. RGCs were cultured with different concentrations of glucose and grouped into 3 groups, namely normal control (NC) group, Low-Glu group, and High-Glu group. Cell viability was measured with cell counting kit-8, and cell apoptosis was measured using flow cytometry. The DNA damage was measured with comet assay, and the morphological changes of damaged mitochondria in RGCs were observed using TEM. Western blot analyzed the expression of MRE11, RAD50, and NBS1 protein. Cell viability of RGCs in Low-Glu and High-Glu groups were lower than that of NC group in 48 and 96 h. The cell apoptosis in NC group was 4.9%, the Low-Glu group was 12.2% and High-Glu group was 24.4%. The comet imaging showed that NC cells did not have tailings, but the low-Glu and high-Glu group cells had tailings, indicating that the DNA of RGCs had been damaged. TEM, mitochondrial membrane potential, ROS, mitochondrial oxygen consumption, and ATP content detection results showed that RGCs cultured with high glucose occurred mitochondrial morphology changes and dysfunction. MRE11, RAD50, and NBS1 protein expression associated with DNA damage repair pathway in High-Glu group declined compared with Low-Glu group. Mitochondrial DNA damage caused by high glucose will result in apoptosis of retinal ganglion cells in glaucoma.


Asunto(s)
Apoptosis , Supervivencia Celular , Daño del ADN , ADN Mitocondrial , Glucosa , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno , Células Ganglionares de la Retina , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Glucosa/toxicidad , Glucosa/farmacología , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Adenosina Trifosfato/metabolismo , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ácido Anhídrido Hidrolasas/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ensayo Cometa , Animales
19.
J Neuroinflammation ; 21(1): 98, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632569

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is associated with the development of visual system disorders. Visual deficits can present with delay and worsen over time, and may be associated with an ongoing neuroinflammatory response that is known to occur after TBI. Complement system activation is strongly associated with the neuroinflammatory response after TBI, but whether it contributes to vision loss after TBI is unexplored. METHODS: Acute and chronic neuroinflammatory changes within the dorsal lateral geniculate nucleus (dLGN) and retina were investigated subsequent to a moderate to severe murine unilateral controlled cortical impact. Neuroinflammatory and histopathological outcomes were interpreted in the context of behavioral and visual function data. To investigate the role of complement, cohorts were treated after TBI with the complement inhibitor, CR2-Crry. RESULTS: At 3 days after TBI, complement component C3 was deposited on retinogeniculate synapses in the dLGN both ipsilateral and contralateral to the lesion, which was reduced in CR2-Crry treated animals. This was associated with microglia morphological changes in both the ipsilateral and contralateral dLGN, with a less ramified phenotype in vehicle compared to CR2-Crry treated animals. Microglia in vehicle treated animals also had a greater internalized VGlut2 + synaptic volume after TBI compared to CR2-Crry treated animals. Microglia morphological changes seen acutely persisted for at least 49 days after injury. Complement inhibition also reduced microglial synaptic internalization in the contralateral dLGN and increased the association between VGLUT2 and PSD95 puncta, indicating preservation of intact synapses. Unexpectedly, there were no changes in the thickness of the inner retina, retinal nerve fiber layer or retinal ganglion layer. Neuropathological changes in the dLGN were accompanied by reduced visual acuity at subacute and chronic time points after TBI, with improvement seen in CR2-Crry treated animals. CONCLUSION: TBI induces complement activation within the dLGN and promotes microglial activation and synaptic internalization. Complement inhibition after TBI in a clinically relevant paradigm reduces complement activation, maintains a more surveillance-like microglia phenotype, and preserves synaptic density within the dLGN. Together, the data indicate that complement plays a key role in the development of visual deficits after TBI via complement-dependent microglial phagocytosis of synapses within the dLGN.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Animales , Ratones , Lesiones Traumáticas del Encéfalo/patología , Complemento C3/genética , Activación de Complemento , Células Ganglionares de la Retina/patología , Inflamación/complicaciones , Proteínas Recombinantes de Fusión
20.
Optom Vis Sci ; 101(4): 224-231, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38684065

RESUMEN

PURPOSE: This study aimed to demonstrate that the pattern and degree of capillary bed dropout in early glaucoma appear different on OCT-A superficial plexus en-face slabs compared with retinal ischemia. RNFL loss associated with retinal ischemia in diabetic patients may be explained and accounted for by overlying the RNFL deviation map on a superficial plexus en-face montage. CASE REPORTS: Three middle-aged White men with diabetes mellitus showed cup-to-disc ratios of approximately 0.7 and RNFL and ganglion thinning. Each patient had several Cirrus OCT and OCT-A scans taken of the posterior pole. The OCT-A en-face images demonstrated specific patterns of superficial capillary dropout. The appearance of superficial plexus capillary dropout in one case of glaucoma is contrasted against two cases of retinal ischemia. CONCLUSIONS: Early glaucoma appears to be associated with incomplete capillary bed dropout that extends from macular regions to the disc in a wedge- or arc-shaped pattern. Diabetic retinal ischemia appears to be associated with well-defined patchy and polygonal pockets of complete capillary bed obliteration that may not extend back to the disc. If an RNFL deviation map is superimposed over the superficial plexus en-face montage, areas of RNFL loss may correlate with and thus be well accounted for by areas of retinal ischemia in cases with RNFL thinning likely from ischemia. This approach may supplement inspection of OCT B-scans for focal retinal thinning when trying to differentiate RNFL and ganglion cell loss from retinal ischemia versus glaucoma in patients with diabetes. Formal research studies are needed to validate our observations and proposed use of OCT-A together with OCT in these patients.


Asunto(s)
Retinopatía Diabética , Isquemia , Fibras Nerviosas , Células Ganglionares de la Retina , Tomografía de Coherencia Óptica , Humanos , Masculino , Tomografía de Coherencia Óptica/métodos , Persona de Mediana Edad , Isquemia/diagnóstico , Retinopatía Diabética/diagnóstico , Fibras Nerviosas/patología , Células Ganglionares de la Retina/patología , Vasos Retinianos/patología , Vasos Retinianos/diagnóstico por imagen , Glaucoma/diagnóstico , Glaucoma/fisiopatología , Diagnóstico Diferencial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA