Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.854
Filtrar
1.
Traffic ; 25(5): e12936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725127

RESUMEN

Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.


Asunto(s)
Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP , Endosomas , Factores de Intercambio de Guanina Nucleótido , Factor de Crecimiento Nervioso , Proyección Neuronal , Receptor trkA , Animales , Células PC12 , Receptor trkA/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Ratas , Endosomas/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Ratones , Transporte de Proteínas , Ganglios Espinales/metabolismo , Ratones Noqueados
2.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731472

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid beta (Aß) plaques in the brain. Aß1-42 is the main component of Aß plaque, which is toxic to neuronal cells. Si nanowires (Si NWs) have the advantages of small particle size, high specific surface area, and good biocompatibility, and have potential application prospects in suppressing Aß aggregation. In this study, we employed the vapor-liquid-solid (VLS) growth mechanism to grow Si NWs using Au nanoparticles as catalysts in a plasma-enhanced chemical vapor deposition (PECVD) system. Subsequently, these Si NWs were transferred to a phosphoric acid buffer solution (PBS). We found that Si NWs significantly reduced cell death in PC12 cells (rat adrenal pheochromocytoma cells) induced by Aß1-42 oligomers via double staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescein diacetate/propyl iodide (FDA/PI). Most importantly, pre-incubated Si NWs largely prevented Aß1-42 oligomer-induced PC12 cell death, suggesting that Si NWs exerts an anti-Aß neuroprotective effect by inhibiting Aß aggregation. The analysis of Fourier Transform Infrared (FTIR) results demonstrates that Si NWs reduce the toxicity of fibrils and oligomers by intervening in the formation of ß-sheet structures, thereby protecting the viability of nerve cells. Our findings suggest that Si NWs may be a potential therapeutic agent for AD by protecting neuronal cells from the toxicity of Aß1-42.


Asunto(s)
Péptidos beta-Amiloides , Nanocables , Silicio , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Nanocables/química , Animales , Células PC12 , Ratas , Silicio/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/toxicidad , Fragmentos de Péptidos/farmacología , Supervivencia Celular/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Agregado de Proteínas/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo
3.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731476

RESUMEN

Although the wide variety of bioactivities of curcumin has been reported by researchers, the clinical application of curcumin is still limited due to its poor aqueous solubility. In view of this, a series of dimethylaminomethyl-substituted curcumin derivatives were designed and synthesized (compounds 1-15). Acetate of these derivatives were prepared (compounds 1a-15a). The Mannich reaction and aldol condensation reaction are the main reactions involved in this study. Compounds 6, 10, 12, 3a, 5a, 6a, 7a, 8a, 10a, 11a, 12a, 13a, 14a, and 15a exhibited better in vitro anti-inflammatory activity compared to curcumin in the RAW264.7 cell line. Compounds 5, 1a, 5a, 8a, and 12a exhibited better in vitro antioxidant activity compared to curcumin in the PC 12 cell line. Compounds 11, 13, 5a, 7a, and 13a exhibited better in vitro radiation protection compared to curcumin in the PC 12 cell line. The aqueous solubilities of all the curcumin derivative acetates were greatly improved compared to curcumin.


Asunto(s)
Antiinflamatorios , Antioxidantes , Curcumina , Protectores contra Radiación , Solubilidad , Curcumina/farmacología , Curcumina/química , Curcumina/síntesis química , Curcumina/análogos & derivados , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Células RAW 264.7 , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/síntesis química , Protectores contra Radiación/farmacología , Protectores contra Radiación/síntesis química , Protectores contra Radiación/química , Diseño de Fármacos , Relación Estructura-Actividad , Estructura Molecular , Células PC12 , Ratas , Agua/química
4.
Nat Commun ; 15(1): 3473, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724563

RESUMEN

Neuronal differentiation-the development of neurons from neural stem cells-involves neurite outgrowth and is a key process during the development and regeneration of neural functions. In addition to various chemical signaling mechanisms, it has been suggested that thermal stimuli induce neuronal differentiation. However, the function of physiological subcellular thermogenesis during neuronal differentiation remains unknown. Here we create methods to manipulate and observe local intracellular temperature, and investigate the effects of noninvasive temperature changes on neuronal differentiation using neuron-like PC12 cells. Using quantitative heating with an infrared laser, we find an increase in local temperature (especially in the nucleus) facilitates neurite outgrowth. Intracellular thermometry reveals that neuronal differentiation is accompanied by intracellular thermogenesis associated with transcription and translation. Suppression of intracellular temperature increase during neuronal differentiation inhibits neurite outgrowth. Furthermore, spontaneous intracellular temperature elevation is involved in neurite outgrowth of primary mouse cortical neurons. These results offer a model for understanding neuronal differentiation induced by intracellular thermal signaling.


Asunto(s)
Diferenciación Celular , Neuronas , Transducción de Señal , Temperatura , Animales , Células PC12 , Neuronas/fisiología , Neuronas/citología , Ratones , Ratas , Proyección Neuronal , Neurogénesis/fisiología , Neuritas/metabolismo , Neuritas/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Termometría/métodos , Termogénesis/fisiología
5.
Org Biomol Chem ; 22(20): 4179-4189, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716654

RESUMEN

Aspergillus versicolor, an endophytic fungus associated with the herbal medicine Pedicularis sylvatica, produced four new polyketides, aspeversins A-D (1-2 and 5-6) and four known compounds, O-methylaverufin (2), aversin (3), varilactone A (7) and spirosorbicillinol A (8). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by calculated electronic circular dichroism (ECD) and Mo2(AcO)4-induced CD data. Compound 5 was found to exhibit α-glucosidase inhibitory activity with an IC50 value of 25.57 µM. An enzyme kinetic study indicated that 5 was a typical uncompetitive inhibitor toward α-glucosidase, which was supported by a molecular docking study. Moreover, compounds 1-3 and 5 also improved the cell viability of PC12 cells on a 1-methyl-4-phenylpyridinium (MPP+)-induced Parkinson's disease model, indicating their neuroprotective potential as antiparkinsonian agents.


Asunto(s)
Aspergillus , Inhibidores de Glicósido Hidrolasas , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores , Policétidos , alfa-Glucosidasas , Aspergillus/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Policétidos/farmacología , Policétidos/química , Policétidos/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Células PC12 , Animales , Ratas , alfa-Glucosidasas/metabolismo , Supervivencia Celular/efectos de los fármacos , Estructura Molecular
6.
Biotechnol J ; 19(5): e2300734, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719571

RESUMEN

Self-assembly of biological elements into biomimetic cargo carriers for targeting and delivery is a promising approach. However, it still holds practical challenges. We developed a functionalization approach of DNA origami (DO) nanostructures with neuronal growth factor (NGF) for manipulating neuronal systems. NGF bioactivity and its interactions with the neuronal system were demonstrated in vitro and in vivo models. The DO elements fabricated by molecular self-assembly have manipulated the surrounding environment through static spatially and temporally controlled presentation of ligands to the cell surface receptors. Our data showed effective bioactivity in differentiating PC12 cells in vitro. Furthermore, the DNA origami NGF (DON) affected the growth directionality and spatial capabilities of dorsal root ganglion neurons in culture by introducing a chemotaxis effect along a gradient of functionalized DO structures. Finally, we showed that these elements provide enhanced axonal regeneration in a rat sciatic nerve injury model in vivo. This study is a proof of principle for the functionality of DO in neuronal manipulation and regeneration. The approach proposed here, of an engineered platform formed out of programmable nanoscale elements constructed of DO, could be extended beyond the nervous system and revolutionize the fields of regenerative medicine, tissue engineering, and cell biology.


Asunto(s)
ADN , Ganglios Espinales , Factor de Crecimiento Nervioso , Regeneración Nerviosa , Animales , Ratas , Células PC12 , ADN/química , Ganglios Espinales/citología , Factor de Crecimiento Nervioso/química , Factor de Crecimiento Nervioso/farmacología , Nanoestructuras/química , Neuronas , Nervio Ciático , Andamios del Tejido/química , Ratas Sprague-Dawley
7.
Nat Commun ; 15(1): 4060, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744819

RESUMEN

Endocytosis requires a coordinated framework of molecular interactions that ultimately lead to the fission of nascent endocytic structures. How cytosolic proteins such as dynamin concentrate at discrete sites that are sparsely distributed across the plasma membrane remains poorly understood. Two dynamin-1 major splice variants differ by the length of their C-terminal proline-rich region (short-tail and long-tail). Using sptPALM in PC12 cells, neurons and MEF cells, we demonstrate that short-tail dynamin-1 isoforms ab and bb display an activity-dependent recruitment to the membrane, promptly followed by their concentration into nanoclusters. These nanoclusters are sensitive to both Calcineurin and dynamin GTPase inhibitors, and are larger, denser, and more numerous than that of long-tail isoform aa. Spatiotemporal modelling confirms that dynamin-1 isoforms perform distinct search patterns and undergo dimensional reduction to generate endocytic nanoclusters, with short-tail isoforms more robustly exploiting lateral trapping in the generation of nanoclusters compared to the long-tail isoform.


Asunto(s)
Dinamina I , Endocitosis , Isoformas de Proteínas , Animales , Dinamina I/metabolismo , Dinamina I/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Células PC12 , Ratas , Neuronas/metabolismo , Ratones , Membrana Celular/metabolismo , Calcineurina/metabolismo
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 236-246, 2024 Feb 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38755719

RESUMEN

OBJECTIVES: Hypoxia is a common pathological phenomenon, usually caused by insufficient oxygen supply or inability to use oxygen effectively. Hydroxylated and methoxylated flavonoids have significant anti-hypoxia activity. This study aims to explore the synthesis, antioxidant and anti-hypoxia activities of 6-hydroxygenistein (6-OHG) and its methoxylated derivatives. METHODS: The 6-OHG and its methoxylated derivatives, including 4',6,7-trimethoxy-5-hydroxyisoflavone (compound 3), 4',5,6,7-tetramethoxyisoflavone (compound 4), 4',6-imethoxy-5,7-dihydroxyisoflavone (compound 6), and 4'-methoxy-5,6,7-trihydroxyisoflavone (compound 7), were synthesized by methylation, bromination, methoxylation, and demethylation using biochanin A as raw material. The structure of these products were characterized by 1hydrogen-nuclear magnetic resonance spectroscopy (1H-NMR) and mass spectrometry (MS). The purity of these compounds was detected by high pressure chromatography (HPLC). The antioxidant activity in vitro was investigated by 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) free radical scavenging assay. PC12 cells were divided into a normal group, a hypoxia model group, rutin (1×10-9-1×10-5 mol/L) groups, and target compounds (1×10-9-1×10-5 mol/L) groups under normal and hypoxic conditions. Cell viability was detected by cell counting kit-8 (CCK-8) assay, the target compounds with excellent anti-hypoxia activity and the drug concentration at the maximum anti-hypoxia activity were screened. PC12 cells were treated with the optimal concentration of the target compound or rutin with excellent anti-hypoxia activity, and the cell morphology was observed under light microscope. The apoptotic rate was determined by flow cytometry, and the expressions of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) were detected by Western blotting. RESULTS: The structure of 6-OHG and its 4 methylated derivatives were correct, and the purity was all more than 97%. When the concentration was 4 mmol/L, the DPPH free radical removal rates of chemical compounds 7 and 6-OHG were 81.16% and 86.94%, respectively, which were higher than those of rutin, the positive control. The removal rates of chemical compounds 3, 4, and 6 were all lower than 20%. Compared with the normal group, the cell viability of the hypoxia model group was significantly decreased (P<0.01). Compared with the hypoxia model group, compounds 3, 4, and 6 had no significant effect on cell viability under hypoxic conditions. At all experimental concentrations, the cell viability of the 6-OHG group was significantly higher than that of the hypoxia model group (all P<0.05). The cell viability of compound 7 group at 1×10-7 and 1×10-6 mol/L was significantly higher than that of the hypoxia model group (both P<0.05). The anti-hypoxia activity of 6-OHG and compound 7 was excellent, and the optimal drug concentration was 1×10-6 and 1×10-7 mol/L. After PC12 cells was treated with 6-OHG (1×10-6 mol/L) and compound 7 (1×10-7 mol/L), the cell damage was reduced, the apoptotic rate was significantly decreased (P<0.01), and the protein expression levels of HIF-1α and VEGF were significantly decreased in comparison with the hypoxia model group (both P<0.01). CONCLUSIONS: The optimized synthesis route can increase the yield of 6-OHG and obtain 4 derivatives by methylation and selective demethylation. 6-OHG and compound 7 have excellent antioxidant and anti-hypoxia activities, which are related to the structure of the A-ring ortho-triphenol hydroxyl group in the molecule.


Asunto(s)
Antioxidantes , Antioxidantes/farmacología , Antioxidantes/síntesis química , Ratas , Animales , Células PC12 , Metilación , Hipoxia de la Célula/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Isoflavonas/farmacología , Isoflavonas/síntesis química , Isoflavonas/química , Flavonas/farmacología
9.
Exp Gerontol ; 191: 112436, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38636570

RESUMEN

Long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) is involved in the progression of Parkinson's disease (PD), but the specific regulatory role needs further exploration. This study showed that the expression of NEAT1 was upregulated in the cerebrospinal fluid (CSF) and peripheral blood of patients with different stages of PD. 1-Methyl-4-phenylpyridine (MPP)-treated PC 12 cells were transfected with si-NEAT1, and MPP treatment promoted cell apoptosis, oxidative stress and inflammatory factor secretion. Si-NEAT1 reversed the effects of MPP. NEAT1 silencing eliminated the effect of MPP on the protein expression levels of LC3-II and p62/SQSTM1. By using an online bioinformatics database, Fused in Sarcoma (FUS) was confirmed to be an RNA binding protein of NEAT1, and it was highly expressed in the CSF and peripheral blood of patients with PD. Si-FUS was transfected into MPP-treated PC 12 cells to detect cell apoptosis, oxidative stress, inflammatory factor secretion and autophagy, and the results were the same as those of transfection of si-NEAT1. Furthermore, MPP treatment reduced the phosphorylation levels of PI3K, Akt and mTOR, whereas si-FUS reversed the effects of MPP. In vivo, compared with the model group, the PD mice showed reduced NEAT1 and FUS expression levels and activated PI3K pathway after being injected with si-NEAT1. The brain tissue of NEAT1-silenced PD mice had decreased inflammatory infiltration and apoptosis and increased neurological scores. In conclusion, NEAT1 is involved in PD progression through FUS-mediated inhibition of the PI3K/AKT/mTOR signalling pathway.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , ARN Largo no Codificante , Proteína FUS de Unión a ARN , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Células PC12 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Humanos , Apoptosis , Progresión de la Enfermedad , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Ratones Endogámicos C57BL , Estrés Oxidativo , 1-Metil-4-fenilpiridinio , Autofagia
10.
Free Radic Biol Med ; 219: 1-16, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614227

RESUMEN

Bupivacaine (BUP) is an anesthetic commonly used in clinical practice that when used for spinal anesthesia, might exert neurotoxic effects. Thioredoxin-interacting protein (TXNIP) is a member of the α-arrestin protein superfamily that binds covalently to thioredoxin (TRX) to inhibit its function, leading to increased oxidative stress and activation of apoptosis. The role of TXNIP in BUP-induced oxidative stress and apoptosis remains to be elucidated. In this context, the present study aimed to explore the effects of TXNIP knockdown on BUP-induced oxidative stress and apoptosis in the spinal cord of rats and in PC12 cells through the transfection of adeno-associated virus-TXNIP short hairpin RNA (AAV-TXNIP shRNA) and siRNA-TXNIP, respectively. In vivo, a rat model of spinal neurotoxicity was established by intrathecally injecting rats with BUP. The BUP + TXNIP shRNA and the BUP + Control shRNA groups of rats were injected with an AAV carrying the TXNIP shRNA and the Control shRNA, respectively, into the subarachnoid space four weeks prior to BUP treatment. The Basso, Beattie & Bresnahan (BBB) locomotor rating score, % MPE of TFL, H&E staining, and Nissl staining analyses were conducted. In vitro, 0.8 mM BUP was determined by CCK-8 assay to establish a cytotoxicity model in PC12 cells. Transfection with siRNA-TXNIP was carried out to suppress TXNIP expression prior to exposing PC12 cells to BUP. The results revealed that BUP effectively induced neurological behavioral dysfunction and neuronal damage and death in the spinal cord of the rats. Similarly, BUP triggered cytotoxicity and apoptosis in PC12 cells. In addition, treated with BUP both in vitro and in vivo exhibited upregulated TXNIP expression and increased oxidative stress and apoptosis. Interestingly, TXNIP knockdown in the spinal cord of rats through transfection of AAV-TXNIP shRNA exerted a protective effect against BUP-induced spinal neurotoxicity by ameliorating behavioral and histological outcomes and promoting the survival of spinal cord neurons. Similarly, transfection with siRNA-TXNIP mitigated BUP-induced cytotoxicity in PC12 cells. In addition, TXNIP knockdown mitigated the upregulation of ROS, MDA, Bax, and cleaved caspase-3 and restored the downregulation of GSH, SOD, CAT, GPX4, and Bcl2 induced upon BUP exposure. These findings suggested that TXNIP knockdown protected against BUP-induced spinal neurotoxicity by suppressing oxidative stress and apoptosis. In summary, TXNIP could be a central signaling hub that positively regulates oxidative stress and apoptosis during neuronal damage, which renders TXNIP a promising target for treatment strategies against BUP-induced spinal neurotoxicity.


Asunto(s)
Apoptosis , Bupivacaína , Proteínas Portadoras , Técnicas de Silenciamiento del Gen , Estrés Oxidativo , ARN Interferente Pequeño , Médula Espinal , Animales , Ratas , Estrés Oxidativo/efectos de los fármacos , Bupivacaína/toxicidad , Bupivacaína/efectos adversos , Células PC12 , Apoptosis/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Médula Espinal/efectos de los fármacos , ARN Interferente Pequeño/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Masculino , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Inyecciones Espinales , Ratas Sprague-Dawley , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Síndromes de Neurotoxicidad/patología , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/etiología , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo
11.
Bioorg Chem ; 147: 107389, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677011

RESUMEN

The leaves of Odontonema strictum, a tropical plant used for its antihypertensive properties, are rich in nutrients and biologically active phytochemicals, such as ß-sitosterol, stigmasterol, umuravumbolide, deacetylumuravumbolide, dideacetylboronolide, deacetylboronolide, verbascoside, and isoverbascoside. In addition, its roots are rich in ß-sitosterol, stigmasterol, and the iridoid glycoside ß-O-methyl-unedoside. Ingestion of the roots was reported to have a sedative effect in a dog was previously reported on a dog eating the roots of this plant. In the present study, we report for the first time the cell proliferation- and neurite outgrowth-promoting effects in PC12 neuronal cells of the isolated organic compounds and crude extracts from O. strictum. Pituitary adenylate cyclase-activating peptide (PACAP) and quercetin were used as positive controls. At the concentration of 0.2 µg/mL, ß-sitosterol was more potent than quercetin and displayed the same activity (>45 µm/cell) as PACAP (100 nM). At a low concentration (0.04 µg/mL), verbascoside and isoverbascoside showed the strongest neurite outgrowth-promoting effect (neurite length of 30 to 35 µm/cell). Our results indicate that phytomedicines made from O. strictum may be useful in preventing neurodegenerative diseases.


Asunto(s)
Productos Biológicos , Proliferación Celular , Proyección Neuronal , Animales , Células PC12 , Proyección Neuronal/efectos de los fármacos , Ratas , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , Neuronas/efectos de los fármacos , Neuronas/citología , Hojas de la Planta/química
12.
Eur J Pharmacol ; 972: 176557, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574839

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI) can induce massive death of ischemic penumbra neurons via oxygen burst, exacerbating brain damage. Parthanatos is a form of caspase-independent cell death involving excessive activation of PARP-1, closely associated with intense oxidative stress following CIRI. 4'-O-methylbavachalcone (MeBavaC), an isoprenylated chalcone component in Fructus Psoraleae, has potential neuroprotective effects. This study primarily investigates whether MeBavaC can act on SIRT3 to alleviate parthanatos of ischemic penumbra neurons induced by CIRI. MeBavaC was oral gavaged to the middle cerebral artery occlusion-reperfusion (MCAO/R) rats after occlusion. The effects of MeBavaC on cerebral injury were detected by the neurological deficit score and cerebral infarct volume. In vitro, PC-12 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R), and assessed cell viability and cell injury. Also, the levels of ROS, mitochondrial membrane potential (MMP), and intracellular Ca2+ levels were detected to reflect mitochondrial function. We conducted western blotting analyses of proteins involved in parthanatos and related signaling pathways. Finally, the exact mechanism between the neuroprotection of MeBavaC and parthanatos was explored. Our results indicate that MeBavaC reduces the cerebral infarct volume and neurological deficit scores in MCAO/R rats, and inhibits the decreased viability of PC-12 cells induced by OGD/R. MeBavaC also downregulates the expression of parthanatos-related death proteins PARP-1, PAR, and AIF. However, this inhibitory effect is weakened after the use of a SIRT3 inhibitor. In conclusion, the protective effect of MeBavaC against CIRI may be achieved by inhibiting parthanatos of ischemic penumbra neurons through the SIRT3-PARP-1 axis.


Asunto(s)
Chalconas , Fármacos Neuroprotectores , Parthanatos , Ratas Sprague-Dawley , Daño por Reperfusión , Sirtuinas , Animales , Ratas , Masculino , Chalconas/farmacología , Chalconas/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Parthanatos/efectos de los fármacos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células PC12 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Calcio/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/complicaciones , Supervivencia Celular/efectos de los fármacos , Sirtuina 3/metabolismo , Sirtuina 3/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124270, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38608559

RESUMEN

Depression is a serious mental disease that causes grievous harm to human health and quality of life. The vesicular exocytosis of noradrenaline (NE), rather than its intrinsic intracellular concentration, is more associated with depression. Based on the reports on exocytosis of NE, it is reasonable to assume that the viscosity of cells has an important effect on the release of NE. Herein, a dual-response fluorescent probe (RHO-DCO-NE) for detecting NE and viscosity was designed and synthesized. The probe can simultaneously detect NE concentration and viscosity level with negligible crosstalk between the two channels. We utilized the probe to study the effect of viscosity changes on the NE release of PC12 and the corticosterone-induced PC12 cells. The experiment data revealed that the decrease in viscosity level can accelerate the release of NE of depression cell models. The finding provides new insight into the study of the pathological mechanisms of depression.


Asunto(s)
Depresión , Colorantes Fluorescentes , Norepinefrina , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Células PC12 , Norepinefrina/metabolismo , Norepinefrina/análisis , Viscosidad , Animales , Ratas , Depresión/tratamiento farmacológico , Espectrometría de Fluorescencia , Corticosterona/farmacología
14.
BMC Complement Med Ther ; 24(1): 175, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664646

RESUMEN

BACKGROUND: Excessive oxidative stress in the brain is an important pathological factor in neurological diseases. Acetoxypachydiol (APHD) is a lipophilic germacrane-type diterpene extracted as a major component from different species of brown algae within the genus Dictyota. There have been no previous reports on the pharmacological activity of APHD. The present research aims to explore the potential neuroprotective properties of APHD and its underlying mechanisms. METHODS: The possible mechanism of APHD was predicted using a combination of molecular docking and network pharmacological analysis. PC12 cells were induced by H2O2 and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. Western blot, flow cytometry, immunofluorescence staining, and qRT-PCR were used to investigate the antioxidant activity of APHD. The HO-1 inhibitor ZnPP and Nrf2 gene silencing were employed to confirm the influence of APHD on the signaling cascade involving HO-1, Nrf2, and Keap1 in vitro. RESULTS: APHD exhibited antioxidant activity in both PC12 cells subjected to H2O2 and OGD/R conditions by downregulating the release of LDH, the concentrations of MDA, and ROS, and upregulating SOD, GSH-Px, and GSH concentrations. APHD could potentially initiate the Keap1-Nrf2/HO-1 signaling cascade, according to the findings from network pharmacology evaluation and molecular docking. Furthermore, APHD was observed to increase Nrf2 and HO-1 expression at both mRNA and protein levels, while downregulating the protein concentrations of Keap1. Both Nrf2 silencing and treatment with ZnPP reversed the neuroprotective effects of APHD. CONCLUSIONS: APHD activated antioxidant enzymes and downregulated the levels of LDH, MDA, and ROS in two cell models. The neuroprotective effect is presumably reliant on upregulation of the Keap1-Nrf2/HO-1 pathway. Taken together, APHD from brown algae of the genus Dictyota shows potential as a candidate for novel neuroprotective agents.


Asunto(s)
Diterpenos , Hemo Oxigenasa (Desciclizante) , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Estrés Oxidativo , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Células PC12 , Estrés Oxidativo/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Transducción de Señal/efectos de los fármacos , Diterpenos/farmacología , Simulación del Acoplamiento Molecular , Antioxidantes/farmacología , Hemo-Oxigenasa 1/metabolismo
15.
ACS Chem Neurosci ; 15(9): 1893-1903, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38613492

RESUMEN

Depression is a common mental disorder. In recent years, more and more attention has been paid to depression and its etiology and pathogenesis. This review aims to explore the neuroprotective and antidepressant effects of hop components. By establishing an in vitro cell damage model using PC12 cells induced by corticosterone (CORT) and an in vivo depression model through the intracranial injection of lipopolysaccharide (LPS) in mice, hop ethyl acetate extract (HEA) was used to study the protective effect and mechanism of HEA on neuronal cells in vitro and the antidepression effect and mechanism in vivo. The results showed that HEA increased the survival and decreased the rate of lactate dehydrogenase (LDH) release, apoptosis, and the ROS and NO content of CORT-induced PC12 cells. HEA alleviated depressive-like behavior, neuroinflammation, reduction of norepinephrine, and dendritic spines induced by intracerebroventricular injection of LPS in mice and increases the expression levels of BDNF, SNAP 25, and TrkB proteins without any significant side effects or toxicity. Hops demonstrated significant comprehensive utilization value, and this work provided an experimental basis for the role of hops in the treatment of depression and provided a basis for the development of HEA for antidepressant drugs or dietary therapy products.


Asunto(s)
Acetatos , Antidepresivos , Corticosterona , Depresión , Humulus , Fármacos Neuroprotectores , Extractos Vegetales , Animales , Células PC12 , Ratones , Depresión/tratamiento farmacológico , Extractos Vegetales/farmacología , Acetatos/farmacología , Antidepresivos/farmacología , Ratas , Fármacos Neuroprotectores/farmacología , Masculino , Humulus/química , Lipopolisacáridos/farmacología , Modelos Animales de Enfermedad , Conducta Animal/efectos de los fármacos
16.
Anal Chem ; 96(18): 7138-7144, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38676633

RESUMEN

Superoxide anion (O2·-) and peroxynitrite (ONOO-), two important oxidants under oxidative stress, coexist in complex cell and organism systems, playing crucial roles in various physiological and pathological processes, particularly in neurodegenerative diseases. Despite the absence of robust molecular tools capable of simultaneously visualizing O2·- and ONOO- in biosystems, the relationship between these two species remains understudied. Herein, we present sequentially activated fluorescent probe, DHX-SP, which exhibits exceptional selectivity and sensitivity toward O2·- and ONOO-. This probe enables precise imaging of these species in living PC12 cells under oxidative stress conditions using distinct fluorescence signal combinations. Furthermore, the probe DHX-SP has the ability to visualize changes in O2·- and ONOO- levels during ferroptosis of PC12 cells and in the Parkinson's disease model. These findings establish a connection between the crosstalk of the phosphorus group of O2·- and ONOO- in PC12 cells under oxidative stress.


Asunto(s)
Colorantes Fluorescentes , Estrés Oxidativo , Ácido Peroxinitroso , Superóxidos , Células PC12 , Ácido Peroxinitroso/análisis , Ácido Peroxinitroso/metabolismo , Animales , Ratas , Estrés Oxidativo/efectos de los fármacos , Colorantes Fluorescentes/química , Superóxidos/metabolismo , Superóxidos/análisis , Imagen Óptica
17.
Phytochemistry ; 222: 114091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615926

RESUMEN

A total of 14 previously undescribed steroidal saponins named capsicsaponins A-N were isolated from the leaves of Solanum capsicoides, encompassing various types, including cholesterol derivatives and pseudospirostanol saponins. The structures of all compounds were determined through comprehensive analysis of spectroscopic data (1D NMR and 2D NMR), along with physicochemical analysis methods (acid hydrolysis, OR, and UV). Moreover, in the H2O2-induced pheochromocytoma cell line model, compounds 1-14 were screened for their neuroprotective effects on cells. The bioassay results demonstrated compounds 8-14 were able to revive cell viability compared to the positive control edaravone. The damage neuroprotection of the most active compound was further explored.


Asunto(s)
Supervivencia Celular , Fármacos Neuroprotectores , Hojas de la Planta , Saponinas , Solanum , Saponinas/farmacología , Saponinas/química , Saponinas/aislamiento & purificación , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Solanum/química , Hojas de la Planta/química , Supervivencia Celular/efectos de los fármacos , Animales , Estructura Molecular , Células PC12 , Ratas , Esteroides/farmacología , Esteroides/química , Esteroides/aislamiento & purificación , Peróxido de Hidrógeno/farmacología , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga
18.
Biosens Bioelectron ; 257: 116332, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677016

RESUMEN

In situ detection of dopamine (DA) at single-cell level is critical for exploring neurotransmitter-related biological processes and diseases. However, the low content of DA and a variety of distractors with similar oxidation potentials as DA in cells brought great challenges. Here, a sensitive and specific electrochemical nanosensor was proposed for in situ detection of DA in single living cells based on nanodiamond (ND) and molecularly imprinted polymer (MIP)-functionalized carbon fiber nanoelectrode (ND/MIP/CFNE). Due to its excellent electrocatalytic property, ND was modified to the surface of CFNE based on amide bonding. Compared with bare CFNE, ND-modified CFNE can enhance oxidation currents of DA by about 4-fold, improving signal-to-noise ratio and detection sensitivity. MIP was further electropolymerized on the surface of nanoelectrodes to achieve specific capture and recognition of DA, which could avoid the interference of complex matrix and analogs in cells. Taking advantage of the precise positioning capability of a single-cell analyzer and micromanipulator, ND/MIP/CFNE could be precisely inserted into different locations of single cells and monitor oxidation signal of DA. The concentration of DA in the cytoplasm of single pheochromocytoma (PC12) cell was measured to be about 0.4 µM, providing a sensitive and powerful method for single-cell detection. Furthermore, the nanoelectrodes can monitor the fluctuation of intracellular DA under drug stimulation, providing new ideas and methods for new drug development and efficacy evaluation.


Asunto(s)
Técnicas Biosensibles , Dopamina , Técnicas Electroquímicas , Polímeros Impresos Molecularmente , Análisis de la Célula Individual , Dopamina/análisis , Dopamina/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Células PC12 , Técnicas Electroquímicas/métodos , Polímeros Impresos Molecularmente/química , Animales , Ratas , Nanodiamantes/química , Electrodos , Fibra de Carbono/química , Impresión Molecular/métodos , Límite de Detección , Polímeros/química
19.
Chemosphere ; 357: 142027, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621487

RESUMEN

Myclobutanil (MYC), a typical broad-spectrum triazole fungicide, is often detected in surface water. This study aimed to explore the neurotoxicity of MYC and the underlying mechanisms in zebrafish and in PC12 cells. In this study, zebrafish embryos were exposed to 0, 0.5 and 1 mg/L of MYC from 4 to 96 h post fertilization (hpf) and neurobehavior was evaluated. Our data showed that MYC decreased the survival rate, hatching rate and heart rate, but increased the malformation rate and spontaneous movement. MYC caused abnormal neurobehaviors characterized by decreased swimming distance and movement time. MYC impaired cerebral histopathological morphology and inhibited neurogenesis in HuC:egfp transgenic zebrafish. MYC also reduced the activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and downregulated neurodevelopment related genes (gfap, syn2a, gap43 and mbp) in zebrafish and PC12 cells. Besides, MYC activated autophagy through enhanced expression of the LC3-II protein and suppressed expression of the p62 protein and autophagosome formation, subsequently triggering apoptosis by upregulating apoptotic genes (p53, bax, bcl-2 and caspase 3) and the cleaved caspase-3 protein in zebrafish and PC12 cells. These processes were restored by the autophagy inhibitor 3-methyladenine (3-MA) both in vivo and in vitro, indicating that MYC induces neurotoxicity by activating autophagy and apoptosis. Overall, this study revealed the potential autophagy and apoptosis mechanisms of MYC-induced neurotoxicity and provided novel strategies to counteract its toxicity.


Asunto(s)
Apoptosis , Autofagia , Larva , Triazoles , Pez Cebra , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Células PC12 , Triazoles/toxicidad , Larva/efectos de los fármacos , Nitrilos/toxicidad , Fungicidas Industriales/toxicidad , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero/efectos de los fármacos
20.
ACS Chem Neurosci ; 15(9): 1755-1769, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602894

RESUMEN

Neurotrophins are a family of growth factors that play a key role in the development and regulation of the functioning of the central nervous system. Their use as drugs is made difficult by their poor stability, cellular permeability, and side effects. Continuing our effort to use peptides that mimic the neurotrophic growth factor (NGF), the family model protein, and specifically the N-terminus of the protein, here we report on the spectroscopic characterization and resistance to hydrolysis of the 14-membered cyclic peptide reproducing the N-terminus sequence (SSSHPIFHRGEFSV (c-NGF(1-14)). Far-UV CD spectra and a computational study show that this peptide has a rigid conformation and left-handed chirality typical of polyproline II that favors its interaction with the D5 domain of the NGF receptor TrkA. c-NGF(1-14) is able to bind Cu2+ with good affinity; the resulting complexes have been characterized by potentiometric and spectroscopic measurements. Experiments on PC12 cells show that c-NGF(1-14) acts as an ionophore, influencing the degree and the localization of both the membrane transporter (Ctr1) and the copper intracellular transporter (CCS). c-NGF(1-14) induces PC12 differentiation, mimics the protein in TrkA phosphorylation, and activates the kinase cascade, inducing Erk1/2 phosphorylation. c-NGF(1-14) biological activities are enhanced when the peptide interacts with Cu2+ even with the submicromolar quantities present in the culture media as demonstrated by ICP-OES measurements. Finally, c-NGF(1-14) and Cu2+ concur to activate the cAMP response element-binding protein CREB that, in turn, induces the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF) release.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cobre , Factor de Crecimiento Nervioso , Péptidos Cíclicos , Factor A de Crecimiento Endotelial Vascular , Células PC12 , Animales , Ratas , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cobre/metabolismo , Cobre/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ionóforos/farmacología , Proteínas de Transporte de Catión/metabolismo , Receptor trkA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA