Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.359
Filtrar
1.
Methods Mol Biol ; 2831: 59-71, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134843

RESUMEN

Dendrites of neurons receive synaptic or sensory inputs and are important sites of neuronal computation. The morphological features of dendrites not only are hallmarks of the neuronal type but also largely determine a neuron's function. Thus, dendrite morphogenesis has been a subject of intensive study in neuroscience. Quantification of dendritic morphology, which is required for accurate assessment of phenotypes, can often be a challenging task, especially for complex neurons. Because manual tracing of dendritic branches is labor-intensive and time-consuming, automated or semiautomated methods are required for efficient analysis of a large number of samples. A popular in vivo model system for studying the mechanisms of dendrite morphogenesis is dendritic arborization (da) neurons in the Drosophila larval peripheral nervous system. In this chapter, we introduce methods for visualizing and measuring the dendritic arbors of these neurons. We begin with an introduction of da neurons and an overview of the methods that have been used for measuring da neuron dendrites. We then discuss the techniques and detailed steps of neuron visualization and image acquisition. Finally, we provide example steps for dendrite tracing and measurement.


Asunto(s)
Dendritas , Animales , Dendritas/fisiología , Drosophila/citología , Larva/citología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología , Procesamiento de Imagen Asistido por Computador/métodos
2.
Open Biol ; 14(7): 240059, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39046196

RESUMEN

The brain can adapt to changes in the environment through alterations in the number and structure of synapses. During embryonic and early postnatal stages, the synapses in the brain undergo rapid expansion and interconnections to form circuits. However, many of these synaptic connections are redundant or incorrect. Neurite pruning is a conserved process that occurs during both vertebrate and invertebrate development. It requires precise spatiotemporal control of local degradation of cellular components, comprising cytoskeletons and membranes, refines neuronal circuits, and ensures the precise connectivity required for proper function. The Drosophila's class IV dendritic arborization (C4da) sensory neuron has a well-characterized architecture and undergoes dendrite-specific sculpting, making it a valuable model for unravelling the intricate regulatory mechanisms underlie dendritic pruning. In this review, I attempt to provide an overview of the present state of research on dendritic pruning in C4da sensory neurons, as well as potential functional mechanisms in neurodevelopmental disorders.


Asunto(s)
Dendritas , Células Receptoras Sensoriales , Animales , Dendritas/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/citología , Plasticidad Neuronal , Sinapsis/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster
3.
Biofabrication ; 16(4)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39084624

RESUMEN

Three-dimensional (3D) tissue models have gained recognition for their improved ability to mimic the native cell microenvironment compared to traditional two-dimensional models. This progress has been driven by advances in tissue-engineering technologies such as 3D bioprinting, a promising method for fabricating biomimetic living tissues. While bioprinting has succeeded in generating various tissues to date, creating neural tissue models remains challenging. In this context, we present an accelerated approach to fabricate 3D sensory neuron (SN) structures using a transgenic human pluripotent stem cell (hPSC)-line that contains an inducible Neurogenin-2 (NGN2) expression cassette. The NGN2 hPSC line was first differentiated to neural crest cell (NCC) progenitors, then incorporated into a cytocompatible gelatin methacryloyl-based bioink for 3D bioprinting. Upregulated NGN2 expression in the bioprinted NCCs resulted in induced SN (iSN) populations that exhibited specific cell markers, with 3D analysis revealing widespread neurite outgrowth through the scaffold volume. Calcium imaging demonstrated functional activity of iSNs, including membrane excitability properties and voltage-gated sodium channel (NaV) activity. This efficient approach to generate 3D bioprinted iSN structures streamlines the development of neural tissue models, useful for the study of neurodevelopment and disease states and offering translational potential.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Bioimpresión , Proteínas del Tejido Nervioso , Impresión Tridimensional , Células Receptoras Sensoriales , Andamios del Tejido , Humanos , Bioimpresión/métodos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/citología , Proteínas del Tejido Nervioso/metabolismo , Andamios del Tejido/química , Línea Celular , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Ingeniería de Tejidos/métodos , Gelatina/química , Cresta Neural/citología , Cresta Neural/metabolismo
4.
Sci Adv ; 10(25): eadj9173, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905344

RESUMEN

Sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli to the central nervous system. Single-cell RNA sequencing has provided insights into the diversity of sensory ganglia cell types in rodents, nonhuman primates, and humans, but it remains difficult to compare cell types across studies and species. We thus constructed harmonized atlases of the DRG and TG that describe and facilitate comparison of 18 neuronal and 11 non-neuronal cell types across six species and 31 datasets. We then performed single-cell/nucleus RNA sequencing of DRG from both human and the highly regenerative axolotl and found that the harmonized atlas also improves cell type annotation, particularly of sparse neuronal subtypes. We observed that the transcriptomes of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The resources presented here can guide future studies in comparative transcriptomics, simplify cell-type nomenclature differences across studies, and help prioritize targets for future analgesic development.


Asunto(s)
Ganglios Espinales , Transcriptoma , Ganglio del Trigémino , Animales , Humanos , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ganglio del Trigémino/citología , Ganglio del Trigémino/metabolismo , Análisis de la Célula Individual/métodos , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/citología , Especificidad de la Especie , Ratones , Atlas como Asunto , Perfilación de la Expresión Génica , Ratas
5.
Genetics ; 227(2)2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38785371

RESUMEN

Since the days of Ramón y Cajal, the vast diversity of neuronal and particularly dendrite morphology has been used to catalog neurons into different classes. Dendrite morphology varies greatly and reflects the different functions performed by different types of neurons. Significant progress has been made in our understanding of how dendrites form and the molecular factors and forces that shape these often elaborately sculpted structures. Here, we review work in the nematode Caenorhabditis elegans that has shed light on the developmental mechanisms that mediate dendrite morphogenesis with a focus on studies investigating ciliated sensory neurons and the highly elaborated dendritic trees of somatosensory neurons. These studies, which combine time-lapse imaging, genetics, and biochemistry, reveal an intricate network of factors that function both intrinsically in dendrites and extrinsically from surrounding tissues. Therefore, dendrite morphogenesis is the result of multiple tissue interactions, which ultimately determine the shape of dendritic arbors.


Asunto(s)
Caenorhabditis elegans , Dendritas , Morfogénesis , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/citología , Dendritas/metabolismo , Morfogénesis/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/citología
6.
J Comp Neurol ; 532(6): e25627, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38813969

RESUMEN

During development, cell-intrinsic and cell-extrinsic factors play important roles in neuronal differentiation; however, the underlying mechanisms in nonmammalian species remain largely unknown. We here investigated the mechanisms responsible for the differentiation of sensory input neurons in the chick entopallium, which receives its primary visual input via the tectofugal pathway from the nucleus rotundus. The results obtained revealed that input neurons in the entopallium expressed Potassium Voltage-Gated Channel Subfamily H Member 5 (KCNH5/EAG2) mRNA from embryonic day (E) 11. On the other hand, the onset of protein expression was E20, which was 1 day before hatching. We confirm that entopallium input neurons in chicks were generated during early neurogenesis in the lateral and ventral ventricular zones. Notably, neurons derived from the lateral (LP) and ventral pallium (VP) exhibited a spatially distinct distribution along the rostro-caudal axis. We further demonstrated that the expression of EAG2 was directly regulated by input activity from thalamic axons. Collectively, the present results reveal that thalamic input activity is essential for specifying input neurons among LP- and VP-derived early-generated neurons in the developing chick entopallium.


Asunto(s)
Neurogénesis , Tálamo , Animales , Embrión de Pollo , Neurogénesis/fisiología , Tálamo/embriología , Tálamo/citología , Tálamo/metabolismo , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/citología , Pollos , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología
7.
Cell ; 187(6): 1508-1526.e16, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38442711

RESUMEN

Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.


Asunto(s)
Ganglios Espinales , Células Receptoras Sensoriales , Análisis de Expresión Génica de una Sola Célula , Animales , Ratones , Ganglios Espinales/citología , Células Receptoras Sensoriales/citología , Piel/inervación
8.
J Neurosci Res ; 101(3): 338-353, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36517461

RESUMEN

The sensory nervous system is critical to maintain cardiac function. As opposed to efferent innervation, less is known about cardiac afferents. For this, we mapped the VGLUT2-expressing cardiac afferent fibers of spinal and vagal origin by using the VGLUT2::tdTomato double transgenic mouse as an approach to visualize the whole hearts both at the dorsal and ventral sides. For comparison, we colabeled mixed-sex transgenic hearts with either TUJ1 protein for global cardiac innervation or tyrosine hydroxylase for the sympathetic network at the healthy state or following ischemic injury. Interestingly, the nerve density for global and VGLUT2-expressing afferents was found significantly higher on the dorsal side compared to the ventral side. From the global nerve innervation detected by TUJ1 immunoreactivity, VGLUT2 afferent innervation was detected to be 15-25% of the total network. The detailed characterization of both the atria and the ventricles revealed a remarkable diversity of spinal afferent nerve ending morphologies of flower sprays, intramuscular endings, and end-net branches that innervate distinct anatomical parts of the heart. Using this integrative approach in a chronic myocardial infarct model, we showed a significant increase in hyperinnervation in the form of axonal sprouts for cardiac afferents at the infarct border zone, as well as denervation at distal sites of the ischemic area. The functional and physiological consequences of the abnormal sensory innervation remodeling post-ischemic injury should be further evaluated in future studies regarding their potential contribution to cardiac dysfunction.


Asunto(s)
Infarto del Miocardio , Células Receptoras Sensoriales , Animales , Ratones , Axones , Ratones Transgénicos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Nervio Vago , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteína Fluorescente Roja
9.
Proc Natl Acad Sci U S A ; 119(37): e2206817119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067313

RESUMEN

The classification of neurons into distinct types reveals hierarchical taxonomic relationships that reflect the extent of similarity between neuronal cell types. At the base of such taxonomies are neuronal cells that are very similar to one another but differ in a small number of reproducible and select features. How are very similar members of a neuron class that share many features instructed to diversify into distinct subclasses? We show here that the six very similar members of the Caenorhabditis elegans IL2 sensory neuron class, which are all specified by a homeobox terminal selector, unc-86/BRN3, differentiate into two subtly distinct subclasses, a dorsoventral subclass and a lateral subclass, by the toggle switch-like action of the sine oculis/SIX homeobox gene unc-39. unc-39 is expressed only in the lateral IL2 neurons, and loss of unc-39 leads to a homeotic transformation of the lateral into the dorsoventral class; conversely, ectopic unc-39 expression converts the dorsoventral subclass into the lateral subclass. Hence, a terminal selector homeobox gene controls both class- as well as subclass-specific features, while a subordinate homeobox gene determines the ability of the class-specific homeobox gene to activate subtype-specific target genes. We find a similar regulatory mechanism operating in a distinct class of six motor neurons. Our findings underscore the importance of homeobox genes in neuronal identity control and invite speculations about homeotic identity transformations as potential drivers of evolutionary novelty during cell-type evolution in the brain.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Genes Homeobox , Proteínas de Homeodominio , Células Receptoras Sensoriales , Factores de Transcripción , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Neuronas Motoras/clasificación , Neuronas Motoras/citología , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/citología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
10.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163831

RESUMEN

Cisplatin can induce peripheral neuropathy, which is a common complication of anti-cancer treatment and negatively impacts cancer survivors during and after completion of treatment; therefore, the mechanisms by which cisplatin alters sensory neuronal function to elicit neuropathy are the subject of much investigation. Our previous work suggests that the DNA repair activity of APE1/Ref-1, the rate-limiting enzyme of the base excision repair (BER) pathway, is critical for neuroprotection against cisplatin. A specific role for 8-oxoguanine DNA glycosylase-1 (OGG1), the glycosylase that removes the most common oxidative DNA lesion, and putative coordination of OGG1 with APE1/Ref-1 in sensory neurons, has not been investigated. We investigated whether inhibiting OGG1 glycosylase activity with the small molecule inhibitor, TH5487, and/or APE1/Ref-1 endonuclease activity with APE Repair Inhibitor III would alter the neurotoxic effects of cisplatin in sensory neuronal cultures. Sensory neuron function was assessed by calcitonin gene-related peptide (CGRP) release, as a marker of sensitivity and by neurite outgrowth. Cisplatin altered neuropeptide release in an inverse U-shaped fashion, with low concentrations enhancing and higher concentrations diminishing CGRP release. Pretreatment with BER inhibitors exacerbated the functional effects of cisplatin and enhanced 8oxo-dG and adduct lesions in the presence of cisplatin. Our studies demonstrate that inhibition of OGG1 and APE1 endonuclease activity enhances oxidative DNA damage and exacerbates neurotoxicity, thus limiting oxidative DNA damage in sensory neurons that might alleviate cisplatin-induced neuropathy.


Asunto(s)
Bencimidazoles/farmacología , Cisplatino/toxicidad , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Piperidinas/farmacología , Células Receptoras Sensoriales/metabolismo , Ubiquitina-Proteína Ligasas/farmacología , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Células Cultivadas , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Estrés Oxidativo , Cultivo Primario de Células , Ratas , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/efectos de los fármacos
11.
PLoS Genet ; 18(1): e1009968, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986146

RESUMEN

Taxane-induced peripheral neuropathy (TIPN) is a devastating survivorship issue for many cancer patients. In addition to its impact on quality of life, this toxicity may lead to dose reductions or treatment discontinuation, adversely impacting survival outcomes and leading to health disparities in African Americans (AA). Our lab has previously identified deleterious mutations in SET-Binding Factor 2 (SBF2) that significantly associated with severe TIPN in AA patients. Here, we demonstrate the impact of SBF2 on taxane-induced neuronal damage using an ex vivo model of SBF2 knockdown of induced pluripotent stem cell-derived sensory neurons. Knockdown of SBF2 exacerbated paclitaxel changes to cell viability and neurite outgrowth while attenuating paclitaxel-induced sodium current inhibition. Our studies identified paclitaxel-induced expression changes specific to mature sensory neurons and revealed candidate genes involved in the exacerbation of paclitaxel-induced phenotypes accompanying SBF2 knockdown. Overall, these findings provide ex vivo support for the impact of SBF2 on the development of TIPN and shed light on the potential pathways involved.


Asunto(s)
Paclitaxel/efectos adversos , Enfermedades del Sistema Nervioso Periférico/genética , Polimorfismo de Nucleótido Simple , Proteínas Tirosina Fosfatasas no Receptoras/genética , Células Receptoras Sensoriales/citología , Negro o Afroamericano/genética , Supervivencia Celular/efectos de los fármacos , Progresión de la Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Células Madre Pluripotentes Inducidas/química , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Paclitaxel/farmacología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/etnología , Calidad de Vida , Células Receptoras Sensoriales/química , Células Receptoras Sensoriales/efectos de los fármacos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Población Blanca/genética
12.
Cells ; 11(2)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053363

RESUMEN

Increased collagen-derived advanced glycation end-products (AGEs) are consistently related to painful diseases, including osteoarthritis, diabetic neuropathy, and neurodegenerative disorders. We have recently developed a model combining a two-dimensional glycated extracellular matrix (ECM-GC) and primary dorsal root ganglion (DRG) that mimicked a pro-nociceptive microenvironment. However, culturing primary cells is still a challenge for large-scale screening studies. Here, we characterized a new model using ECM-GC as a stimulus for human sensory-like neurons differentiated from SH-SY5Y cell lines to screen for analgesic compounds. First, we confirmed that the differentiation process induces the expression of neuron markers (MAP2, RBFOX3 (NeuN), and TUBB3 (ß-III tubulin), as well as sensory neuron markers critical for pain sensation (TRPV1, SCN9A (Nav1.7), SCN10A (Nav1.8), and SCN11A (Nav1.9). Next, we showed that ECM-GC increased c-Fos expression in human sensory-like neurons, which is suggestive of neuronal activation. In addition, ECM-GC upregulated the expression of critical genes involved in pain, including SCN9A and TACR1. Of interest, ECM-GC induced substance P release, a neuropeptide widely involved in neuroinflammation and pain. Finally, morphine, the prototype opiate, decreased ECM-GC-induced substance P release. Together, our results suggest that we established a functional model that can be useful as a platform for screening candidates for the management of painful conditions.


Asunto(s)
Analgésicos/análisis , Analgésicos/farmacología , Colágeno/farmacología , Evaluación Preclínica de Medicamentos , Modelos Biológicos , Células Receptoras Sensoriales/citología , Animales , Antígenos de Neoplasias/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Matriz Extracelular/metabolismo , Galectina 3/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glicosilación/efectos de los fármacos , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Receptores de Neuroquinina-1/genética , Receptores de Neuroquinina-1/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Sustancia P/metabolismo , betaendorfina/metabolismo
13.
Nature ; 602(7897): 468-474, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35082448

RESUMEN

Ingested food and water stimulate sensory systems in the oropharyngeal and gastrointestinal areas before absorption1,2. These sensory signals modulate brain appetite circuits in a feed-forward manner3-5. Emerging evidence suggests that osmolality sensing in the gut rapidly inhibits thirst neurons upon water intake. Nevertheless, it remains unclear how peripheral sensory neurons detect visceral osmolality changes, and how they modulate thirst. Here we use optical and electrical recording combined with genetic approaches to visualize osmolality responses from sensory ganglion neurons. Gut hypotonic stimuli activate a dedicated vagal population distinct from mechanical-, hypertonic- or nutrient-sensitive neurons. We demonstrate that hypotonic responses are mediated by vagal afferents innervating the hepatic portal area (HPA), through which most water and nutrients are absorbed. Eliminating sensory inputs from this area selectively abolished hypotonic but not mechanical responses in vagal neurons. Recording from forebrain thirst neurons and behavioural analyses show that HPA-derived osmolality signals are required for feed-forward thirst satiation and drinking termination. Notably, HPA-innervating vagal afferents do not sense osmolality itself. Instead, these responses are mediated partly by vasoactive intestinal peptide secreted after water ingestion. Together, our results reveal visceral hypoosmolality as an important vagal sensory modality, and that intestinal osmolality change is translated into hormonal signals to regulate thirst circuit activity through the HPA pathway.


Asunto(s)
Intestinos , Saciedad , Células Receptoras Sensoriales , Sed , Ganglios Sensoriales/citología , Intestinos/citología , Intestinos/inervación , Concentración Osmolar , Presión Osmótica , Saciedad/fisiología , Células Receptoras Sensoriales/citología , Sed/fisiología , Nervio Vago/citología , Nervio Vago/fisiología , Agua/metabolismo
14.
PLoS Biol ; 20(1): e3001524, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089912

RESUMEN

We present a high-throughput optogenetic illumination system capable of simultaneous closed-loop light delivery to specified targets in populations of moving Caenorhabditis elegans. The instrument addresses three technical challenges: It delivers targeted illumination to specified regions of the animal's body such as its head or tail; it automatically delivers stimuli triggered upon the animal's behavior; and it achieves high throughput by targeting many animals simultaneously. The instrument was used to optogenetically probe the animal's behavioral response to competing mechanosensory stimuli in the the anterior and posterior gentle touch receptor neurons. Responses to more than 43,418 stimulus events from a range of anterior-posterior intensity combinations were measured. The animal's probability of sprinting forward in response to a mechanosensory stimulus depended on both the anterior and posterior stimulation intensity, while the probability of reversing depended primarily on the anterior stimulation intensity. We also probed the animal's response to mechanosensory stimulation during the onset of turning, a relatively rare behavioral event, by delivering stimuli automatically when the animal began to turn. Using this closed-loop approach, over 9,700 stimulus events were delivered during turning onset at a rate of 9.2 events per worm hour, a greater than 25-fold increase in throughput compared to previous investigations. These measurements validate with greater statistical power previous findings that turning acts to gate mechanosensory evoked reversals. Compared to previous approaches, the current system offers targeted optogenetic stimulation to specific body regions or behaviors with many fold increases in throughput to better constrain quantitative models of sensorimotor processing.


Asunto(s)
Caenorhabditis elegans/fisiología , Ensayos Analíticos de Alto Rendimiento , Mecanotransducción Celular/fisiología , Movimiento/fisiología , Optogenética/métodos , Animales , Conducta Animal/fisiología , Retroalimentación Sensorial/fisiología , Optogenética/instrumentación , Estimulación Luminosa , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología
15.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34639189

RESUMEN

We analyzed transcriptomic data from otic sensory cells differentiated from human induced pluripotent stem cells (hiPSCs) by a previously described method to gain new insights into the early human otic neurosensory lineage. We identified genes and biological networks not previously described to occur in the human otic sensory developmental cell lineage. These analyses identified and ranked genes known to be part of the otic sensory lineage program (SIX1, EYA1, GATA3, etc.), in addition to a number of novel genes encoding extracellular matrix (ECM) (COL3A1, COL5A2, DCN, etc.) and integrin (ITG) receptors (ITGAV, ITGA4, ITGA) for ECM molecules. The results were confirmed by quantitative PCR analysis of a comprehensive panel of genes differentially expressed during the time course of hiPSC differentiation in vitro. Immunocytochemistry validated results for select otic and ECM/ITG gene markers in the in vivo human fetal inner ear. Our screen shows ECM and ITG gene expression changes coincident with hiPSC differentiation towards human otic neurosensory cells. Our findings suggest a critical role of ECM-ITG interactions with otic neurosensory lineage genes in early neurosensory development and cell fate determination in the human fetal inner ear.


Asunto(s)
Diferenciación Celular , Oído Interno/citología , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Transcriptoma , Linaje de la Célula , Oído Interno/metabolismo , Matriz Extracelular/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Integrinas/genética , Integrinas/metabolismo , Células-Madre Neurales/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
16.
Biochem Biophys Res Commun ; 582: 131-136, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34710828

RESUMEN

The skin is exposed to various external stimuli. Keratinocytes, which are the main cell type in the epidermis, interact with peripheral sensory neurons and modulate neuronal activity. Recent studies have revealed that keratinocytes play crucial roles in nociception, and that ATP is one of the main mediators of signal transduction from keratinocytes to sensory neurons. However, no quantitative cellular level analyses of ATP-mediated information flow from keratinocytes to sensory dorsal root ganglion (DRG) neurons have been conducted. In this study, we performed simultaneous imaging of cell surface ATP and intracellular Ca2+ signals using both iATPSnFR, a genetically encoded ATP probe localized to the outside of the cell membrane, and the Ca2+ probe, Fura-red. Upon mechanical stimulation of the keratinocyte with a glass needle, an increase in Ca2+ and ATP release were observed around the stimulated area, and these phenomena were positively correlated. In cultured DRG neurons and keratinocytes neighboring the stimulated keratinocyte, increased intracellular Ca2+ concentration and levels of cell surface ATP on the side closer to the stimulated cell were detected. The ratio of Ca2+ response to input ATP signal was significantly larger in DRG neurons than in keratinocytes. We found that DRG neurons were more sensitive to ATP than keratinocytes, and therefore, only DRG neurons responded to ATP at 1 µM or lower concentrations when in co-culture with keratinocytes. Moreover, signals caused by moderate mechanical stimulation of keratinocytes were transmitted predominantly to DRG neurons. These findings would be important in the further determination of the detailed mechanism of nociception in the epidermis.


Asunto(s)
Adenosina Trifosfato/farmacología , Calcio/metabolismo , Queratinocitos/efectos de los fármacos , Mecanotransducción Celular , Células Receptoras Sensoriales/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Benzofuranos/análisis , Benzofuranos/química , Cationes Bivalentes , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Técnicas de Cocultivo , Epidermis/inervación , Epidermis/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Genes Reporteros , Humanos , Imidazoles/análisis , Imidazoles/química , Recién Nacido , Queratinocitos/citología , Queratinocitos/metabolismo , Sondas Moleculares/análisis , Sondas Moleculares/química , Nocicepción/fisiología , Ratas , Ratas Wistar , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Imagen de Lapso de Tiempo
17.
Elife ; 102021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34586065

RESUMEN

Sensory neurons with cell bodies in dorsal root ganglia (DRG) represent a useful model to study axon regeneration. Whereas regeneration and functional recovery occurs after peripheral nerve injury, spinal cord injury or dorsal root injury is not followed by regenerative outcomes. Regeneration of sensory axons in peripheral nerves is not entirely cell autonomous. Whether the DRG microenvironment influences the different regenerative capacities after injury to peripheral or central axons remains largely unknown. To answer this question, we performed a single-cell transcriptional profiling of mouse DRG in response to peripheral (sciatic nerve crush) and central axon injuries (dorsal root crush and spinal cord injury). Each cell type responded differently to the three types of injuries. All injuries increased the proportion of a cell type that shares features of both immune cells and glial cells. A distinct subset of satellite glial cells (SGC) appeared specifically in response to peripheral nerve injury. Activation of the PPARα signaling pathway in SGC, which promotes axon regeneration after peripheral nerve injury, failed to occur after central axon injuries. Treatment with the FDA-approved PPARα agonist fenofibrate increased axon regeneration after dorsal root injury. This study provides a map of the distinct DRG microenvironment responses to peripheral and central injuries at the single-cell level and highlights that manipulating non-neuronal cells could lead to avenues to promote functional recovery after CNS injuries or disease.


Asunto(s)
Ganglios Espinales/citología , Células Receptoras Sensoriales/fisiología , Animales , Axones , Biomarcadores/metabolismo , Proliferación Celular , Microambiente Celular , Fenofibrato/administración & dosificación , Ganglios Espinales/metabolismo , Macrófagos/citología , Ratones , PPAR alfa/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Análisis de la Célula Individual , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
18.
Eur J Histochem ; 65(s1)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34346664

RESUMEN

The neuroglia of the central and peripheral nervous systems undergo numerous changes during normal aging. Astrocytes become hypertrophic and accumulate intermediate filaments. Oligodendrocytes and Schwann cells undergo alterations that are often accompanied by degenerative changes to the myelin sheath. In microglia, proliferation in response to injury, motility of cell processes, ability to migrate to sites of neural injury, and phagocytic and autophagic capabilities are reduced. In sensory ganglia, the number and extent of gaps between perineuronal satellite cells - that leave the surfaces of sensory ganglion neurons directly exposed to basal lamina- increase significantly. The molecular profiles of neuroglia also change in old age, which, in view of the interactions between neurons and neuroglia, have negative consequences for important physiological processes in the nervous system. Since neuroglia actively participate in numerous nervous system processes, it is likely that not only neurons but also neuroglia will prove to be useful targets for interventions to prevent, reverse or slow the behavioral changes and cognitive decline that often accompany senescence.


Asunto(s)
Envejecimiento , Astrocitos/citología , Ganglios/citología , Neuroglía/citología , Células de Schwann/citología , Células Receptoras Sensoriales/citología , Animales
19.
Sci Rep ; 11(1): 14931, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294802

RESUMEN

Kinases play critical roles in synaptic and neuronal changes involved in the formation of memory. However, significant gaps exist in the understanding of how interactions among kinase pathways contribute to the mechanistically distinct temporal domains of memory ranging from short-term memory to long-term memory (LTM). Activation of protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)-ribosomal S6 kinase (RSK) pathways are critical for long-term enhancement of neuronal excitability (LTEE) and long-term synaptic facilitation (LTF), essential processes in memory formation. This study provides new insights into how these pathways contribute to the temporal domains of memory, using empirical and computational approaches. Empirical studies of Aplysia sensory neurons identified a positive feedforward loop in which the PKA and ERK pathways converge to regulate RSK, and a negative feedback loop in which p38 MAPK inhibits the activation of ERK and RSK. A computational model incorporated these findings to simulate the dynamics of kinase activity produced by different stimulus protocols and predict the critical roles of kinase interactions in the dynamics of these pathways. These findings may provide insights into the mechanisms underlying aberrant synaptic plasticity observed in genetic disorders such as RASopathies and Coffin-Lowry syndrome.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Receptoras Sensoriales/citología , Serotonina/farmacología , Animales , Aplysia , Células Cultivadas , Investigación Empírica , Retroalimentación Fisiológica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Proteínas Quinasas S6 Ribosómicas/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo
20.
Neurosci Lett ; 760: 136087, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34182057

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a somatosensory axonopathy in cancer patients receiving any of a variety of widely-use antitumor agents. CIPN can lead to long-lasting neuropathic pain that limits the dose or length of otherwise life-saving cancer therapy. Accumulating evidence over the last two decades indicates that many chemotherapeutic agents cause mitochondrial injury in the peripheral sensory nerves by disrupting mitochondrial structure and bioenergetics, increasing nitro-oxidative stress and altering mitochondrial transport, fission, fusion and mitophagy. The accumulation of abnormal and dysfunctional mitochondria in sensory neurons are linked to axonal growth defects resulting in the loss of intraepidermal nerve fibers in the hands and feet, increased spontaneous discharge and the sensitization of peripheral sensory neurons that provoke and promote changes in the central nervous system that establish a chronic neuropathic pain state. This has led to the propose mitotoxicity theory of CIPN. Strategies that improve mitochondrial function have shown success in preventing and reversing CIPN in pre-clinical animal models and have begun to show some progress toward translation to the clinic. In this review, we will review the evidence for, the causes and effects of and current strategies to target mitochondrial dysfunction in CIPN.


Asunto(s)
Antineoplásicos/efectos adversos , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neuralgia/inducido químicamente , Células Receptoras Sensoriales/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Axones/patología , Modelos Animales de Enfermedad , Humanos , Mitocondrias/patología , Neuralgia/patología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...