Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.380
Filtrar
1.
Nat Commun ; 15(1): 4200, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760342

RESUMEN

The developmental fate of cells is regulated by intrinsic factors and the extracellular environment. The extracellular matrix (matrisome) delivers chemical and mechanical cues that can modify cellular development. However, comprehensive understanding of how matrisome factors control cells in vivo is lacking. Here we show that specific matrisome factors act individually and collectively to control germ cell development. Surveying development of undifferentiated germline stem cells through to mature oocytes in the Caenorhabditis elegans germ line enabled holistic functional analysis of 443 conserved matrisome-coding genes. Using high-content imaging, 3D reconstruction, and cell behavior analysis, we identify 321 matrisome genes that impact germ cell development, the majority of which (>80%) are undescribed. Our analysis identifies key matrisome networks acting autonomously and non-autonomously to coordinate germ cell behavior. Further, our results demonstrate that germ cell development requires continual remodeling of the matrisome landscape. Together, this study provides a comprehensive platform for deciphering how extracellular signaling controls cellular development and anticipate this will establish new opportunities for manipulating cell fates.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Diferenciación Celular , Matriz Extracelular , Células Germinativas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Matriz Extracelular/metabolismo , Células Germinativas/metabolismo , Células Germinativas/citología , Diferenciación Celular/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Linaje de la Célula/genética , Oocitos/metabolismo , Oocitos/citología
3.
Cell Death Dis ; 14(12): 845, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114454

RESUMEN

Glutathione synthetase (GSS) catalyzes the final step in the synthesis of glutathione (GSH), a well-established antioxidant. Research on the specific roles of the Gss gene during spermatogenesis remains limited due to the intricate structure of testis. In this study, we identified pachytene spermatocytes as the primary site of GSS expression and generated a mouse model with postnatal deletion of Gss using Stra8-Cre (S8) to investigate the role of GSS in germ cells. The impact of Gss knockout on reducing male fertility is age-dependent and caused by ferroptosis in the testis. The 2-month-old S8/Gss-/- male mice exhibited normal fertility, due to a compensatory increase in GPX4, which prevented the accumulation of ROS. With aging, there was a decline in GPX4 and an increase in ALOX15 levels observed in 8-month-old S8/Gss-/- mice, resulting in the accumulation of ROS, lipid peroxidation, and ultimately testicular ferroptosis. We found that testicular ferroptosis did not affect spermatogonia, but caused meiosis disruption and acrosome heterotopia. Then the resulting aberrant sperm showed lower concentration and abnormal morphology, leading to reduced fertility. Furthermore, these injuries could be functionally rescued by inhibiting ferroptosis through intraperitoneal injection of GSH or Fer-1. In summary, Gss in germ cells play a crucial role in the resistance to oxidative stress injury in aged mice. Our findings deepen the understanding of ferroptosis during spermatogenesis and suggest that inhibiting ferroptosis may be a potential strategy for the treatment of male infertility.


Asunto(s)
Ferroptosis , Glutatión Sintasa , Infertilidad Masculina , Testículo , Glutatión Sintasa/deficiencia , Glutatión Sintasa/genética , Glutatión Sintasa/metabolismo , Espermatocitos/metabolismo , Infertilidad Masculina/genética , Testículo/enzimología , Testículo/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Ferroptosis/genética , Técnicas de Inactivación de Genes , Células Germinativas/citología , Meiosis/genética , Espermatogénesis/genética , Acrosoma/patología , Autofagia/genética , Masculino , Femenino , Animales , Ratones , Factores de Edad
4.
Funct Integr Genomics ; 23(3): 214, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386239

RESUMEN

In eukaryotes, the genome does not emerge in a specific shape but rather as a hierarchial bundle within the nucleus. This multifaceted genome organization consists of multiresolution cellular structures, such as chromosome territories, compartments, and topologically associating domains, which are frequently defined by architecture, design proteins including CTCF and cohesin, and chromatin loops. This review briefly discusses the advances in understanding the basic rules of control, chromatin folding, and functional areas in early embryogenesis. With the use of chromosome capture techniques, the latest advancements in technologies for visualizing chromatin interactions come close to revealing 3D genome formation frameworks with incredible detail throughout all genomic levels, including at single-cell resolution. The possibility of detecting variations in chromatin architecture might open up new opportunities for disease diagnosis and prevention, infertility treatments, therapeutic approaches, desired exploration, and many other application scenarios.


Asunto(s)
Cromosomas , Genoma , Células Germinativas , Células Germinativas/citología , Cromatina , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Diferenciación Celular , Humanos , Animales
5.
Cell Biol Int ; 47(8): 1314-1326, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37178380

RESUMEN

Primordial germ cells (PGCs), are the source of gametes in vertebrates. There are similarities in the development of PGCs of reptiles with avian and mammalian species PGCs development. PGCs culture has been performed for avian and mammalian species but there is no report for reptilian PGCs culture. In vitro culture of PGCs is needed to produce transgenic animals, preservation of endangered animals and for studies on cell behaviour and research on fertility. Reptiles are traded as exotic pets and a source of food and they are valuable for their skin and they are useful as model for medical research. Transgenic reptile has been suggested to be useful for pet industry and medical research. In this research different aspects of PGCs development was compared in three main classes of vertebrates including mammalian, avian and reptilian species. It is proposed that a discussion on similarities between reptilian PGCs development with avian and mammalian species helps to find clues for studies of reptilian PGCs development details and finding an efficient protocol for in vitro culture of reptilian PG.


Asunto(s)
Técnicas de Cultivo de Célula , Especies en Peligro de Extinción , Células Germinativas , Reptiles , Células Germinativas/citología , Reptiles/genética , Reptiles/crecimiento & desarrollo , Criopreservación , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Epigénesis Genética , Animales
6.
Science ; 380(6640): 55-58, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37023182

RESUMEN

Multicellular organisms typically develop from a single fertilized egg and therefore consist of clonal cells. We report an extraordinary reproductive system in the yellow crazy ant. Males are chimeras of haploid cells from two divergent lineages: R and W. R cells are overrepresented in the males' somatic tissues, whereas W cells are overrepresented in their sperm. Chimerism occurs when parental nuclei bypass syngamy and divide separately within the same egg. When syngamy takes place, the diploid offspring either develops into a queen when the oocyte is fertilized by an R sperm or into a worker when fertilized by a W sperm. This study reveals a mode of reproduction that may be associated with a conflict between lineages to preferentially enter the germ line.


Asunto(s)
Hormigas , Quimerismo , Reproducción , Animales , Masculino , Hormigas/citología , Hormigas/genética , Hormigas/crecimiento & desarrollo , Diploidia , Semen/citología , Células Germinativas/citología
7.
J Cell Physiol ; 238(3): 610-630, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36745473

RESUMEN

Currently, studies have analyzed the formation mechanism of primordial germ cell (PGC) at the transcriptional level, but few at the protein level, which made the mechanism study of PGC formation not systematic. Here, we screened differential expression proteins (DEPs) regulated PGC formation by label-free proteomics with a novel sampling strategy of embryonic stem cells and PGC. Analysis of DEPs showed that multiple key events were involved, such as the transition from glycolysis to oxidative phosphorylation, activation of autophagy, low DNA methylation ensured the normal formation of PGC, beyond that, protein ubiquitination also played an important role in PGC formation. Importantly, the progression of such events was attributed to the inconsistency between transcription and translation. Interestingly, MAPK, PPAR, Wnt, and JAK signaling pathways not only interact with each other but also interact with different events to participate in the formation of PGC, which formed the PGC regulatory network. According to the regulatory network, the efficiency of PGC formation in induction system can be significantly improved. In conclusion, our results indicate that chicken PGC formation is a complex process involving multiple events and signals, which provide technical support for the specific application in PGC research.


Asunto(s)
Pollos , Células Germinativas , Proteoma , Proteómica , Animales , Diferenciación Celular , Metilación de ADN , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Fosforilación Oxidativa , Glucólisis , Autofagia , Ubiquitinación , Transducción de Señal , Proteoma/análisis , Proteoma/biosíntesis , Proteoma/metabolismo
8.
Nucleic Acids Res ; 50(13): 7310-7325, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35776114

RESUMEN

The nuanced mechanisms driving primordial germ cells (PGC) specification remain incompletely understood since genome-wide transcriptional regulation in developing PGCs has previously only been defined indirectly. Here, using SLAMseq analysis, we determined genome-wide transcription rates during the differentiation of embryonic stem cells (ESCs) to form epiblast-like (EpiLC) cells and ultimately PGC-like cells (PGCLCs). This revealed thousands of genes undergoing bursts of transcriptional induction and rapid shut-off not detectable by RNAseq analysis. Our SLAMseq datasets also allowed us to infer RNA turnover rates, which revealed thousands of mRNAs stabilized and destabilized during PGCLC specification. mRNAs tend to be unstable in ESCs and then are progressively stabilized as they differentiate. For some classes of genes, mRNA turnover regulation collaborates with transcriptional regulation, but these processes oppose each other in a surprisingly high frequency of genes. To test whether regulated mRNA turnover has a physiological role in PGC development, we examined three genes that we found were regulated by RNA turnover: Sox2, Klf2 and Ccne1. Circumvention of their regulated RNA turnover severely impaired the ESC-to-EpiLC and EpiLC-to-PGCLC transitions. Our study demonstrates the functional importance of regulated RNA stability in germline development and provides a roadmap of transcriptional and post-transcriptional regulation during germline specification.


Asunto(s)
Células Germinativas , ARN , Animales , Diferenciación Celular , Células Madre Embrionarias , Células Germinativas/citología , Estratos Germinativos , Ratones , Estabilidad del ARN , ARN Mensajero/genética , Transcripción Genética
9.
Nature ; 607(7919): 540-547, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794482

RESUMEN

Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.


Asunto(s)
Linaje de la Célula , Células Germinativas , Ovario , Diferenciación Sexual , Análisis de la Célula Individual , Testículo , Animales , Cromatina/genética , Cromatina/metabolismo , Femenino , Células Germinativas/citología , Células Germinativas/metabolismo , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Humanos , Inmunoglobulinas , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana , Proteínas de la Membrana , Ratones , Microscopía Fluorescente , Ovario/citología , Ovario/embriología , Factor de Transcripción PAX8 , Embarazo , Primer Trimestre del Embarazo , Segundo Trimestre del Embarazo , Receptores Inmunológicos , Diferenciación Sexual/genética , Testículo/citología , Testículo/embriología , Transcriptoma
10.
Science ; 376(6595): 818-823, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35587967

RESUMEN

In many vertebrate and invertebrate organisms, gametes develop within groups of interconnected cells called germline cysts formed by several rounds of incomplete divisions. We found that loss of the deubiquitinase USP8 gene in Drosophila can transform incomplete divisions of germline cells into complete divisions. Conversely, overexpression of USP8 in germline stem cells is sufficient for the reverse transformation from complete to incomplete cytokinesis. The ESCRT-III proteins CHMP2B and Shrub/CHMP4 are targets of USP8 deubiquitinating activity. In Usp8 mutant sister cells, ectopic recruitment of ESCRT proteins at intercellular bridges causes cysts to break apart. A Shrub/CHMP4 variant that cannot be ubiquitinated does not localize at abscission bridges and cannot complete abscission. Our results uncover ubiquitination of ESCRT-III as a major switch between two types of cell division.


Asunto(s)
División Celular , Proteínas de Drosophila , Drosophila melanogaster , Complejos de Clasificación Endosomal Requeridos para el Transporte , Proteasas Ubiquitina-Específicas , Animales , Citocinesis/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Femenino , Células Germinativas/citología , Células Germinativas/fisiología , Masculino , Proteínas del Tejido Nervioso/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
11.
J Ovarian Res ; 15(1): 37, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35321734

RESUMEN

BACKGROUND: We recently published evidence to suggest that two populations of stem cells including very small embryonic-like stem cells (VSELs) and ovarian stem cells (OSCs) in ovary surface epithelium (OSE) undergo proliferation/differentiation, germ cell nests (GCN) formation, meiosis and eventually differentiate into oocytes that assemble as primordial follicles on regular basis during estrus cycle. Despite presence of stem cells, follicles get exhausted with advancing age in mice and result in senescence equivalent to menopause in women. Stem cells in aged ovaries can differentiate into oocytes upon transplantation into young ovaries, however, it is still not well understood why follicles get depleted with advancing age despite the presence of stem cells. The aim of the present study was to study stem cells and GCN in aged ovaries. METHODS: OSE cells from aged mice (> 18 months equivalent to > 55 years old women) were enzymatically separated and used to study stem cells. Viable (7-AAD negative) VSELs in the size range of 2-6 µm with a surface phenotype of Lin-CD45-Sca-1+ were enumerated by flow cytometry. Immuno-fluorescence and RT-PCR analysis were done to study stem/progenitor cells (OCT-4, MVH, SCP3) and transcripts specific for VSELs (Oct-4A, Sox-2, Nanog), primordial germ cells (Stella), germ cells (Oct-4, Mvh), early meiosis (Mlh1, Scp1) and ring canals (Tex14). RESULTS: Putative VSELs and OSCs were detected as darkly stained, spherical cells with high nucleo-cytoplasmic ratio along with germ cells nests (GCN) in Hematoxylin & Eosin stained OSE cells smears. Germ cells in GCN with distinct cytoplasmic continuity expressed OCT-4, MVH and SCP3. Transcripts specific for stem cells, early meiosis and ring canals were detected by RT-PCR studies. CONCLUSION: Rather than resulting as a consequence of accelerated loss of primordial follicle and their subsequent depletion, ovarian senescence/menopause occurs as a result of stem cells dysfunction. VSELs and OSCs exist along with increased numbers of GCNs arrested in pre-meiotic or early meiotic stage in aged ovaries and primordial follicle assembly is blocked possibly due to age-related changes in their microenvironment.


Asunto(s)
Células Germinativas , Folículo Ovárico , Ovario , Animales , Senescencia Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Femenino , Células Germinativas/citología , Células Germinativas/fisiología , Humanos , Ratones , Oocitos , Folículo Ovárico/crecimiento & desarrollo , Ovario/citología , Ovario/fisiología , Factores de Transcripción
12.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35179180

RESUMEN

Specification of primordial germ cells requires a proportion of the cells in the posterior of the epiblast to reacquire pluripotency. A new paper in Development describes how OVOL2 is involved in regulating the balance between mesodermal fate and germ cell fate during gastrulation. We caught up with the first author, Yuki Naitou, and corresponding author, Katsuhiko Hayashi (Osaka University), to find out more about the paper and their future research.


Asunto(s)
Células Germinativas/metabolismo , Investigadores/psicología , Factores de Transcripción/metabolismo , Animales , Autoria , Transición Epitelial-Mesenquimal , Gastrulación , Células Germinativas/citología , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Humanos , Masculino , Mesodermo/citología , Mesodermo/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
13.
Cell Mol Life Sci ; 79(3): 136, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35181820

RESUMEN

Sertoli cells (Sc) are the sole target of follicle-stimulating hormone (FSH) in the testis and attain functional maturation post-birth to significantly augment germ cell (Gc) division and differentiation at puberty. Despite having an operational microRNA (miRNA) machinery, limited information is available on miRNA-mediated regulation of Sc maturation and male fertility. We have shown before that miR-92a-3p levels decline in pubertal rat Sc. In response to FSH treatment, the expressions of FSH Receptor, Claudin11 and Klf4 were found to be elevated in pubertal rat Sc coinciding with our finding of FSH-induced decline in miR-92a-3p levels. To investigate the association of miR-92a-3p and spermatogenesis, we generated transgenic mice where such pubertal decline of miR-92a-3p was prevented by its overexpression in pubertal Sc under proximal Rhox5 promoter, which is known to be activated specifically at puberty, in Sc. Our in vivo observations provided substantial evidence that FSH-induced decline in miR-92a-3p expression during Sc maturation acts as an essential prerequisite for the pubertal onset of spermatogenesis. Elevated expression of miR-92a-3p in post-pubertal testes results into functionally compromised Sc, leading to impairment of the blood-testis barrier formation and apoptosis of pre-meiotic Gc, ultimately culminating into infertility. Collectively, our data suggest that regulation of miR-92a-3p expression is crucial for Sc-mediated induction of active spermatogenesis at puberty and regulation of male fertility.


Asunto(s)
Diferenciación Celular , Fertilidad , Hormona Folículo Estimulante/farmacología , Células Germinativas/citología , MicroARNs/genética , Células de Sertoli/citología , Testículo/citología , Animales , Femenino , Células Germinativas/efectos de los fármacos , Células Germinativas/metabolismo , Hormonas/farmacología , Masculino , Ratones , Ratones Transgénicos , Ratas , Ratas Wistar , Receptores de HFE/genética , Receptores de HFE/metabolismo , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Maduración Sexual , Espermatogénesis , Testículo/efectos de los fármacos , Testículo/metabolismo
14.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35043944

RESUMEN

Establishment of a healthy ovarian reserve is contingent upon numerous regulatory pathways during embryogenesis. Previously, mice lacking TBP-associated factor 4b (Taf4b) were shown to exhibit a diminished ovarian reserve. However, potential oocyte-intrinsic functions of TAF4b have not been examined. Here, we use a combination of gene expression profiling and chromatin mapping to characterize TAF4b-dependent gene regulatory networks in mouse oocytes. We find that Taf4b-deficient oocytes display inappropriate expression of meiotic, chromatin modification/organization, and X-linked genes. Furthermore, dysregulated genes in Taf4b-deficient oocytes exhibit an unexpected amount of overlap with dysregulated genes in oocytes from XO female mice, a mouse model of Turner Syndrome. Using Cleavage Under Targets and Release Using Nuclease (CUT&RUN), we observed TAF4b enrichment at genes involved in chromatin remodeling and DNA repair, some of which are differentially expressed in Taf4b-deficient oocytes. Interestingly, TAF4b target genes were enriched for Sp/Klf family and NFY target motifs rather than TATA-box motifs, suggesting an alternative mode of promoter interaction. Together, our data connect several gene regulatory nodes that contribute to the precise development of the mammalian ovarian reserve.


Asunto(s)
Redes Reguladoras de Genes/genética , Oogénesis , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Animales , Reparación del ADN , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Células Germinativas/citología , Células Germinativas/metabolismo , Meiosis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/citología , Oocitos/metabolismo , Regiones Promotoras Genéticas , Factores Asociados con la Proteína de Unión a TATA/deficiencia , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/deficiencia , Factor de Transcripción TFIID/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo
15.
Cell Mol Life Sci ; 79(2): 91, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35072818

RESUMEN

Mitochondria tailor their morphology to execute their specialized functions in different cell types and/or different environments. During spermatogenesis, mitochondria undergo continuous morphological and distributional changes with germ cell development. Deficiencies in these processes lead to mitochondrial dysfunction and abnormal spermatogenesis, thereby causing male infertility. In recent years, mitochondria have attracted considerable attention because of their unique role in the regulation of piRNA biogenesis in male germ cells. In this review, we describe the varied characters of mitochondria and focus on key mitochondrial factors that play pivotal roles in the regulation of spermatogenesis, from primordial germ cells to spermatozoa, especially concerning metabolic shift, stemness and reprogramming, mitochondrial transformation and rearrangement, and mitochondrial defects in human sperm. Further, we discuss the molecular mechanisms underlying these processes.


Asunto(s)
Diferenciación Celular , Células Germinativas/citología , Infertilidad Masculina/patología , Mitocondrias/fisiología , Enfermedades Mitocondriales/fisiopatología , Espermatozoides/citología , Animales , Humanos , Infertilidad Masculina/etiología , Infertilidad Masculina/metabolismo , Masculino
16.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35029669

RESUMEN

In mammals, primordial germ cells (PGCs), the origin of the germ line, are specified from the epiblast at the posterior region where gastrulation simultaneously occurs, yet the functional relationship between PGC specification and gastrulation remains unclear. Here, we show that OVOL2, a transcription factor conserved across the animal kingdom, balances these major developmental processes by repressing the epithelial-to-mesenchymal transition (EMT) that drives gastrulation and the upregulation of genes associated with PGC specification. Ovol2a, a splice variant encoding a repressor domain, directly regulates EMT-related genes and, consequently, induces re-acquisition of potential pluripotency during PGC specification, whereas Ovol2b, another splice variant missing the repressor domain, directly upregulates genes associated with PGC specification. Taken together, these results elucidate the molecular mechanism underlying allocation of the germ line among epiblast cells differentiating into somatic cells through gastrulation. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Desarrollo Embrionario/genética , Gastrulación/genética , Células Germinativas/metabolismo , Factores de Transcripción/metabolismo , Animales , Cadherinas/genética , Cadherinas/metabolismo , Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Células Germinativas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Regulación hacia Arriba , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
17.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35037688

RESUMEN

A limited BMP signaling range in the stem cell niche of the ovary protects against germ cell tumors and promotes germ cell homeostasis. The canonical repressor of BMP signaling in both the Drosophila embryo and wing disc is the transcription factor Brinker (Brk), yet the expression and potential role of Brk in the germarium has not previously been described. Here, we find that brk expression requires a promoter-proximal element (PPE) to support long-distance enhancer action as well as to drive expression in the germarium. Furthermore, PPE subdomains have different activities; in particular, the proximal portion acts as a damper to regulate brk levels precisely. Using PPE mutants as well as tissue-specific RNA interference and overexpression, we show that altering brk expression within either the soma or the germline affects germ cell homeostasis. Remarkably, we find that Decapentaplegic (Dpp), the main BMP ligand and canonical antagonist of Brk, is upregulated by Brk in the escort cells of the germarium, demonstrating that Brk can positively regulate this pathway.


Asunto(s)
Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Proteínas Represoras/metabolismo , Animales , Diferenciación Celular , Drosophila , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Embrión no Mamífero/metabolismo , Femenino , Células Germinativas/citología , Ovario/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Bicatenario/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Transducción de Señal , Regulación hacia Arriba , Alas de Animales/metabolismo
18.
Elife ; 112022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35023826

RESUMEN

p53 gene family members in humans and other organisms encode a large number of protein isoforms whose functions are largely undefined. Using Drosophila as a model, we find that a p53B isoform is expressed predominantly in the germline where it colocalizes with p53A into subnuclear bodies. It is only p53A, however, that mediates the apoptotic response to ionizing radiation in the germline and soma. In contrast, p53A and p53B are both required for the normal repair of meiotic DNA breaks, an activity that is more crucial when meiotic recombination is defective. We find that in oocytes with persistent DNA breaks p53A is also required to activate a meiotic pachytene checkpoint. Our findings indicate that Drosophila p53 isoforms have DNA lesion and cell type-specific functions, with parallels to the functions of mammalian p53 family members in the genotoxic stress response and oocyte quality control.


Asunto(s)
Proteínas de Drosophila , Genoma de los Insectos/genética , Oocitos/fisiología , Proteína p53 Supresora de Tumor , Animales , Apoptosis/genética , Daño del ADN/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Células Germinativas/citología , Masculino , Meiosis/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Radiación Ionizante , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
19.
Elife ; 112022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074046

RESUMEN

Chickens are an important resource for smallholder farmers who raise locally adapted, genetically distinct breeds for eggs and meat. The development of efficient reproductive technologies to conserve and regenerate chicken breeds safeguards existing biodiversity and secures poultry genetic resources for climate resilience, biosecurity, and future food production. The majority of the over 1600 breeds of chicken are raised in low and lower to middle income countries under resource-limited, small-scale production systems, which necessitates a low-tech, cost-effective means of conserving diversity is needed. Here, we validate a simple biobanking technique using cryopreserved embryonic chicken gonads. The gonads are quickly isolated, visually sexed, pooled by sex, and cryopreserved. Subsequently, the stored material is thawed and dissociated before injection into sterile host chicken embryos. By using pooled GFP and RFP-labelled donor gonadal cells and Sire Dam Surrogate mating, we demonstrate that chicks deriving entirely from male and female donor germ cells are hatched. This technology will enable ongoing efforts to conserve chicken genetic diversity for both commercial and smallholder farmers, and to preserve existing genetic resources at poultry research facilities.


Asunto(s)
Cruzamiento/métodos , Pollos/genética , Criopreservación/veterinaria , Células Germinativas/citología , Infertilidad/veterinaria , Animales , Bancos de Muestras Biológicas , Pollos/fisiología , Análisis Costo-Beneficio , Femenino , Variación Genética , Masculino
20.
Chem Biol Interact ; 353: 109797, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34998821

RESUMEN

Although several studies have reported testicular impairments caused by cadmium (Cd) or obesity alone, the combined effect of Cd and obesity on the testes and its underlying mechanism remains unclear. We examined the combined effect of whole-life exposure to low-dose Cd started at preconception and post-weaning high-fat diet (HFD) on the testes of offspring mice. At weaning, male offspring parented with and without exposure to low-dose Cd were continued on the same drinking water regimen as their parents and fed with either a normal diet (ND) or HFD for 10 or 24 weeks. Whole-life exposure to Cd resulted in its accumulation in testes, and HFD induced obesity and lipid metabolism disorder. Exposure to Cd or HFD alone significantly decreased Johnsen scores, disrupted testicular structure, and increased germ cell apoptosis at both 10 and 24 weeks. However, co-exposure to Cd and HFD did not induce the toxic effects that were induced by either alone, as revealed by preserved testicular structure and spermatogenesis, lack of significant apoptosis, and increased cell proliferation. Mechanistically, the combined effects of low-dose Cd and HFD consumption were associated with the activation of the JAK/STAT pathway. These findings suggest that co-exposure to low-dose Cd and HFD did not cause Cd- or HFD-induced testicular injury, probably because of the activation of the JAK/STAT pathway to prevent germ cell apoptosis.


Asunto(s)
Cadmio/toxicidad , Dieta Alta en Grasa , Espermatogénesis/efectos de los fármacos , Testículo/fisiología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Cadmio/análisis , Femenino , Células Germinativas/citología , Células Germinativas/metabolismo , Quinasas Janus/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Estrés Oxidativo/efectos de los fármacos , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Testículo/anatomía & histología , Testículo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA