Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 151(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39037017

RESUMEN

Following up on our previous observation that early B cell factor (EBF) sites are enriched in open chromatin of the developing sensory epithelium of the mouse cochlea, we investigated the effect of deletion of Ebf1 on inner ear development. We used a Cre driver to delete Ebf1 at the otocyst stage before development of the cochlea. We examined the cochlea at postnatal day (P) 1 and found that the sensory epithelium had doubled in size but the length of the cochlear duct was unaffected. We also found that deletion of Ebf1 led to ectopic sensory patches in the Kölliker's organ. Innervation of the developing organ of Corti was disrupted with no obvious spiral bundles. The ectopic patches were also innervated. All the extra hair cells (HCs) within the sensory epithelium and Kölliker's organ contained mechanoelectrical transduction channels, as indicated by rapid uptake of FM1-43. The excessive numbers of HCs were still present in the adult Ebf1 conditional knockout (cKO) animal. The animals had significantly elevated auditory brainstem response thresholds, suggesting that this gene is essential for hearing development.


Asunto(s)
Células Ciliadas Auditivas , Ratones Noqueados , Órgano Espiral , Transactivadores , Animales , Transactivadores/genética , Transactivadores/metabolismo , Órgano Espiral/metabolismo , Células Ciliadas Auditivas/metabolismo , Ratones , Sordera/genética , Eliminación de Gen , Células Laberínticas de Soporte/metabolismo , Cóclea/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico
2.
Stem Cells Transl Med ; 13(7): 661-677, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709826

RESUMEN

Loss of cochlear hair cells (HCs) leads to permanent hearing loss in mammals, and regenerative medicine is regarded as an ideal strategy for hearing recovery. Limited genetic and pharmaceutical approaches for HC regeneration have been established, and the existing strategies cannot achieve recovery of auditory function. A promising target to promote HC regeneration is MEK/ERK signaling because dynamic shifts in its activity during the critical stages of inner ear development have been observed. Here, we first showed that MEK/ERK signaling is activated specifically in supporting cells (SCs) after aminoglycoside-induced HC injury. We then selected 4 MEK/ERK signaling inhibitors, and PD0325901 (PD03) was found to induce the transdifferentiation of functional supernumerary HCs from SCs in the neonatal mammalian cochlear epithelium. We next found that PD03 facilitated the generation of HCs in inner ear organoids. Through genome-wide high-throughput RNA sequencing and verification, we found that the Notch pathway is the downstream target of MEK/ERK signaling. Importantly, delivery of PD03 into the inner ear induced mild HC regeneration in vivo. Our study thus reveals the importance of MEK/ERK signaling in cell fate determination and suggests that PD03 might serve as a new approach for HC regeneration.


Asunto(s)
Transdiferenciación Celular , Células Ciliadas Auditivas , Sistema de Señalización de MAP Quinasas , Receptores Notch , Animales , Transdiferenciación Celular/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/citología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Receptores Notch/metabolismo , Benzamidas/farmacología , Difenilamina/análogos & derivados , Difenilamina/farmacología , Células Laberínticas de Soporte/metabolismo
3.
Cells ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38727276

RESUMEN

In mammals, hearing loss is irreversible due to the lack of the regenerative capacity of the auditory epithelium. However, stem/progenitor cells in mammalian cochleae may be a therapeutic target for hearing regeneration. The ubiquitin proteasome system plays an important role in cochlear development and maintenance. In this study, we investigated the role of ubiquitin C-terminal hydrolase L1 (UCHL1) in the process of the transdifferentiation of auditory supporting cells (SCs) into hair cells (HCs). The expression of UCHL1 gradually decreased as HCs developed and was restricted to inner pillar cells and third-row Deiters' cells between P2 and P7, suggesting that UCHL1-expressing cells are similar to the cells with Lgr5-positive progenitors. UCHL1 expression was decreased even under conditions in which supernumerary HCs were generated with a γ-secretase inhibitor and Wnt agonist. Moreover, the inhibition of UCHL1 by LDN-57444 led to an increase in HC numbers. Mechanistically, LDN-57444 increased mTOR complex 1 activity and allowed SCs to transdifferentiate into HCs. The suppression of UCHL1 induces the transdifferentiation of auditory SCs and progenitors into HCs by regulating the mTOR pathway.


Asunto(s)
Transdiferenciación Celular , Células Ciliadas Auditivas , Transducción de Señal , Serina-Treonina Quinasas TOR , Ubiquitina Tiolesterasa , Animales , Transdiferenciación Celular/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/citología , Indoles , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/citología , Oximas , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ratas
4.
Cell Prolif ; 57(8): e13633, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38528645

RESUMEN

Hair cell (HC) damage is a leading cause of sensorineural hearing loss, and in mammals supporting cells (SCs) are unable to divide and regenerate HCs after birth spontaneously. Procollagen C-endopeptidase enhancer 2 (Pcolce2), which encodes a glycoprotein that acts as a functional procollagen C protease enhancer, was screened as a candidate regulator of SC plasticity in our previous study. In the current study, we used adeno-associated virus (AAV)-ie (a newly developed adeno-associated virus that targets SCs) to overexpress Pcolce2 in SCs. AAV-Pcolce2 facilitated SC re-entry into the cell cycle both in cultured cochlear organoids and in the postnatal cochlea. In the neomycin-damaged model, regenerated HCs were detected after overexpression of Pcolce2, and these were derived from SCs that had re-entered the cell cycle. These findings reveal that Pcolce2 may serve as a therapeutic target for the regeneration of HCs to treat hearing loss.


Asunto(s)
Animales Recién Nacidos , Reprogramación Celular , Cóclea , Animales , Ratones , Cóclea/metabolismo , Cóclea/citología , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/citología , Dependovirus/genética , Ciclo Celular , Ratones Endogámicos C57BL , Regeneración , Células Laberínticas de Soporte/metabolismo , Neomicina/farmacología
5.
Cell Rep ; 35(3): 109016, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33882317

RESUMEN

The mammalian cochlea cannot regenerate functional hair cells (HCs) spontaneously. Atoh1 overexpression as well as other strategies are unable to generate functional HCs. Here, we simultaneously upregulated the expression of Gfi1, Pou4f3, and Atoh1 in postnatal cochlear supporting cells (SCs) in vivo, which efficiently converted SCs into HCs. The newly regenerated HCs expressed HC markers Myo7a, Calbindin, Parvalbumin, and Ctbp2 and were innervated by neurites. Importantly, many new HCs expressed the mature and terminal marker Prestin or vesicular glutamate transporter 3 (vGlut3), depending on the subtypes of the source SCs. Finally, our patch-clamp analysis showed that the new HCs in the medial region acquired a large K+ current, fired spikes transiently, and exhibited signature refinement of ribbon synapse functions, in close resemblance to native wild-type inner HCs. We demonstrated that co-upregulating Gfi1, Pou4f3, and Atoh1 enhances the efficiency of HC generation and promotes the functional maturation of new HCs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/genética , Células Ciliadas Auditivas/metabolismo , Proteínas de Homeodominio/genética , Células Laberínticas de Soporte/metabolismo , Organogénesis/genética , Factor de Transcripción Brn-3C/genética , Factores de Transcripción/genética , Potenciales de Acción/fisiología , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Calbindinas/genética , Calbindinas/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/citología , Proteínas de Homeodominio/metabolismo , Transporte Iónico , Células Laberínticas de Soporte/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Miosina VIIa/genética , Miosina VIIa/metabolismo , Neuritas/metabolismo , Neuritas/ultraestructura , Parvalbúminas/genética , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Transducción de Señal , Factor de Transcripción Brn-3C/metabolismo , Factores de Transcripción/metabolismo
6.
Aging (Albany NY) ; 12(20): 19834-19851, 2020 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-33099273

RESUMEN

Foxg1 plays important roles in regeneration of hair cell (HC) in the cochlea of neonatal mouse. Here, we used Sox9-CreER to knock down Foxg1 in supporting cells (SCs) in the utricle in order to investigate the role of Foxg1 in HC regeneration in the utricle. We found Sox9 an ideal marker of utricle SCs and bred Sox9CreER/+Foxg1loxp/loxp mice to conditionally knock down Foxg1 in utricular SCs. Conditional knockdown (cKD) of Foxg1 in SCs at postnatal day one (P01) led to increased number of HCs at P08. These regenerated HCs had normal characteristics, and could survive to at least P30. Lineage tracing showed that a significant portion of newly regenerated HCs originated from SCs in Foxg1 cKD mice compared to the mice subjected to the same treatment, which suggested SCs trans-differentiate into HCs in the Foxg1 cKD mouse utricle. After neomycin treatment in vitro, more HCs were observed in Foxg1 cKD mice utricle compared to the control group. Together, these results suggest that Foxg1 cKD in utricular SCs may promote HC regeneration by inducing trans-differentiation of SCs. This research therefore provides theoretical basis for the effects of Foxg1 in trans-differentiation of SCs and regeneration of HCs in the mouse utricle.


Asunto(s)
Transdiferenciación Celular , Factores de Transcripción Forkhead/deficiencia , Células Ciliadas Auditivas/metabolismo , Células Laberínticas de Soporte/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Factor de Transcripción SOX9/metabolismo , Sáculo y Utrículo/metabolismo , Animales , Animales Recién Nacidos , Linaje de la Célula , Proliferación Celular , Femenino , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Células Laberínticas de Soporte/efectos de los fármacos , Células Laberínticas de Soporte/patología , Masculino , Ratones Noqueados , Neomicina/toxicidad , Proteínas del Tejido Nervioso/genética , Ototoxicidad , Fenotipo , Factor de Transcripción SOX9/genética , Sáculo y Utrículo/efectos de los fármacos , Sáculo y Utrículo/patología , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 117(36): 22225-22236, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32826333

RESUMEN

Mechano-sensory hair cells within the inner ear cochlea are essential for the detection of sound. In mammals, cochlear hair cells are only produced during development and their loss, due to disease or trauma, is a leading cause of deafness. In the immature cochlea, prior to the onset of hearing, hair cell loss stimulates neighboring supporting cells to act as hair cell progenitors and produce new hair cells. However, for reasons unknown, such regenerative capacity (plasticity) is lost once supporting cells undergo maturation. Here, we demonstrate that the RNA binding protein LIN28B plays an important role in the production of hair cells by supporting cells and provide evidence that the developmental drop in supporting cell plasticity in the mammalian cochlea is, at least in part, a product of declining LIN28B-mammalian target of rapamycin (mTOR) activity. Employing murine cochlear organoid and explant cultures to model mitotic and nonmitotic mechanisms of hair cell generation, we show that loss of LIN28B function, due to its conditional deletion, or due to overexpression of the antagonistic miRNA let-7g, suppressed Akt-mTOR complex 1 (mTORC1) activity and renders young, immature supporting cells incapable of generating hair cells. Conversely, we found that LIN28B overexpression increased Akt-mTORC1 activity and allowed supporting cells that were undergoing maturation to de-differentiate into progenitor-like cells and to produce hair cells via mitotic and nonmitotic mechanisms. Finally, using the mTORC1 inhibitor rapamycin, we demonstrate that LIN28B promotes supporting cell plasticity in an mTORC1-dependent manner.


Asunto(s)
Células Ciliadas Auditivas/fisiología , Células Laberínticas de Soporte/metabolismo , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Genotipo , Ratones , MicroARNs/genética , Organoides , Proteínas de Unión al ARN/genética , Serina-Treonina Quinasas TOR/genética
8.
Dev Dyn ; 249(2): 173-186, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31487081

RESUMEN

BACKGROUND: Conditional loss-of-function studies are widely conducted using the Cre/Loxp system because this helps circumvent embryonic or neonatal lethality problems. However, Cre strains specific to the inner ear are lacking, and thus lethality frequently occurs even in conditional knockout studies. RESULTS: Here, we report a Rorb-IRES-Cre knockin mouse strain in which the Cre recapitulates the expression pattern of endogenous Rorb (RAR-related orphan receptor beta). Analysis of Rorb-IRES-Cre/+; Rosa26-CAG-LSL-tdTomato/+ cochlear samples revealed that tdTomato was expressed at the apical turn only by E12.5. TdTomato was observed in the apical and middle turns but was minimally expressed in the basal turn at E15.5, E18.5, and P5. However, most of the auditory hair cells (HCs) and supporting cells (SCs) in all three turns were tdTomato+ at P15 and P30. Intriguingly, no tdTomato+ vestibular cells were detected until P5 and a few cells were present at P15 and P30. Finally, we also confirmed Rorb mRNA and protein expression in cochlear HCs and SCs at P30. CONCLUSIONS: We reveal that Rorb expression exhibits an apical-to-basal gradient in cochleae. The cochlear-specific and apical-to-basal-gradient Rorb Cre activity should enable discrimination of gene functions in cochlear vs vestibular regions as well as low-frequency vs high-frequency regions in the cochlea.


Asunto(s)
Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Laberínticas de Soporte/metabolismo , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Animales , Cóclea/citología , Oído Interno/metabolismo , Integrasas/genética , Integrasas/metabolismo , Ratones , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Hear Res ; 385: 107839, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31760261

RESUMEN

Hair cells in the auditory organ of the vertebrate inner ear are the sensory receptors that convert acoustic stimuli into electrical signals that are conveyed along the auditory nerve to the brainstem. Hair cells are highly susceptible to ototoxic drugs, infection, and acoustic trauma, which can cause cellular degeneration. In mammals, hair cells that are lost after damage are not replaced, leading to permanent hearing impairments. By contrast, supporting cells in birds and other non-mammalian vertebrates regenerate hair cells after damage, which restores hearing function. The cellular mechanisms that regulate hair cell regeneration are not well understood. We investigated the role of vascular endothelial growth factor (VEGF) during regeneration of auditory hair cells in chickens after ototoxic injury. Using RNA-Seq, immunolabeling, and in situ hybridization, we found that VEGFA, VEGFC, VEGFR1, VEGFR2, and VEGFR3 were expressed in the auditory epithelium, with VEGFA expressed in hair cells and VEGFR1 and VEGFR2 expressed in supporting cells. Using organotypic cultures of the chicken cochlear duct, we found that blocking VEGF receptor activity during hair cell injury reduced supporting cell proliferation as well as the numbers of regenerated hair cells. By contrast, addition of recombinant human VEGFA to organ cultures caused an increase in both supporting cell division and hair cell regeneration. VEGF's effects on supporting cells were preserved in isolated supporting cell cultures, indicating that VEGF can act directly upon supporting cells. These observations demonstrate a heretofore uncharacterized function for VEGF signaling as a critical positive regulator of hair cell regeneration in the avian inner ear.


Asunto(s)
Proteínas Aviares/metabolismo , Proliferación Celular , Células Ciliadas Auditivas Internas/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Regeneración , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis , Proteínas Aviares/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Pollos , Regulación de la Expresión Génica , Células Ciliadas Auditivas Internas/efectos de los fármacos , Células Laberínticas de Soporte/efectos de los fármacos , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Mecanotransducción Celular , Regeneración/efectos de los fármacos , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/farmacología
10.
Hear Res ; 385: 107838, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31751832

RESUMEN

In amniotes, head movements are encoded by two types of vestibular hair cells (type I and type II) with unique morphology, physiology, and innervation. After hair cell destruction in mature rodents, supporting cells regenerate some type II hair cells, but no type I hair cells are replaced. The transcription factor Atoh1 is required for hair cell development, and Atoh1 is upregulated in supporting cells, the hair cell progenitors, in mature chickens and mice following hair cell damage. We investigated whether Atoh1 is required for type II hair cell regeneration in adult mice after genetic ablation of hair cells. First, we used a knock-in Atoh1 reporter to demonstrate that supporting cells in the utricle, a vestibular organ that detects linear acceleration of the head, upregulate Atoh1 expression by 7 days after hair cell destruction was initiated. Next, we labeled supporting cells prior to damage and fate-mapped them over time to test whether conditional deletion of Atoh1 from supporting cells prevented them from converting into hair cells after damage. In mice with normal Atoh1 expression, fate-mapped supporting cells in the adult utricle gave rise to hundreds of type II hair cells after hair cell destruction, but they did not form new type I hair cells. By contrast, mice with Atoh1 deletion prior to hair cell damage had only 10-20 fate-mapped type II hair cells per utricle at 3 weeks post-damage, and numbers did not change at 12 weeks after hair cell destruction. Supporting cells had normal cell shape and nuclear density up to 12 weeks after Atoh1 deletion. Similar observations were made in two other vestibular organs, the saccule and the lateral ampulla. Our findings demonstrate that Atoh1 is necessary in adult mouse supporting cells for regeneration of type II vestibular hair cells and that deletion of Atoh1 from supporting cells prior to damage does not appear to induce supporting cells to die or to proliferate.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Comunicación Celular , Proliferación Celular , Células Ciliadas Auditivas/metabolismo , Células Laberínticas de Soporte/metabolismo , Regeneración , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Transdiferenciación Celular , Células Ciliadas Auditivas/patología , Movimientos de la Cabeza , Células Laberínticas de Soporte/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
11.
Hear Res ; 386: 107860, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31869657

RESUMEN

Purinergic receptors protect the cochlea during high-intensity stimulation by providing a parallel shunt pathway through non-sensory neighboring epithelial cells for cation absorption. So far, there is no direct functional evidence for the presence and type/subunit of purinergic receptors in the utricle of the vestibular labyrinth. The goal of the present study was to investigate which purinergic receptors are expressed and carry cation-absorption currents in the utricular transitional cells and macula. Purinergic agonists induced cation-absorption currents with a potency order of ATP > bzATP = αßmeATP â‰« ADP = UTP = UDP. ATP and bzATP are full agonists, whereas αßmeATP is a partial agonist. ATP-induced currents were partially inhibited by 100 µM suramin, 10 µM pyridoxal-phosphate-6-azo-(benzene-2,4-disulfonic acid (PPADS), or 5 µM 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1, 4-diazepin-2-one (5-BDBD), and almost completely blocked by 100 µM Gd3+ or by a combination of 10 µM PPADS and 5 µM 5-BDBD. Expression of the P2RX2 and P2RX4 receptor was detected by immunocytochemistry in transitional cells and macular supporting cells. This is the first study to demonstrate that ATP induces cation currents carried by a combination of P2RX2 and P2RX4 in utricular transitional and macular epithelial cells, and supporting the hypothesis that purinergic receptors protect utricular hair cells during elevated stimulus intensity levels.


Asunto(s)
Adenosina Trifosfato/metabolismo , Células Laberínticas de Soporte/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Sáculo y Utrículo/metabolismo , Animales , Agonismo Parcial de Drogas , Células Laberínticas de Soporte/efectos de los fármacos , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Transgénicos , Agonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X2/efectos de los fármacos , Receptores Purinérgicos P2X4/efectos de los fármacos , Sáculo y Utrículo/citología , Sáculo y Utrículo/efectos de los fármacos , Transducción de Señal , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
12.
Hear Res ; 373: 10-22, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578960

RESUMEN

In mammals, the cochlear sensory epithelium becomes quiescent early during development. After the first postnatal week, there is no cell replacement or proliferation, and severe damage leads to permanent deafness. Supporting cells' trans-differentiation has been suggested as a way to regenerate cochlear hair cells after damage. However, they are also needed for proper functionality. Cdkn1b (p27Kip1) participates in the cochlear terminal mitosis state achieved during development. Its expression is maintained in adult supporting cells and its postnatal deletion has induced cochlear proliferation in vitro and in vivo. Therefore, its manipulation has been proposed as a feasible way to induce proliferation of supporting cells after birth. Nevertheless, the literature is scarce regarding feasible methods to directly decrease p27Kip1 in the clinical domain. The effects of p27Kip1 knockdown using viral vectors are not completely elucidated and no pharmacological approaches to decrease p27Kip1 in the cochlea have been tested in vivo before. This study explores the ability of p27Kip1 messenger knockdown and pharmacological transcriptional inhibition to induce proliferation of supporting cells in the P0 neonatal rat cochlea in vivo. Respectively, lentiviral vectors transducing shRNA against p27Kip1 were administered into the scala media or Alsterpaullone 2-Cyanoethyl into the round window niche. Cell markers and gene expression were assessed through immunostaining and qRT-PCR. Despite both methods significantly decreasing p27Kip1 expression in vivo, signs of toxicity in the organ of Corti were not found; however, relevant proliferation was not found either. Finally, cochlear damage was added to increase the response in vitro, achieving only a mild to moderate proliferation induction. We conclude that our approaches were not able to stimulate the recall of supporting cell proliferation despite significantly decreased p27Kip1 levels in vivo. Considering the evaluation of the cochlea at a very responsive stage, we propose that the level of isolated modification of p27Kip1 expression in living mammals achievable through these approaches is insufficient to induce proliferation of supporting cells. Future proliferation induction experiments in the cochlea should study other methods and genes.


Asunto(s)
Proliferación Celular , Cóclea/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Laberínticas de Soporte/metabolismo , Animales , Animales Recién Nacidos , Benzazepinas/farmacología , Proliferación Celular/efectos de los fármacos , Cóclea/efectos de los fármacos , Cóclea/patología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Regulación hacia Abajo , Indoles/farmacología , Células Laberínticas de Soporte/efectos de los fármacos , Células Laberínticas de Soporte/patología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Técnicas de Cultivo de Tejidos
13.
Hear Res ; 371: 75-86, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30504093

RESUMEN

Ca2+ is an important intracellular messenger and regulator in both physiological and pathophysiological mechanisms in the hearing organ. Investigation of cellular Ca2+ homeostasis in the mature cochlea is hampered by the special anatomy and high vulnerability of the organ. A quick, straightforward and reliable Ca2+ imaging method with high spatial and temporal resolution in the mature organ of Corti is missing. Cell cultures or isolated cells do not preserve the special microenvironment and intercellular communication, while cochlear explants are excised from only a restricted portion of the organ of Corti and usually from neonatal pre-hearing murines. The hemicochlea, prepared from hearing mice allows tonotopic experimental approach on the radial perspective in the basal, middle and apical turns of the organ. We used the preparation recently for functional imaging in supporting cells of the organ of Corti after bulk loading of the Ca2+ indicator. However, bulk loading takes long time, is variable and non-selective, and causes the accumulation of the indicator in the extracellular space. In this study we show the improved labeling of supporting cells of the organ of Corti by targeted single-cell electroporation in mature mouse hemicochlea. Single-cell electroporation proved to be a reliable way of reducing the duration and variability of loading and allowed subcellular Ca2+ imaging by increasing the signal-to-noise ratio, while cell viability was retained during the experiments. We demonstrated the applicability of the method by measuring the effect of purinergic, TRPA1, TRPV1 and ACh receptor stimulation on intracellular Ca2+ concentration at the cellular and subcellular level. In agreement with previous results, ATP evoked reversible and repeatable Ca2+ transients in Deiters', Hensen's and Claudius' cells. TRPA1 and TRPV1 stimulation by AITC and capsaicin, respectively, failed to induce any Ca2+ response in the supporting cells, except in a single Hensen's cell in which AITC evoked transients with smaller amplitude. AITC also caused the displacement of the tissue. Carbachol, agonist of ACh receptors induced Ca2+ transients in about a third of Deiters' and fifth of Hensen's cells. Here we have presented a fast and cell-specific indicator loading method allowing subcellular functional Ca2+ imaging in supporting cells of the organ of Corti in the mature hemicochlea preparation, thus providing a straightforward tool for deciphering the poorly understood regulation of Ca2+ homeostasis in these cells.


Asunto(s)
Calcio/metabolismo , Cóclea/citología , Cóclea/metabolismo , Adenosina Trifosfato/metabolismo , Compuestos de Anilina/administración & dosificación , Animales , Quelantes del Calcio/administración & dosificación , Señalización del Calcio/efectos de los fármacos , Carbacol/administración & dosificación , Cóclea/efectos de los fármacos , Electroporación/métodos , Fluoresceínas/administración & dosificación , Colorantes Fluorescentes/administración & dosificación , Fura-2/administración & dosificación , Técnicas In Vitro , Células Laberínticas de Soporte/citología , Células Laberínticas de Soporte/efectos de los fármacos , Células Laberínticas de Soporte/metabolismo , Ratones , Ratones Endogámicos BALB C , Órgano Espiral/citología , Órgano Espiral/efectos de los fármacos , Órgano Espiral/metabolismo , Receptores Colinérgicos/metabolismo , Análisis de la Célula Individual/métodos , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo
14.
Cell Death Dis ; 9(12): 1180, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518746

RESUMEN

Mutations in the GJB2 gene (which encodes Connexin26 (Cx26)) account for about a quarter of all cases of non-syndromic deafness. Previous studies have indicated that knockout (KO) of Gjb2 gene during early postnatal days can cause outer hair cell (OHC) loss in mouse models. However, the postnatal spatial distribution pattern of Cx26 in different types of supporting cells (SCs) and the role of such distributions for the survival of OHCs is still obscure. In this study, the spatial distribution patterns of Cx26 in SCs were observed, and based on these observations different spatial Cx26-null mouse models were established in order to determine the effect of changes in the spatial distribution of Cx26 in SCs on the survival of OHCs. At postnatal day (P)3, unlike the synchronous expression of Cx26 along both longitudinal and radial boundaries of most types of SCs, Cx26 expression was primarily observed along the longitudinal boundaries of rows of Deiter's cells (DCs). From P5 to P7, radial expression of Cx26 was gradually observed between adjacent rows of DCs. When Gjb2 gene was knocked out at random in different types of SCs, about 40% of the total DCs lost Cx26 expression and these Cx26-null DCs were distributed randomly in all three rows of DCs. The mice in this randomly Cx26-null group showed normal hearing and no significant OHC loss. When using a longitudinal KO pattern to induce knockout of Gjb2 gene specifically in the third row of DCs, about 33% of the total DCs lost Cx26 expression in this specific longitudinally Cx26-null group. The mice in this group showed late-onset hearing loss and significant OHC loss, however, the morphology of corresponding DCs was slightly altered. In both experimental groups, no substantial DC loss was observed. These results indicate that longitudinal Cx26-based channels are predominant in DCs during P3-P5. The Cx26 expression along rows of DCs might play a key role in the survival of OHCs, but this longitudinal KO pattern in DCs has a limited effect on DC survival or on its postnatal development.


Asunto(s)
Conexina 26/genética , Células Ciliadas Auditivas Externas/metabolismo , Pérdida Auditiva/genética , Células Laberínticas de Soporte/metabolismo , Núcleo Vestibular Lateral/metabolismo , Animales , Animales Recién Nacidos , Supervivencia Celular , Conexina 26/antagonistas & inhibidores , Conexina 26/deficiencia , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas Externas/ultraestructura , Pérdida Auditiva/metabolismo , Pérdida Auditiva/fisiopatología , Células Laberínticas de Soporte/ultraestructura , Ratones , Ratones Noqueados , Núcleo Vestibular Lateral/fisiopatología , Núcleo Vestibular Lateral/ultraestructura
15.
Development ; 145(23)2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30389848

RESUMEN

Lack of sensory hair cell (HC) regeneration in mammalian adults is a major contributor to hearing loss. In contrast, the neonatal mouse cochlea retains a transient capacity for regeneration, and forced Wnt activation in neonatal stages promotes supporting cell (SC) proliferation and induction of ectopic HCs. We currently know little about the temporal pattern and underlying mechanism of this age-dependent regenerative response. Using an in vitro model, we show that Wnt activation promotes SC proliferation following birth, but prior to postnatal day (P) 5. This age-dependent decline in proliferation occurs despite evidence that the Wnt pathway is postnatally active and can be further enhanced by Wnt stimulators. Using an in vivo mouse model and RNA sequencing, we show that proliferation in the early neonatal cochlea is correlated with a unique transcriptional response that diminishes with age. Furthermore, we find that augmenting Wnt signaling through the neonatal stages extends the window for HC induction in response to Notch signaling inhibition. Our results suggest that the downstream transcriptional response to Wnt activation, in part, underlies the regenerative capacity of the mammalian cochlea.


Asunto(s)
Cóclea/fisiología , Mamíferos/fisiología , Regeneración/genética , Transcripción Genética , Vía de Señalización Wnt/genética , Animales , Animales Recién Nacidos , Proliferación Celular , Transdiferenciación Celular , Embrión de Mamíferos/citología , Epitelio/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Células Laberínticas de Soporte/citología , Células Laberínticas de Soporte/metabolismo , Masculino , Ratones , Estabilidad Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción TCF/metabolismo , beta Catenina/metabolismo
16.
Hear Res ; 364: 1-11, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29754876

RESUMEN

Permanent hearing loss is often a result of damage to cochlear hair cells, which mammals are unable to regenerate. Non-mammalian vertebrates such as birds replace damaged hair cells and restore hearing function, but mechanisms controlling regeneration are not understood. The secreted protein bone morphogenetic protein 4 (BMP4) regulates inner ear morphogenesis and hair cell development. To investigate mechanisms controlling hair cell regeneration in birds, we examined expression and function of BMP4 in the auditory epithelia (basilar papillae) of chickens of either sex after hair cell destruction by ototoxic antibiotics. In mature basilar papillae, BMP4 mRNA is highly expressed in hair cells, but not in hair cell progenitors (supporting cells). Supporting cells transcribe genes encoding receptors for BMP4 (BMPR1A, BMPR1B, and BMPR2) and effectors of BMP4 signaling (ID transcription factors). Following hair cell destruction, BMP4 transcripts are lost from the sensory epithelium. Using organotypic cultures, we demonstrate that treatments with BMP4 during hair cell destruction prevent supporting cells from upregulating expression of the pro-hair cell transcription factor ATOH1, entering the cell cycle, and fully transdifferentiating into hair cells, but they do not induce cell death. By contrast, noggin, a BMP4 inhibitor, increases numbers of regenerated hair cells. These findings demonstrate that BMP4 antagonizes hair cell regeneration in the chicken basilar papilla, at least in part by preventing accumulation of ATOH1 in hair cell precursors.


Asunto(s)
Proteína Morfogenética Ósea 4/farmacología , Proliferación Celular/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Células Laberínticas de Soporte/efectos de los fármacos , Regeneración/efectos de los fármacos , Animales , Antibacterianos/toxicidad , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Receptores de Proteínas Morfogenéticas Óseas/agonistas , Receptores de Proteínas Morfogenéticas Óseas/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/farmacología , Comunicación Celular/efectos de los fármacos , Transdiferenciación Celular , Pollos , Femenino , Gentamicinas/toxicidad , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Masculino , Transducción de Señal/efectos de los fármacos , Técnicas de Cultivo de Tejidos
17.
Hear Res ; 364: 129-141, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29563067

RESUMEN

Paraquat (PQ), one of the most widely used herbicides, is extremely dangerous because it generates the highly toxic superoxide radical. When paraquat was applied to cochlear organotypic cultures, it not only damaged the outer hair cells (OHCs) and inner hair cells (IHCs), but also caused dislocation of the hair cell rows. We hypothesized that the dislocation arose from damage to the support cells (SCs) that anchors hair cells within the epithelium. To test this hypothesis, rat postnatal cochlear cultures were treated with PQ. Shortly after PQ treatment, the rows of OHCs separated from one another and migrated radially away from IHCs suggesting loss of cell-cell adhesion that hold the hair cells in proper alignment. Hair cells dislocation was associated with extensive loss of SCs in the organ of Corti, loss of tympanic border cells (TBCs) beneath the basilar membrane, the early appearance of superoxide staining and caspase-8 labeling in SCs below the OHCs and disintegration of E-cadherin and ß-catenin in the organ of Corti. Damage to the TBCs and SCs occurred prior to loss of OHC or IHC loss suggesting a form of detachment-induced apoptosis referred to as anoikis.


Asunto(s)
Anoicis/efectos de los fármacos , Cóclea/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Herbicidas/toxicidad , Células Laberínticas de Soporte/efectos de los fármacos , Paraquat/toxicidad , Animales , Animales Recién Nacidos , Cadherinas/metabolismo , Caspasa 8/metabolismo , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Cóclea/metabolismo , Cóclea/patología , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/patología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Superóxidos/metabolismo , Factores de Tiempo , Técnicas de Cultivo de Tejidos , beta Catenina/metabolismo
18.
Hear Res ; 355: 33-41, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28931463

RESUMEN

The damaged vestibular sensory epithelium of mammals has a limited capacity for spontaneous hair cell regeneration, which largely depends on the transdifferentiation of surviving supporting cells. Little is known about the response of vestibular supporting cells to a severe insult. In the present study, we evaluated the impact of a severe ototoxic insult on the histology of utricular supporting cells and the changes in innervation that ensued. We infused a high dose of streptomycin into the mouse posterior semicircular canal to induce a severe lesion in the utricle. Both scanning electron microscopy and light microscopy of plastic sections showed replacement of the normal cytoarchitecture of the epithelial layer with a flat layer of cells in most of the samples. Immunofluorescence staining showed numerous cells in the severely damaged epithelial layer that were negative for hair cell and supporting cell markers. Nerve fibers under the flat epithelium had high density at the 1 month time point but very low density by 3 months. Similarly, the number of vestibular ganglion neurons was unchanged at 1 month after the lesion, but was significantly lower at 3 months. We therefore determined that the mouse utricular epithelium turns into a flat epithelium after a severe lesion, but the degeneration of neural components is slow, suggesting that treatments to restore balance by hair cell regeneration, stem cell therapy or vestibular prosthesis implantation will likely benefit from the short term preservation of the neural substrate.


Asunto(s)
Células Laberínticas de Soporte/ultraestructura , Degeneración Nerviosa , Nervios Periféricos/patología , Sáculo y Utrículo/ultraestructura , Estreptomicina , Enfermedades Vestibulares/patología , Animales , Conducta Animal , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Femenino , Inmunohistoquímica , Células Laberínticas de Soporte/metabolismo , Ratones , Microscopía Confocal , Microscopía Electrónica de Rastreo , Actividad Motora , Miosina VIIa , Miosinas/metabolismo , Nervios Periféricos/metabolismo , Nervios Periféricos/fisiopatología , Factores de Transcripción SOXB1/metabolismo , Sáculo y Utrículo/metabolismo , Sáculo y Utrículo/fisiopatología , Factores de Tiempo , Enfermedades Vestibulares/inducido químicamente , Enfermedades Vestibulares/metabolismo , Enfermedades Vestibulares/fisiopatología
19.
Nat Commun ; 8: 15046, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28492243

RESUMEN

The adult mammalian cochlear sensory epithelium houses two major types of cells, mechanosensory hair cells and underlying supporting cells, and lacks regenerative capacity. Recent evidence indicates that a subset of supporting cells can spontaneously regenerate hair cells after ablation only within the first week postparturition. Here in vivo clonal analysis of mouse inner ear cells during development demonstrates clonal relationship between hair and supporting cells in sensory organs. We report the identification in mouse of a previously unknown population of multipotent stem/progenitor cells that are capable of not only contributing to the hair and supporting cells but also to other cell types, including glia, in cochlea undergoing development, maturation and repair in response to damage. These multipotent progenitors originate from Eya1-expressing otic progenitors. Our findings also provide evidence for detectable regenerative potential in the postnatal cochlea beyond 1 week of age.


Asunto(s)
Células Ciliadas Auditivas/citología , Audición/fisiología , Células Laberínticas de Soporte/citología , Células Madre Multipotentes/citología , Neuroglía/citología , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular , Embrión de Mamíferos , Femenino , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Ciliadas Auditivas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Laberínticas de Soporte/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Células Madre Multipotentes/metabolismo , Miosina VIIa , Miosinas/genética , Miosinas/metabolismo , Neuroglía/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteína Fluorescente Roja
20.
Hear Res ; 352: 70-81, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28526177

RESUMEN

The cochlea and the vestibular organs are populated by resident macrophages, but their role in inner ear maintenance and pathology is not entirely clear. Resident macrophages in other organs are responsible for phagocytosis of injured or infected cells, and it is likely that macrophages in the inner ear serve a similar role. Hair cell injury causes macrophages to accumulate within proximity of damaged regions of the inner ear, either by exiting the vasculature and entering the labyrinth or by the resident macrophages reorganizing themselves through local movement to the areas of injury. Direct evidence for macrophage engulfment of apoptotic hair cells has been observed in several conditions. Here, we review evidence for phagocytosis of damaged hair cells in the sensory epithelium by tissue macrophages in the published literature and in some new experiments that are presented here as original work. Several studies also suggest that macrophages are not the only phaogocytic cells in the inner ear, but that supporting cells of the sensory epithelium also play an important role in debris clearance. We describe the various ways in which the sensory epithelia of the inner ear are adapted to eliminate damaged and dying cells. A collaborative effort between resident and migratory macrophages as well as neighboring supporting cells results in the rapid and efficient clearance of cellular debris, even in cases where hair cell loss is rapid and complete.


Asunto(s)
Apoptosis , Oído Interno/patología , Células Ciliadas Auditivas/patología , Células Laberínticas de Soporte/patología , Macrófagos/patología , Fagocitosis , Animales , Movimiento Celular , Oído Interno/metabolismo , Células Ciliadas Auditivas/metabolismo , Humanos , Células Laberínticas de Soporte/metabolismo , Macrófagos/metabolismo , Ratones , Modelos Animales , Fenotipo , Transducción de Señal , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...