Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.996
Filtrar
1.
Sci Adv ; 10(19): eadj9911, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728406

RESUMEN

During cerebral cortex development, excitatory pyramidal neurons (PNs) establish specific projection patterns while receiving inputs from GABAergic inhibitory interneurons (INs). Whether these inhibitory inputs can shape PNs' projection patterns is, however, unknown. While layer 4 (L4) PNs of the primary somatosensory (S1) cortex are all born as long-range callosal projection neurons (CPNs), most of them acquire local connectivity upon activity-dependent elimination of their interhemispheric axons during postnatal development. Here, we demonstrate that precise developmental regulation of inhibition is key for the retraction of S1L4 PNs' callosal projections. Ablation of somatostatin INs leads to premature inhibition from parvalbumin INs onto S1L4 PNs and prevents them from acquiring their barrel-restricted local connectivity pattern. As a result, adult S1L4 PNs retain interhemispheric projections responding to tactile stimuli, and the mice lose whisker-based texture discrimination. Overall, we show that temporally ordered IN activity during development is key to shaping local ipsilateral S1L4 PNs' projection pattern, which is required for fine somatosensory processing.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Corteza Somatosensorial , Animales , Interneuronas/metabolismo , Interneuronas/fisiología , Interneuronas/citología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/citología , Corteza Somatosensorial/fisiología , Corteza Somatosensorial/metabolismo , Corteza Somatosensorial/citología , Ratones , Células Piramidales/metabolismo , Células Piramidales/fisiología , Parvalbúminas/metabolismo
2.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38745556

RESUMEN

The basic building block of the cerebral cortex, the pyramidal cell, has been shown to be characterized by a markedly different dendritic structure among layers, cortical areas, and species. Functionally, differences in the structure of their dendrites and axons are critical in determining how neurons integrate information. However, within the human cortex, these neurons have not been quantified in detail. In the present work, we performed intracellular injections of Lucifer Yellow and 3D reconstructed over 200 pyramidal neurons, including apical and basal dendritic and local axonal arbors and dendritic spines, from human occipital primary visual area and associative temporal cortex. We found that human pyramidal neurons from temporal cortex were larger, displayed more complex apical and basal structural organization, and had more spines compared to those in primary sensory cortex. Moreover, these human neocortical neurons displayed specific shared and distinct characteristics in comparison to previously published human hippocampal pyramidal neurons. Additionally, we identified distinct morphological features in human neurons that set them apart from mouse neurons. Lastly, we observed certain consistent organizational patterns shared across species. This study emphasizes the existing diversity within pyramidal cell structures across different cortical areas and species, suggesting substantial species-specific variations in their computational properties.


Asunto(s)
Células Piramidales , Humanos , Células Piramidales/fisiología , Animales , Masculino , Femenino , Ratones , Adulto , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Lóbulo Temporal/citología , Dendritas/fisiología , Persona de Mediana Edad , Axones/fisiología , Especificidad de la Especie
3.
Nat Commun ; 15(1): 4053, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744848

RESUMEN

The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.


Asunto(s)
Callithrix , Hipocampo , Navegación Espacial , Animales , Callithrix/fisiología , Navegación Espacial/fisiología , Hipocampo/fisiología , Masculino , Locomoción/fisiología , Visión Ocular/fisiología , Células Piramidales/fisiología , Movimientos de la Cabeza/fisiología , Interneuronas/fisiología , Femenino , Conducta Animal/fisiología , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología
4.
Sci Rep ; 14(1): 10054, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698053

RESUMEN

ß-Thalassaemia is one of the most common genetic diseases worldwide. During the past few decades, life expectancy of patients has increased significantly owing to advance in medical treatments. Cognitive impairment, once has been neglected, has gradually become more documented. Cognitive impairment in ß-thalassaemia patients is associated with natural history of the disease and socioeconomic factors. Herein, to determined effect of ß-thalassaemia intrinsic factors, 22-month-old ß-thalassaemia mouse was used as a model to assess cognitive impairment and to investigate any aberrant brain pathology in ß-thalassaemia. Open field test showed that ß-thalassaemia mice had decreased motor function. However, no difference of neuronal degeneration in primary motor cortex, layer 2/3 area was found. Interestingly, impaired learning and memory function accessed by a Morris water maze test was observed and correlated with a reduced number of living pyramidal neurons in hippocampus at the CA3 region in ß-thalassaemia mice. Cognitive impairment in ß-thalassaemia mice was significantly correlated with several intrinsic ß-thalassaemic factors including iron overload, anaemia, damaged red blood cells (RBCs), phosphatidylserine (PS)-exposed RBC large extracellular vesicles (EVs) and PS-exposed medium EVs. This highlights the importance of blood transfusion and iron chelation in ß-thalassaemia patients. In addition, to improve patients' quality of life, assessment of cognitive functions should become part of routine follow-up.


Asunto(s)
Disfunción Cognitiva , Modelos Animales de Enfermedad , Hipocampo , Talasemia beta , Animales , Talasemia beta/patología , Talasemia beta/complicaciones , Talasemia beta/genética , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Ratones , Hipocampo/patología , Hipocampo/metabolismo , Masculino , Neuronas/metabolismo , Neuronas/patología , Sobrecarga de Hierro/patología , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/complicaciones , Vesículas Extracelulares/metabolismo , Eritrocitos/metabolismo , Eritrocitos/patología , Células Piramidales/metabolismo , Células Piramidales/patología , Aprendizaje por Laberinto
5.
eNeuro ; 11(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38637152

RESUMEN

Canonically, action potentials of most mammalian neurons initiate at the axon initial segment (AIS) and propagate bidirectionally: orthodromically along the distal axon and retrogradely into the soma and dendrites. Under some circumstances, action potentials may initiate ectopically, at sites distal to the AIS, and propagate antidromically along the axon. These "ectopic action potentials" (EAPs) have been observed in experimental models of seizures and chronic pain, and more rarely in nonpathological forebrain neurons. Here we report that a large majority of parvalbumin-expressing (PV+) interneurons in the upper layers of mouse neocortex, from both orbitofrontal and primary somatosensory areas, fire EAPs after sufficient activation of their somata. Somatostatin-expressing interneurons also fire EAPs, though less robustly. Ectopic firing in PV+ cells occurs in varying temporal patterns and can persist for several seconds. PV+ cells evoke strong synaptic inhibition in pyramidal neurons and interneurons and play critical roles in cortical function. Our results suggest that ectopic spiking of PV+ interneurons is common and may contribute to both normal and pathological network functions of the neocortex.


Asunto(s)
Potenciales de Acción , Interneuronas , Ratones Transgénicos , Neocórtex , Parvalbúminas , Animales , Parvalbúminas/metabolismo , Interneuronas/fisiología , Interneuronas/metabolismo , Neocórtex/fisiología , Potenciales de Acción/fisiología , Masculino , Ratones , Femenino , Ratones Endogámicos C57BL , Células Piramidales/fisiología , Somatostatina/metabolismo
6.
Cell Rep ; 43(4): 114100, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607921

RESUMEN

Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical properties of human Cornu Amonis subfield 1 (CA1) pyramidal neurons can explain observed rhythms, we map the morpho-electric properties of individual CA1 pyramidal neurons in human, non-pathological hippocampal slices from neurosurgery. Human CA1 pyramidal neurons have much larger dendritic trees than mouse CA1 pyramidal neurons, have a large number of oblique dendrites, and resonate at 2.9 Hz, optimally tuned to human theta frequencies. Morphological and biophysical properties suggest cellular diversity along a multidimensional gradient rather than discrete clustering. Across the population, dendritic architecture and a large number of oblique dendrites consistently boost memory capacity in human CA1 pyramidal neurons by an order of magnitude compared to mouse CA1 pyramidal neurons.


Asunto(s)
Región CA1 Hipocampal , Dendritas , Células Piramidales , Humanos , Células Piramidales/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Animales , Masculino , Ratones , Dendritas/fisiología , Femenino , Persona de Mediana Edad , Anciano , Ritmo Teta/fisiología , Adulto
7.
Alzheimers Dement ; 20(5): 3504-3524, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605605

RESUMEN

INTRODUCTION: Cognitive decline progresses with age, and Nr4a1 has been shown to participate in memory functions. However, the relationship between age-related Nr4a1 reduction and cognitive decline is undefined. METHODS: Nr4a1 expressions were evaluated by quantitative PCR and immunochemical approaches. The cognition of mice was examined by multiple behavioral tests. Patch-clamp experiments were conducted to investigate the synaptic function. RESULTS: NR4A1 in peripheral blood mononuclear cells decreased with age in humans. In the mouse brain, age-dependent Nr4a1 reduction occurred in the hippocampal CA1. Deleting Nr4a1 in CA1 pyramidal neurons (PyrNs) led to the impairment of cognition and excitatory synaptic function. Mechanistically, Nr4a1 enhanced TrkB expression via binding to its promoter. Blocking TrkB compromised the cognitive amelioration with Nr4a1-overexpression in CA1 PyrNs. DISCUSSION: Our results elucidate the mechanism of Nr4a1-dependent TrkB regulation in cognition and synaptic function, indicating that Nr4a1 is a target for the treatment of cognitive decline. HIGHLIGHTS: Nr4a1 is reduced in PBMCs and CA1 PyrNs with aging. Nr4a1 ablation in CA1 PyrNs impaired cognition and excitatory synaptic function. Nr4a1 overexpression in CA1 PyrNs ameliorated cognitive impairment of aged mice. Nr4a1 bound to TrkB promoter to enhance transcription. Blocking TrkB function compromised Nr4a1-induced cognitive improvement.


Asunto(s)
Envejecimiento , Disfunción Cognitiva , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Animales , Disfunción Cognitiva/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Ratones , Humanos , Envejecimiento/fisiología , Masculino , Región CA1 Hipocampal/metabolismo , Células Piramidales/metabolismo , Receptor trkB/metabolismo , Leucocitos Mononucleares/metabolismo , Anciano , Femenino , Ratones Endogámicos C57BL
8.
Anesthesiology ; 140(6): 1192-1200, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38624275

RESUMEN

Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. By Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA. Proc Natl Acad Sci U S A 2004; 101:3662-7. Reprinted with permission. In this Classic Paper Revisited, the author recounts the scientific journey leading to a report published in the Proceedings of the National Academy of Sciences (PNAS) and shares several personal stories from her formative years and "research truths" that she has learned along the way. Briefly, the principal inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), was conventionally thought to regulate cognitive processes by activating synaptic GABA type A (GABAA) receptors and generating transient inhibitory synaptic currents. However, the author's laboratory team discovered a novel nonsynaptic form of tonic inhibition in hippocampal pyramidal neurons, mediated by extrasynaptic GABAA receptors that are pharmacologically distinct from synaptic GABAA receptors. This tonic current is highly sensitive to most general anesthetics, including sevoflurane and propofol, and likely contributes to the memory-blocking properties of these drugs. Before the publication in PNAS, the subunit composition of GABAA receptors that generate the tonic current was unknown. The team's research showed that GABAA receptors containing the α5 subunit (α5GABAARs) generated the tonic inhibitory current in hippocampal neurons. α5GABAARs are highly sensitive to GABA, desensitize slowly, and are thus well suited for detecting low, persistent, ambient concentrations of GABA in the extracellular space. Interest in α5GABAARs has surged since the PNAS report, driven by their pivotal roles in cognitive processes and their potential as therapeutic targets for treating various neurologic disorders.


Asunto(s)
Receptores de GABA-A , Animales , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/metabolismo , Ratones , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Células Piramidales/metabolismo , Humanos , Sinapsis/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ácido gamma-Aminobutírico/metabolismo
9.
J Physiol ; 602(10): 2343-2358, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38654583

RESUMEN

Training rodents in a particularly difficult olfactory-discrimination (OD) task results in the acquisition of the ability to perform the task well, termed 'rule learning'. In addition to enhanced intrinsic excitability and synaptic excitation in piriform cortex pyramidal neurons, rule learning results in increased synaptic inhibition across the whole cortical network to the point where it precisely maintains the balance between inhibition and excitation. The mechanism underlying such precise inhibitory enhancement remains to be explored. Here, we use brain slices from transgenic mice (VGAT-ChR2-EYFP), enabling optogenetic stimulation of single GABAergic neurons and recordings of unitary synaptic events in pyramidal neurons. Quantal analysis revealed that learning-induced enhanced inhibition is mediated by increased quantal size of the evoked inhibitory events. Next, we examined the plasticity of synaptic inhibition induced by long-lasting, intrinsically evoked spike firing in post-synaptic neurons. Repetitive depolarizing current pulses from depolarized (-70 mV) or hyperpolarized (-90 mV) membrane potentials induced long-term depression (LTD) and long-term potentiation (LTP) of synaptic inhibition, respectively. We found a profound bidirectional increase in the ability to induce both LTD, mediated by L-type calcium channels, and LTP, mediated by R-type calcium channels after rule learning. Blocking the GABAB receptor reversed the effect of intrinsic stimulation at -90 mV from LTP to LTD. We suggest that learning greatly enhances the ability to modify the strength of synaptic inhibition of principal neurons in both directions. Such plasticity of synaptic plasticity allows fine-tuning of inhibition on each particular neuron, thereby stabilizing the network while maintaining the memory of the rule. KEY POINTS: Olfactory discrimination rule learning results in long-lasting enhancement of synaptic inhibition on piriform cortex pyramidal neurons. Quantal analysis of unitary inhibitory synaptic events, evoked by optogenetic minimal stimulation, revealed that enhanced synaptic inhibition is mediated by increased quantal size. Surprisingly, metaplasticity of synaptic inhibition, induced by intrinsically evoked repetitive spike firing, is increased bidirectionally. The susceptibility to both long-term depression (LTD) and long-term potentiation (LTP) of inhibition is enhanced after learning. LTD of synaptic inhibition is mediated by L-type calcium channels and LTP by R-type calcium channels. LTP is also dependent on activation of GABAB receptors. We suggest that learning-induced changes in the metaplasticity of synaptic inhibition enable the fine-tuning of inhibition on each particular neuron, thereby stabilizing the network while maintaining the memory of the rule.


Asunto(s)
Ratones Transgénicos , Plasticidad Neuronal , Células Piramidales , Animales , Plasticidad Neuronal/fisiología , Ratones , Células Piramidales/fisiología , Neuronas GABAérgicas/fisiología , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Masculino , Sinapsis/fisiología , Optogenética , Inhibición Neural/fisiología , Corteza Piriforme/fisiología , Ratones Endogámicos C57BL , Depresión Sináptica a Largo Plazo/fisiología
10.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38610088

RESUMEN

The axons of neocortical pyramidal neurons are frequently myelinated. Heterogeneity in the topography of axonal myelination in the cerebral cortex has been attributed to a combination of electrophysiological activity, axonal morphology, and neuronal-glial interactions. Previously, we showed that axonal segment length and caliber are critical local determinants of fast-spiking interneuron myelination. However, the factors that determine the myelination of individual axonal segments along neocortical pyramidal neurons remain largely unexplored. Here, we used structured illumination microscopy to examine the extent to which axonal morphology is predictive of the topography of myelination along neocortical pyramidal neurons. We identified critical thresholds for axonal caliber and interbranch distance that are necessary, but not sufficient, for myelination of pyramidal cell axons in mouse primary somatosensory cortex (S1). Specifically, we found that pyramidal neuron axonal segments with a caliber < 0.24 µm or interbranch distance < 18.10 µm are rarely myelinated. Moreover, we further confirmed that these findings in mice are similar for human neocortical pyramidal cell myelination (caliber < 0.25 µm, interbranch distance < 19.00 µm), suggesting that this mechanism is evolutionarily conserved. Taken together, our findings suggest that axonal morphology is a critical correlate of the topography and cell-type specificity of neocortical myelination.


Asunto(s)
Neocórtex , Células Piramidales , Humanos , Animales , Ratones , Axones , Vaina de Mielina , Interneuronas
11.
PLoS Comput Biol ; 20(4): e1011468, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626210

RESUMEN

Neurons in the cerebral cortex receive thousands of synaptic inputs per second from thousands of presynaptic neurons. How the dendritic location of inputs, their timing, strength, and presynaptic origin, in conjunction with complex dendritic physiology, impact the transformation of synaptic input into action potential (AP) output remains generally unknown for in vivo conditions. Here, we introduce a computational approach to reveal which properties of the input causally underlie AP output, and how this neuronal input-output computation is influenced by the morphology and biophysical properties of the dendrites. We demonstrate that this approach allows dissecting of how different input populations drive in vivo observed APs. For this purpose, we focus on fast and broadly tuned responses that pyramidal tract neurons in layer 5 (L5PTs) of the rat barrel cortex elicit upon passive single whisker deflections. By reducing a multi-scale model that we reported previously, we show that three features are sufficient to predict with high accuracy the sensory responses and receptive fields of L5PTs under these specific in vivo conditions: the count of active excitatory versus inhibitory synapses preceding the response, their spatial distribution on the dendrites, and the AP history. Based on these three features, we derive an analytically tractable description of the input-output computation of L5PTs, which enabled us to dissect how synaptic input from thalamus and different cell types in barrel cortex contribute to these responses. We show that the input-output computation is preserved across L5PTs despite morphological and biophysical diversity of their dendrites. We found that trial-to-trial variability in L5PT responses, and cell-to-cell variability in their receptive fields, are sufficiently explained by variability in synaptic input from the network, whereas variability in biophysical and morphological properties have minor contributions. Our approach to derive analytically tractable models of input-output computations in L5PTs provides a roadmap to dissect network-neuron interactions underlying L5PT responses across different in vivo conditions and for other cell types.


Asunto(s)
Potenciales de Acción , Modelos Neurológicos , Corteza Somatosensorial , Animales , Ratas , Corteza Somatosensorial/fisiología , Corteza Somatosensorial/citología , Potenciales de Acción/fisiología , Dendritas/fisiología , Vibrisas/fisiología , Tractos Piramidales/fisiología , Sinapsis/fisiología , Biología Computacional , Células Piramidales/fisiología , Simulación por Computador , Red Nerviosa/fisiología
12.
PLoS One ; 19(4): e0298065, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626211

RESUMEN

Anoxia in the mammalian brain leads to hyper-excitability and cell death; however, this cascade of events does not occur in the anoxia-tolerant brain of the western painted turtle, Chrysemys picta belli. The painted turtle has become an important anoxia-tolerant model to study brain, heart, and liver function in the absence of oxygen, but being anoxia-tolerant likely means that decapitation alone is not a suitable method of euthanasia. Many anesthetics have long-term effects on ion channels and are not appropriate for same day experimentation. Using whole-cell electrophysiological techniques, we examine the effects of the anesthetic, Alfaxalone, on pyramidal cell action potential amplitude, threshold, rise and decay time, width, frequency, whole cell conductance, and evoked GABAA receptors currents to determine if any of these characteristics are altered with the use of Alfaxalone for animal sedation. We find that Alfaxalone has no long-term impact on action potential parameters or whole-cell conductance. When acutely applied to naïve tissue, Alfaxalone did lengthen GABAA receptor current decay rates by 1.5-fold. Following whole-animal sedation with Alfaxalone, evoked whole cell GABAA receptor current decay rates displayed an increasing trend with 1 and 2 hours after brain sheet preparation, but showed no significant change after a 3-hour washout period. Therefore, we conclude that Alfaxalone is a suitable anesthetic for same day use in electrophysiological studies in western painted turtle brain tissue.


Asunto(s)
Anestésicos , Hipoxia Encefálica , Pregnanodionas , Tortugas , Animales , Tortugas/fisiología , Receptores de GABA-A/metabolismo , Células Piramidales/metabolismo , Hipoxia/metabolismo , Anestésicos/farmacología , Mamíferos
13.
Sheng Li Xue Bao ; 76(2): 233-246, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38658373

RESUMEN

The high-order cognitive and executive functions are necessary for an individual to survive. The densely bidirectional innervations between the medial prefrontal cortex (mPFC) and the mediodorsal thalamus (MD) play a vital role in regulating high-order functions. Pyramidal neurons in mPFC have been classified into several subclasses according to their morphological and electrophysiological properties, but the properties of the input-specific pyramidal neurons in mPFC remain poorly understood. The present study aimed to profile the morphological and electrophysiological properties of mPFC pyramidal neurons innervated by MD. In the past, the studies for characterizing the morphological and electrophysiological properties of neurons mainly relied on the electrophysiological recording of a large number of neurons and their morphologic reconstructions. But, it is a low efficient method for characterizing the circuit-specific neurons. The present study combined the advantages of traditional morphological and electrophysiological methods with machine learning to address the shortcomings of the past method, to establish a classification model for the morphological and electrophysiological properties of mPFC pyramidal neurons, and to achieve more accurate and efficient identification of the properties from a small size sample of neurons. We labeled MD-innervated pyramidal neurons of mPFC using the trans-synaptic neural circuitry tracing method and obtained their morphological properties using whole-cell patch-clamp recording and morphologic reconstructions. The results showed that the classification model established in the present study could predict the electrophysiological properties of MD-innervated pyramidal neurons based on their morphology. MD-innervated pyramidal neurons exhibit larger basal dendritic length but lower apical dendrite complexity compared to non-MD-innervated neurons in the mPFC. The morphological characteristics of the two subtypes (ET-1 and ET-2) of mPFC pyramidal neurons innervated by MD are different, with the apical dendrites of ET-1 neurons being longer and more complex than those of ET-2 neurons. These results suggest that the electrophysiological properties of MD- innervated pyramidal neurons within mPFC correlate with their morphological properties, indicating that the different roles of these two subclasses in local circuits within PFC, as well as in PFC-cortical/subcortical brain region circuits.


Asunto(s)
Corteza Prefrontal , Células Piramidales , Células Piramidales/fisiología , Células Piramidales/citología , Corteza Prefrontal/fisiología , Corteza Prefrontal/citología , Animales , Ratas , Núcleo Talámico Mediodorsal/fisiología , Núcleo Talámico Mediodorsal/citología , Masculino , Fenómenos Electrofisiológicos , Vías Nerviosas/fisiología , Vías Nerviosas/citología , Aprendizaje Automático , Ratas Sprague-Dawley , Técnicas de Placa-Clamp
14.
Front Neural Circuits ; 18: 1389110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601266

RESUMEN

The error-related negativity and an N2-component recorded over medial frontal cortex index core functions of cognitive control. While they are known to originate from agranular frontal areas, the underlying microcircuit mechanisms remain elusive. Most insights about microcircuit function have been derived from variations of the so-called canonical microcircuit model. These microcircuit architectures are based extensively on studies from granular sensory cortical areas in monkeys, cats, and rodents. However, evidence has shown striking cytoarchitectonic differences across species and differences in the functional relationships across cortical layers in agranular compared to granular sensory areas. In this minireview, we outline a tentative microcircuit model underlying cognitive control in the agranular frontal cortex of primates. The model incorporates the main GABAergic interneuron subclasses with specific laminar arrangements and target regions on pyramidal cells. We emphasize the role of layer 5 pyramidal cells in error and conflict detection. We offer several specific questions necessary for creating a specific intrinsic microcircuit model of the agranular frontal cortex.


Asunto(s)
Lóbulo Frontal , Macaca , Animales , Lóbulo Frontal/fisiología , Células Piramidales , Interneuronas , Haplorrinos , Primates , Cognición , Corteza Cerebral
15.
Science ; 384(6693): 338-343, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38635709

RESUMEN

The computational capabilities of neuronal networks are fundamentally constrained by their specific connectivity. Previous studies of cortical connectivity have mostly been carried out in rodents; whether the principles established therein also apply to the evolutionarily expanded human cortex is unclear. We studied network properties within the human temporal cortex using samples obtained from brain surgery. We analyzed multineuron patch-clamp recordings in layer 2-3 pyramidal neurons and identified substantial differences compared with rodents. Reciprocity showed random distribution, synaptic strength was independent from connection probability, and connectivity of the supragranular temporal cortex followed a directed and mostly acyclic graph topology. Application of these principles in neuronal models increased dimensionality of network dynamics, suggesting a critical role for cortical computation.


Asunto(s)
Neuronas , Sinapsis , Animales , Humanos , Sinapsis/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Roedores , Red Nerviosa/fisiología
16.
Neuron ; 112(8): 1202-1204, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38636453

RESUMEN

Insomnia is an important comorbidity of chronic pain. In this issue of Neuron, Li et al. report that chronic-pain-induced insomnia is mediated by the pyramidal neurons in the anterior cingulate cortex and their dopaminergic projections to the dorsal medial striatum.


Asunto(s)
Dolor Crónico , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Giro del Cíngulo/fisiología , Cuerpo Estriado , Células Piramidales , Neostriado
17.
Cells ; 13(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38607012

RESUMEN

Neuronal timing with millisecond precision is critical for many brain functions such as sensory perception, learning and memory formation. At the level of the chemical synapse, the synaptic delay is determined by the presynaptic release probability (Pr) and the waveform of the presynaptic action potential (AP). For instance, paired-pulse facilitation or presynaptic long-term potentiation are associated with reductions in the synaptic delay, whereas paired-pulse depression or presynaptic long-term depression are associated with an increased synaptic delay. Parallelly, the AP broadening that results from the inactivation of voltage gated potassium (Kv) channels responsible for the repolarization phase of the AP delays the synaptic response, and the inactivation of sodium (Nav) channels by voltage reduces the synaptic latency. However, whether synaptic delay is modulated during depolarization-induced analogue-digital facilitation (d-ADF), a form of context-dependent synaptic facilitation induced by prolonged depolarization of the presynaptic neuron and mediated by the voltage-inactivation of presynaptic Kv1 channels, remains unclear. We show here that despite Pr being elevated during d-ADF at pyramidal L5-L5 cell synapses, the synaptic delay is surprisingly unchanged. This finding suggests that both Pr- and AP-dependent changes in synaptic delay compensate for each other during d-ADF. We conclude that, in contrast to other short- or long-term modulations of presynaptic release, synaptic timing is not affected during d-ADF because of the opposite interaction of Pr- and AP-dependent modulations of synaptic delay.


Asunto(s)
Neuronas , Sinapsis , Sinapsis/fisiología , Potenciales de Acción/fisiología , Células Piramidales/fisiología , Potenciación a Largo Plazo
18.
BMC Biol ; 22(1): 95, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679719

RESUMEN

BACKGROUND: The medial prefrontal cortex (mPFC) is involved in complex functions containing multiple types of neurons in distinct subregions with preferential roles. The pyramidal neurons had wide-range projections to cortical and subcortical regions with subregional preferences. Using a combination of viral tracing and fluorescence micro-optical sectioning tomography (fMOST) in transgenic mice, we systematically dissected the whole-brain connectomes of intratelencephalic (IT) and pyramidal tract (PT) neurons in four mPFC subregions. RESULTS: IT and PT neurons of the same subregion projected to different target areas while receiving inputs from similar upstream regions with quantitative differences. IT and PT neurons all project to the amygdala and basal forebrain, but their axons target different subregions. Compared to subregions in the prelimbic area (PL) which have more connections with sensorimotor-related regions, the infralimbic area (ILA) has stronger connections with limbic regions. The connection pattern of the mPFC subregions along the anterior-posterior axis showed a corresponding topological pattern with the isocortex and amygdala but an opposite orientation correspondence with the thalamus. CONCLUSIONS: By using transgenic mice and fMOST imaging, we obtained the subregional preference whole-brain connectomes of IT and pyramidal tract PT neurons in the mPFC four subregions. These results provide a comprehensive resource for directing research into the complex functions of the mPFC by offering anatomical dissections of the different subregions.


Asunto(s)
Conectoma , Ratones Transgénicos , Corteza Prefrontal , Células Piramidales , Animales , Corteza Prefrontal/fisiología , Corteza Prefrontal/citología , Células Piramidales/fisiología , Ratones , Masculino
19.
Cell Rep ; 43(4): 114056, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38581678

RESUMEN

Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.


Asunto(s)
Trastorno Autístico , Modelos Animales de Enfermedad , Receptor alfa de Estrógeno , Ratones Noqueados , Neocórtex , Fosfohidrolasa PTEN , Receptor del Glutamato Metabotropico 5 , Animales , Femenino , Masculino , Ratones , Trastorno Autístico/metabolismo , Trastorno Autístico/fisiopatología , Trastorno Autístico/genética , Trastorno Autístico/patología , Receptor alfa de Estrógeno/metabolismo , Ratones Endogámicos C57BL , Neocórtex/metabolismo , Neocórtex/patología , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Células Piramidales/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Conducta Social
20.
Mar Drugs ; 22(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38667787

RESUMEN

Porphyran, a sulfated polysaccharide found in various species of marine red algae, has been demonstrated to exhibit diverse bioactivities, including anti-inflammatory effects. However, the protective effects of porphyran against cerebral ischemia and reperfusion (IR) injury have not been investigated. The aim of this study was to examine the neuroprotective effects of porphyran against brain IR injury and its underlying mechanisms using a gerbil model of transient forebrain ischemia (IR in the forebrain), which results in pyramidal cell (principal neuron) loss in the cornu ammonis 1 (CA1) subregion of the hippocampus on day 4 after IR. Porphyran (25 and 50 mg/kg) was orally administered daily for one week prior to IR. Pretreatment with 50 mg/kg of porphyran, but not 25 mg/kg, significantly attenuated locomotor hyperactivity and protected pyramidal cells located in the CA1 area from IR injury. The pretreatment with 50 mg/kg of porphyran significantly suppressed the IR-induced activation and proliferation of microglia in the CA1 subregion. Additionally, the pretreatment significantly inhibited the overexpressions of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing protein-3 (NLRP3) inflammasome complex, and pro-inflammatory cytokines (interleukin 1 beta and interleukin 18) induced by IR in the CA1 subregion. Overall, our findings suggest that porphyran exerts neuroprotective effects against brain IR injury, potentially by reducing the reaction (activation) and proliferation of microglia and reducing NLRP3 inflammasome-mediated neuroinflammation.


Asunto(s)
Región CA1 Hipocampal , Gerbillinae , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores , Daño por Reperfusión , Sefarosa/análogos & derivados , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Masculino , Daño por Reperfusión/tratamiento farmacológico , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Modelos Animales de Enfermedad , Microglía/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Polisacáridos/farmacología , Neuronas/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA