Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
FASEB J ; 38(13): e23784, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38953567

RESUMEN

To investigate the effects of heavy-load strength training during (neo-)adjuvant chemotherapy in women with breast cancer on muscle strength, body composition, muscle fiber size, satellite cells, and myonuclei. Women with stage I-III breast cancer were randomly assigned to a strength training group (ST, n = 23) performing supervised heavy-load strength training twice a week during chemotherapy, or a usual care control group (CON, n = 17). Muscle strength and body composition were measured and biopsies from m. vastus lateralis collected before the first cycle of chemotherapy (T0) and after chemotherapy and training (T1). Muscle strength increased significantly more in ST than in CON in chest-press (ST: +10 ± 8%, p < .001, CON: -3 ± 5%, p = .023) and leg-press (ST: +11 ± 8%, p < .001, CON: +3 ± 6%, p = .137). Both groups reduced fat-free mass (ST: -4.9 ± 4.0%, p < .001, CON: -5.2 ± 4.9%, p = .004), and increased fat mass (ST: +15.3 ± 16.5%, p < .001, CON: +16.3 ± 19.8%, p = .015) with no significant differences between groups. No significant changes from T0 to T1 and no significant differences between groups were observed in muscle fiber size. For myonuclei per fiber a non-statistically significant increase in CON and a non-statistically significant decrease in ST in type I fibers tended (p = .053) to be different between groups. Satellite cells tended to decrease in ST (type I: -14 ± 36%, p = .097, type II: -9 ± 55%, p = .084), with no changes in CON and no differences between groups. Strength training during chemotherapy improved muscle strength but did not significantly affect body composition, muscle fiber size, numbers of satellite cells, and myonuclei compared to usual care.


Asunto(s)
Neoplasias de la Mama , Fuerza Muscular , Entrenamiento de Fuerza , Células Satélite del Músculo Esquelético , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Entrenamiento de Fuerza/métodos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Persona de Mediana Edad , Adulto , Quimioterapia Adyuvante , Composición Corporal , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Terapia Neoadyuvante , Anciano
2.
Artículo en Inglés | MEDLINE | ID: mdl-38776751

RESUMEN

Previous research has shown that leucine (Leu) can stimulate and enhance the proliferation of equine skeletal muscle satellite cells (SCs). The gene expression profile associated with Leu-induced proliferation of equine SCs has also been documented. However, the specific role of Leu in regulating the expression of slow-twitch muscle fibers (slow-MyHC) and mitochondrial function in equine SCs, as well as the underlying mechanism, remains unclear. During this investigation, equine SCs underwent culturing in differentiation medium and were subjected to varying concentrations of Leu (0 mM, 0.5 mM, 1 mM, 2 mM, 5 mM, and 10 mM) over a span of 3 days. AMP-activated protein kinase (AMPK) inhibitor Compound C and mammalian target of rapamycin complex (mTOR) inhibitor Rapamycin were utilized to explore its underlying mechanism. Here we showed that the expression of slow-MyHC at 2 mM Leu level was significantly higher than the concentration levels of 0 mM,0.5 mM and 10 mM (P <0.01), and there was no significant difference compared to other groups (P > 0.05); the basal respiration, maximum respiration, standby respiration and the expression of slow-MyHC, PGC-1α, Cytc, ND1, TFAM, and COX1 were significantly increased with Leu supplementation (P < 0.01). We also found that Leu up-regulated the expression of key proteins on AMPK and mTOR signaling pathways, including LKB1, p-LKB1, AMPK, p-AMPK, S6, p-S6, 4EBP1, p-4EBP1, mTOR and p-mTOR (P < 0.05 or P < 0.01). Notably, when we treated the equine SCs with the AMPK inhibitor Compound C and the mTOR inhibitor Rapamycin, we observed a reduction in the beneficial effects of Leu on the expression of genes related to slow-MyHC and signaling pathway-related gene expressions. This study provides novel evidence that Leu promotes slow-MyHC expression and enhances mitochondrial function in equine SCs through the AMPK/mTOR signaling pathways, shedding light on the underlying mechanisms involved in these processes for the first time.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Metabolismo Energético , Leucina , Fibras Musculares de Contracción Lenta , Células Satélite del Músculo Esquelético , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Leucina/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Caballos , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Metabolismo Energético/efectos de los fármacos , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Células Cultivadas
3.
Food Funct ; 15(8): 4575-4585, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38587267

RESUMEN

Previous studies have shown that vitamin C (VC), an essential vitamin for the human body, can promote the differentiation of muscle satellite cells (MuSCs) in vitro and play an important role in skeletal muscle post-injury regeneration. However, the molecular mechanism of VC regulating MuSC proliferation has not been elucidated. In this study, the role of VC in promoting MuSC proliferation and its molecular mechanism were explored using cell molecular biology and animal experiments. The results showed that VC accelerates the progress of skeletal muscle post-injury regeneration by promoting MuSC proliferation in vivo. VC can also promote skeletal muscle regeneration in the case of atrophy. Using the C2C12 myoblast murine cell line, we observed that VC also stimulated cell proliferation. In addition, after an in vitro study establishing the occurrence of a physical interaction between VC and Pax7, we observed that VC also upregulated the total and nuclear Pax7 protein levels. This mechanism increased the expression of Myf5 (Myogenic Factor 5), a Pax7 target gene. This study establishes a theoretical foundation for understanding the regulatory mechanisms underlying VC-mediated MuSC proliferation and skeletal muscle regeneration. Moreover, it develops the application of VC in animal muscle nutritional supplements and treatment of skeletal muscle-related diseases.


Asunto(s)
Ácido Ascórbico , Proliferación Celular , Músculo Esquelético , Mioblastos , Factor de Transcripción PAX7 , Regeneración , Animales , Masculino , Ratones , Ácido Ascórbico/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Factor 5 Regulador Miogénico/genética , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , Regeneración/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/efectos de los fármacos
4.
Clin Nutr ; 43(6): 1250-1260, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653008

RESUMEN

BACKGROUND & AIM: Dysfunction of skeletal muscle satellite cells might impair muscle regeneration and prolong ICU-acquired weakness, a condition associated with disability and delayed death. This study aimed to elucidate the distinct metabolic effects of critical illness and ß-OH-butyrate on satellite cells isolated from these patients. METHODS: Satellite cells were extracted from vastus lateralis muscle biopsies of patients with ICU-acquired weakness (n = 10) and control group of healthy volunteers or patients undergoing elective hip replacement surgery (n = 10). The cells were exposed to standard culture media supplemented with ß-OH-butyrate to assess its influence on cell proliferation by ELISA, mitochondrial functions by extracellular flux analysis, electron transport chain complexes by high resolution respirometry, and ROS production by confocal microscopy. RESULTS: Critical illness led to a decline in maximal respiratory capacity, ATP production and glycolytic capacity and increased ROS production in ICU patients' cells. Notably, the function of complex II was impaired due to critical illness but restored to normal levels upon exposure to ß-OH-butyrate. While ß-OH-butyrate significantly reduced ROS production in both control and ICU groups, it had no significant impact on global mitochondrial functions. CONCLUSION: Critical illness induces measurable bioenergetic dysfunction of skeletal muscle satellite cells. ß-OH-butyrate displayed a potential in rectifying complex II dysfunction caused by critical illness and this warrants further exploration.


Asunto(s)
Ácido 3-Hidroxibutírico , Enfermedad Crítica , Especies Reactivas de Oxígeno , Células Satélite del Músculo Esquelético , Humanos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Especies Reactivas de Oxígeno/metabolismo , Anciano , Ácido 3-Hidroxibutírico/farmacología , Proliferación Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Adulto , Células Cultivadas , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Adenosina Trifosfato/metabolismo , Debilidad Muscular
5.
Nutrients ; 14(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35268053

RESUMEN

Sarcopenia is an age-related skeletal muscle atrophy. Exercise is effective in improving sarcopenia via two mechanisms: activation of skeletal muscle satellite cells (SCs) and stimulation of muscle protein synthesis. In contrast, most nutritional approaches for improving sarcopenia focus mainly on muscle protein synthesis, and little is known about SC activation. Here, we investigated the effect of lemon myrtle extract (LM) on SC activation both in vitro and in vivo. Primary SCs or myoblast cell lines were treated with LM or its derived compounds, and incorporation of 5-bromo-2'-deoxyuridine, an indicator of cell cycle progression, was detected by immunocytochemistry. We found that LM significantly activated SCs (p < 0.05), but not myoblasts. We also identified casuarinin, an ellagitannin, as the active compound in LM involved in SC activation. The structure−activity relationship analysis showed that rather than the structure of each functional group of casuarinin, its overall structure is crucial for SC activation. Furthermore, SC activation by LM and casuarinin was associated with upregulation of interleukin-6 mRNA expression, which is essential for SC activation and proliferation. Finally, oral administration of LM or casuarinin to rats showed significant activation of SCs in skeletal muscle (p < 0.05), suggesting that LM and casuarinin may serve as novel nutritional interventions for improving sarcopenia through activating SCs.


Asunto(s)
Taninos Hidrolizables , Myrtaceae/química , Extractos Vegetales , Células Satélite del Músculo Esquelético , Animales , Células Cultivadas , Taninos Hidrolizables/farmacología , Extractos Vegetales/farmacología , Ratas , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo
6.
Sci Rep ; 12(1): 2841, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35181706

RESUMEN

Skeletal muscle satellite cells cultured on soft surfaces (12 kPa) show improved differentiation than cells cultured on stiff surfaces (approximately 100 kPa). To better understand the reasons for this, we performed an RNA-Seq analysis for a single satellite cell clone (C1F) derived from the H2kb-tsA58 immortomouse, which differentiates into myotubes under tightly regulated conditions (withdrawal of É£-interferon, 37 °C). The largest change in overall gene expression occurred at day 1, as cells switched from proliferation to differentiation. Surprisingly, further analysis showed that proliferating C1F cells express Pax3 and not Pax7, confirmed by immunostaining, yet their subsequent differentiation into myotubes is normal, and enhanced on softer surfaces, as evidenced by significantly higher expression levels of myogenic regulatory factors, sarcomeric genes, enhanced fusion and improved myofibrillogenesis. Levels of mRNA encoding extracellular matrix structural constituents and related genes were consistently upregulated on hard surfaces, suggesting that a consequence of differentiating satellite cells on hard surfaces is that they attempt to manipulate their niche prior to differentiating. This comprehensive RNA-Seq dataset will be a useful resource for understanding Pax3 expressing cells.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Factor de Transcripción PAX3/genética , Propiedades de Superficie , Animales , Proliferación Celular/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Mioblastos/citología , Mioblastos/metabolismo , RNA-Seq , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Análisis de la Célula Individual
7.
Stem Cell Reports ; 17(1): 82-95, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35021050

RESUMEN

Adult skeletal muscle stem cells (MuSCs) are important for muscle regeneration and constitute a potential source of cell therapy. However, upon isolation, MuSCs rapidly exit quiescence and lose transplantation potency. Maintenance of the quiescent state in vitro preserves MuSC transplantation efficiency and provides an opportunity to study the biology of quiescence. Here we show that Tubastatin A (TubA), an Hdac6 inhibitor, prevents primary cilium resorption, maintains quiescence, and enhances MuSC survival ex vivo. Phenotypic characterization and transcriptomic analysis of TubA-treated cells revealed that TubA maintains most of the biological features and molecular signatures of quiescence. Furthermore, TubA-treated MuSCs showed improved engraftment ability upon transplantation. TubA also induced a return to quiescence and improved engraftment of cycling MuSCs, revealing a potentially expanded application for MuSC therapeutics. Altogether, these studies demonstrate the ability of TubA to maintain MuSC quiescence ex vivo and to enhance the therapeutic potential of MuSCs and their progeny.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Músculo Esquelético/citología , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Células Madre Adultas/metabolismo , Animales , Ciclo Celular , Diferenciación Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Ratones , Ratones Transgénicos , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Trasplante de Células Madre , Transcriptoma
8.
Cell Mol Life Sci ; 79(1): 7, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936028

RESUMEN

Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons and severe muscle atrophy without effective treatment. Most research on the disease has been focused on studying motor neurons and supporting cells of the central nervous system. Strikingly, the recent observations have suggested that morpho-functional alterations in skeletal muscle precede motor neuron degeneration, bolstering the interest in studying muscle tissue as a potential target for the delivery of therapies. We previously showed that the systemic administration of the P2XR7 agonist, 2'(3')-O-(4-benzoylbenzoyl) adenosine 5-triphosphate (BzATP), enhanced the metabolism and promoted the myogenesis of new fibres in the skeletal muscles of SOD1G93A mice. Here we further corroborated this evidence showing that intramuscular administration of BzATP improved the motor performance of ALS mice by enhancing satellite cells and the muscle pro-regenerative activity of infiltrating macrophages. The preservation of the skeletal muscle retrogradely propagated along with the motor unit, suggesting that backward signalling from the muscle could impinge on motor neuron death. In addition to providing the basis for a suitable adjunct multisystem therapeutic approach in ALS, these data point out that the muscle should be at the centre of ALS research as a target tissue to address novel therapies in combination with those oriented to the CNS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Actividad Motora/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Receptores Purinérgicos P2X7/metabolismo , Adenosina Trifosfato/administración & dosificación , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Animales , Axones/patología , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Desnervación , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Miembro Posterior/patología , Humanos , Inflamación/patología , Inyecciones Intramusculares , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/inervación , Atrofia Muscular/patología , Fenotipo , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/patología , Células de Schwann/patología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/patología
9.
Cells ; 10(12)2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34943981

RESUMEN

Satellite cells (SC) are a population of muscle resident stem cells that are responsible for postnatal muscle growth and repair. With investigation into the genomic regulation of SC fate, the role of the epigenome in governing SC myogenesis is becoming clearer. Histone deacetylase (HDAC) inhibitors have been demonstrated to be effective at enhancing the myogenic program of SC, but their role in altering the epigenetic landscape of SC remains undetermined. Our objective was to determine how an HDAC inhibitor, butyrate, promotes myogenic differentiation. SC from tributyrin treated neonatal piglets showed a decrease relative to SC from control animals in the expression of enhance of zeste homologue-2 (EZH2), a chromatin modifier, ex vivo. Chromatin Immunoprecipitation-Sequencing (ChIP-Seq) analysis of SC isolated from tributyrin treated pigs showed a global reduction of the tri-methylation of lysine 27 of histone H3 (H3K27me3) repressive chromatin mark. To determine if reductions in EZH2 was the primary mechanism through which butyrate affects SC behavior, SC were transfected with siRNA targeting EZH2, treated with 0.5 mM butyrate, or both. Treatment with butyrate reduced paired-box-7 (Pax7) and myogenic differentiation-1 (MyoD) gene expression, while siRNA caused reductions in EZH2 had no effect on their expression. EZH2 depletion did result in an increase in differentiating SC, but not in myotube hypertrophy. These results indicate that while EZH2 reduction may force myogenic differentiation, butyrate may operate through a parallel mechanism to enhance the myogenic program.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína MioD/genética , Factor de Transcripción PAX7/genética , Células Satélite del Músculo Esquelético/efectos de los fármacos , Triglicéridos/farmacología , Animales , Butiratos/química , Butiratos/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Hipertrofia/genética , Hipertrofia/patología , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Profármacos/química , Profármacos/farmacología , ARN Interferente Pequeño/farmacología , Células Satélite del Músculo Esquelético/metabolismo , Porcinos
10.
FASEB J ; 35(9): e21861, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34416029

RESUMEN

Duchenne muscular dystrophy (DMD) is an intractable genetic disease associated with progressive skeletal muscle weakness and degeneration. Recently, it was reported that intraperitoneal injections of ketone bodies partially ameliorated muscular dystrophy by increasing satellite cell (SC) proliferation. Here, we evaluated whether a ketogenic diet (KD) with medium-chain triglycerides (MCT-KD) could alter genetically mutated DMD in model rats. We found that the MCT-KD significantly increased muscle strength and fiber diameter in these rats. The MCT-KD significantly suppressed the key features of DMD, namely, muscle necrosis, inflammation, and subsequent fibrosis. Immunocytochemical analysis revealed that the MCT-KD promoted the proliferation of muscle SCs, suggesting enhanced muscle regeneration. The muscle strength of DMD model rats fed with MCT-KD was significantly improved even at the age of 9 months. Our findings suggested that the MCT-KD ameliorates muscular dystrophy by inhibiting myonecrosis and promoting the proliferation of muscle SCs. As far as we can ascertain, this is the first study to apply a functional diet as therapy for DMD in experimental animals. Further studies are needed to elucidate the underlying mechanisms of the MCT-KD-induced improvement of DMD.


Asunto(s)
Dieta Cetogénica , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Distrofia Muscular de Duchenne/dietoterapia , Distrofia Muscular de Duchenne/fisiopatología , Triglicéridos/química , Triglicéridos/farmacología , Animales , Peso Corporal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Fibrosis/dietoterapia , Fibrosis/patología , Inflamación/dietoterapia , Inflamación/patología , Cetonas/sangre , Cetosis , Masculino , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/patología , Necrosis/dietoterapia , Necrosis/patología , Ratas , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Triglicéridos/uso terapéutico
11.
FASEB J ; 35(9): e21862, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34416035

RESUMEN

Loss of muscle mass and strength after disuse followed by impaired muscle recovery commonly occurs with aging. Metformin (MET) and leucine (LEU) individually have shown positive effects in skeletal muscle during atrophy conditions but have not been evaluated in combination nor tested as a remedy to enhance muscle recovery following disuse atrophy in aging. The purpose of this study was to determine if a dual treatment of metformin and leucine (MET + LEU) would prevent disuse-induced atrophy and/or promote muscle recovery in aged mice and if these muscle responses correspond to changes in satellite cells and collagen remodeling. Aged mice (22-24 months) underwent 14 days of hindlimb unloading (HU) followed by 7 or 14 days of reloading (7 or 14 days RL). MET, LEU, or MET + LEU was administered via drinking water and were compared to Vehicle (standard drinking water) and ambulatory baseline. We observed that during HU, MET + LEU resolved whole body grip strength and soleus muscle specific force decrements caused by HU. Gastrocnemius satellite cell abundance was increased with MET + LEU treatment but did not alter muscle size during disuse or recovery conditions. Moreover, MET + LEU treatment alleviated gastrocnemius collagen accumulation caused by HU and increased collagen turnover during 7 and 14 days RL driven by a decrease in collagen IV content. Transcriptional pathway analysis revealed that MET + LEU altered muscle hallmark pathways related to inflammation and myogenesis during HU. Together, the dual treatment of MET and LEU was able to increase muscle function, satellite cell content, and reduce collagen accumulation, thus improving muscle quality during disuse and recovery in aging.


Asunto(s)
Envejecimiento , Colágeno/metabolismo , Leucina/uso terapéutico , Metformina/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/prevención & control , Células Satélite del Músculo Esquelético/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Suspensión Trasera , Inmunoglobulina G/análisis , Leucina/farmacología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/citología , Músculo Esquelético/patología , Atrofia Muscular/patología , Tamaño de los Órganos/efectos de los fármacos , RNA-Seq , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/patología , Transducción de Señal/efectos de los fármacos
12.
Sci Rep ; 11(1): 13432, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183762

RESUMEN

Muscle growth of low birth weight (LBW) piglets may be improved with adapted nutrition. This study elucidated effects of glutamine (Gln) supplementation on the cellular muscle development of LBW and normal birth weight (NBW) piglets. Male piglets (n = 144) were either supplemented with 1 g Gln/kg body weight or an isonitrogeneous amount of alanine (Ala) between postnatal day 1 and 12 (dpn). Twelve piglets per group were slaughtered at 5, 12 and 26 dpn, one hour after injection with Bromodeoxyuridine (BrdU, 12 mg/kg). Muscle samples were collected and myogenic cells were isolated and cultivated. Expression of muscle growth related genes was quantified with qPCR. Proliferating, BrdU-positive cells in muscle sections were detected with immunohistochemistry indicating different cell types and decreasing proliferation with age. More proliferation was observed in muscle tissue of LBW-GLN than LBW-ALA piglets at 5 dpn, but there was no clear effect of supplementation on related gene expression. Cell culture experiments indicated that Gln could promote cell proliferation in a dose dependent manner, but expression of myogenesis regulatory genes was not altered. Overall, Gln supplementation stimulated cell proliferation in muscle tissue and in vitro in myogenic cell culture, whereas muscle growth regulatory genes were barely altered.


Asunto(s)
Suplementos Dietéticos , Glutamina/farmacología , Trastornos del Crecimiento/veterinaria , Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Enfermedades de los Porcinos/tratamiento farmacológico , Porcinos/crecimiento & desarrollo , Alanina/farmacología , Animales , Animales Lactantes , Peso al Nacer , Bromodesoxiuridina , División Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo/farmacología , Replicación del ADN , Relación Dosis-Respuesta a Droga , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glutamina/uso terapéutico , Trastornos del Crecimiento/tratamiento farmacológico , Masculino , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Células Satélite del Músculo Esquelético/metabolismo
13.
Sci Rep ; 11(1): 12301, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112889

RESUMEN

Oxidative and glycolytic muscle fibers differ in their ultrastructure, metabolism, and responses to physiological stimuli and pathological insults. We examined whether these fibers respond differentially to exogenous anabolic androgenic steroids (AASs) by comparing morphological and histological changes between the oxidative anterior latissimus dorsi (ALD) and glycolytic pectoralis major (PM) fibers in adult avian muscles. Adult female White Leghorn chickens (Gallus gallus) were randomly divided into five groups: a vehicle control and four mesterolone treatment groups (4, 8, 12, and 16 mg/kg). Mesterolone was administered orally every three days for four weeks. Immunocytochemical techniques and morphometric analyses were employed to measure the changes in muscle weight, fiber size, satellite cell (SC) composition, and number of myonuclei. Mesterolone increased both body and muscle weights and induced hypertrophy in glycolytic PM fibers but not in oxidative ALD fibers. Mesterolone induced SC proliferation in both muscles; however, the myonuclear accretion was noticeable only in the PM muscle. In both muscles, the collective changes maintained a constant myonuclear domain size and the changes were dose independent. In conclusion, mesterolone induced distinct dose-independent effects in avian oxidative and glycolytic skeletal muscle fibers; these findings might be clinically valuable in the treatment of age-related sarcopenia.


Asunto(s)
Mesterolona/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Músculos Superficiales de la Espalda/crecimiento & desarrollo , Anabolizantes/farmacología , Andrógenos/farmacología , Animales , Pollos , Glucólisis/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Esteroides/farmacología , Músculos Superficiales de la Espalda/efectos de los fármacos
14.
Poult Sci ; 100(2): 474-481, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33518099

RESUMEN

In the modern poultry industry, with increasing product demand, muscle growth rate and meat yield in chickens have tremendously changed. Understanding the regulation of muscle development is important to maintain efficient growth and development in meat-type chickens. 20(S)-hydroxycholesterol (20S) is known as one of the naturally occurring osteogenic cholesterol derivatives due to its ability to induce osteogenic differentiation; however, no studies have evaluated myogenic response to 20S in chicken muscle cells. To determine the use of 20S in vitro for the proliferation and differentiation of chicken satellite cells, satellite cells were isolated from pectoralis major muscle of 4-week-old Ross 708 male chickens and subjected to 0.25, 0.5, and 1.0 µmol of 20S during their proliferation and differentiation stages. Cell proliferation and differentiation were measured every 24 h for 72 h by determining DNA concentration, the activity of creatine kinase, and the expressions of myogenic regulatory transcription factors. Together these results suggested that a lower concentration of 20S did not affect myogenesis but a high concentration of 1.0 µmol 20S can negatively affect proliferation and differentiation in chicken satellite cells.


Asunto(s)
Pollos/crecimiento & desarrollo , Hidroxicolesteroles/farmacología , Músculos Pectorales/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Masculino , Desarrollo de Músculos , Osteogénesis , Células Satélite del Músculo Esquelético/citología
15.
Sci Rep ; 11(1): 63, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420132

RESUMEN

Aberrant regeneration or fibrosis in muscle is the denouement of deregulated cellular and molecular events that alter original tissue architecture due to accumulation of excessive extracellular matrix. The severity of the insult to the skeletal muscle determines the nature of regeneration. Numerous attempts at deciphering the mechanism underlying fibrosis and the subsequent strategies of drug therapies have yielded temporary solutions. Our intent is to understand the interaction between the myofibroblasts (MFs) and the satellite cells (SCs), during skeletal muscle regeneration. We hypothesize that MFs contribute to the impairment of SCs function by exhibiting an antagonistic influence on their proliferation. A modified laceration based skeletal muscle injury model in mouse was utilized to evaluate the dynamics between the SCs and MFs during wound healing. We show that the decline in MFs' number through inhibition of PDGFRα signaling consequently promotes proliferation of the SCs and exhibits improved skeletal muscle remodeling. We further conclude that in situ administration of PDGFRα inhibitor prior to onset of fibrosis may attenuate aberrant regeneration. This opens new possibility for the early treatment of muscle fibrosis by specific targeting of MFs rather than transplantation of SCs.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Miofibroblastos/efectos de los fármacos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/farmacología , Regeneración/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Animales , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/lesiones , Miofibroblastos/fisiología , Células Satélite del Músculo Esquelético/fisiología , Cicatrización de Heridas/efectos de los fármacos
16.
J Cell Mol Med ; 25(3): 1493-1506, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33405354

RESUMEN

Muscle atrophy is a common complication in chronic kidney disease (CKD). Inflammation and myostatin play important roles in CKD muscle atrophy. Formononetin (FMN), which is a major bioactive isoflavone compound in Astragalus membranaceus, exerts anti-inflammatory effects and the promotion of myogenic differentiation. Our study is based on myostatin to explore the effects and mechanisms of FMN in relation to CKD muscle atrophy. In this study, CKD rats and tumour necrosis factor α (TNF-α)-induced C2C12 myotubes were used for in vivo and in vitro models of muscle atrophy. The results showed that FMN significantly improved the renal function, nutritional status and inflammatory markers in CKD rats. Values for bodyweight, weight of tibialis anterior and gastrocnemius muscles, and cross-sectional area (CSA) of skeletal muscles were significantly larger in the FMN treatment rats. Furthermore, FMN significantly suppressed the expressions of MuRF-1, MAFbx and myostatin in the muscles of CKD rats and the TNF-α-induced C2C12 myotubes. Importantly, FMN significantly increased the phosphorylation of PI3K, Akt, and FoxO3a and the expressions of the myogenic proliferation and differentiation markers, myogenic differentiation factor D (MyoD) and myogenin in muscles of CKD rats and the C2C12 myotubes. Similar results were observed in TNF-α-induced C2C12 myotubes transfected with myostatin-small interfering RNA (si-myostatin). Notably, myostatin overexpression plasmid (myostatin OE) abolished the effect of FMN on the phosphorylation of the PI3K/Akt/FoxO3a pathway and the expressions of MyoD and myogenin. Our findings suggest that FMN ameliorates muscle atrophy related to myostatin-mediated PI3K/Akt/FoxO3a pathway and satellite cell function.


Asunto(s)
Proteína Forkhead Box O3/metabolismo , Isoflavonas/farmacología , Miostatina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Masculino , Ratones , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Atrofia Muscular/patología , Miostatina/genética , Fosforilación , Ratas , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología
17.
Aging Cell ; 20(2): e13312, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33511781

RESUMEN

Recruited immune cells play a critical role in muscle repair, in part by interacting with local stem cell populations to regulate muscle regeneration. How aging affects their communication during myogenesis is unclear. Here, we investigate how aging impacts the cellular function of these two cell types after muscle injury during normal aging or after immune rejuvenation using a young to old (Y-O) or old to old (O-O) bone marrow (BM) transplant model. We found that skeletal muscle from old mice (20 months) exhibited elevated basal inflammation and possessed fewer satellite cells compared with young mice (3 months). After cardiotoxin muscle injury (CTX), old mice exhibited a blunted inflammatory response compared with young mice and enhanced M2 macrophage recruitment and IL-10 expression. Temporal immune and cytokine responses of old mice were partially restored to a young phenotype following reconstitution with young cells (Y-O chimeras). Improved immune responses in Y-O chimeras were associated with greater satellite cell proliferation compared with O-O chimeras. To identify how immune cell aging affects myoblast function, conditioned media (CM) from activated young or old macrophages was applied to cultured C2C12 myoblasts. CM from young macrophages inhibited myogenesis while CM from old macrophages reduced proliferation. These functional differences coincided with age-related differences in macrophage cytokine expression. Together, this study examines the infiltration and proliferation of immune cells and satellite cells after injury in the context of aging and, using BM chimeras, demonstrates that young immune cells retain cell autonomy in an old host to increase satellite cell proliferation.


Asunto(s)
Senescencia Celular/inmunología , Desarrollo de Músculos/inmunología , Células Satélite del Músculo Esquelético/inmunología , Animales , Cardiotoxinas/farmacología , Senescencia Celular/efectos de los fármacos , Ratones , Desarrollo de Músculos/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos
18.
Domest Anim Endocrinol ; 74: 106479, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32615508

RESUMEN

Approximately 90% of beef cattle on feed in the United States receive at least one anabolic implant, which results in increased growth, efficiency, and economic return to producers. However, the complete molecular mechanism through which anabolic implants function to improve skeletal muscle growth remains unknown. This study had 2 objectives: (1) determine the effect of polyamines and their precursors on proliferation rate in bovine satellite cells (BSC); and (2) understand whether trenbolone acetate (TBA), a testosterone analog, has an impact on the polyamine biosynthetic pathway. To address these, BSC were isolated from 3 finished steers and cultured. Once cultures reached 75% confluency, they were treated in 1% fetal bovine serum (FBS) and/or 10 nM TBA, 10 mM methionine (Met), 8 mM ornithine (Orn), 2 mM putrescine (Put), 1.5 mM spermidine (Spd), or 0.5 mM spermine (Spe). Initially, a range of physiologically relevant concentrations of Met, Orn, Put, Spd, and Spe were tested to determine experimental doses to implement the aforementioned experiments. One, 12, or 24 h after treatment, mRNA was isolated from cultures and abundance of paired box transcription factor 7 (Pax7), Sprouty 1 (Spry), mitogen-activated protein kinase-1 (Mapk), ornithine decarboxylase (Odc), and S adenosylmethionine (Amd1) were determined, and normalized to 18S. No treatment × time interactions were observed (P ≥ 0.05). Treatment with TBA, Met, Orn, Put, Spd, or Spe increased (P ≤ 0.05) BSC proliferation when compared with control cultures. Treatment of cultures with Orn or Met increased (P ≤ 0.01) expression of Odc 1 h after treatment when compared with control cultures. Abundance of Amd1 was increased (P < 0.01) 1 h after treatment in cultures treated with Spd or Spe when compared with 1% FBS controls. Cultures treated with TBA had increased (P < 0.01) abundance of Spry mRNA 12 h after treatment, as well as increased mRNA abundance of Mapk (P < 0.01) 12 h and 24 h after treatment when compared with 1% FBS control cultures. Treatment with Met increased (P < 0.01) mRNA abundance of Pax7 1 h after treatment as compared with 1% FBS controls. These results indicate that treatments of BSC cultures with polyamines and their precursors increase BSC proliferation rate, as well as abundance of mRNA involved in cell proliferation. In addition, treatment of BSC cultures with TBA, polyamines, or polyamine precursors impacts expression of genes related to the polyamine biosynthetic pathway and proliferation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Espermidina/farmacología , Espermina/farmacología , Acetato de Trembolona/farmacología , Adenosilmetionina Descarboxilasa/genética , Adenosilmetionina Descarboxilasa/metabolismo , Animales , Bovinos , Proliferación Celular/fisiología , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Metionina/farmacología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ornitina/farmacología , Células Satélite del Músculo Esquelético/metabolismo
19.
Bioorg Chem ; 105: 104459, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33217632

RESUMEN

In the present study, the titanium decorated iron oxide (Ti@Fe2O3) nanocomposites are synthesized using the chemical method. The as-prepared nanocomposite was characterized for successful formulation and the elemental spectra showed the composition of Fe (44%), Ti (0.71%) and O (55%) is confirmed the homogenous distribution. Crystallographic spectra depict the strong peaks corresponding to the of TiO2 and Fe2O3 nanoparticles planes with minor shift variation due to the formulation of Ti on the surface of Fe2O3 nanoparticles and it is also confirmed with SAED analysis. The X-ray photoelectron spectroscopy (XPS) analysis of Ti@Fe2O3) nanocomposite confirms the existence of elements such as Fe, O and Ti. Further, the morphology of the composite showed the well-defined encapsulation and aggregation of TiO2 nanoparticles on the surface of Fe2O3 nanoparticles. Further, the TiO2 nanoparticles showed less cytotoxic activity against bovine satellite cells, as well the nanocomposite increased the growth of bovine satellite cells comparing with control cells. Further, the morphological analysis showed the significant changes in TiO2 nanoparticles treated cells and the nanocomposite induces the myotube formation due to the increased ROS level in bovine satellite cells. Moreover, the nanocomposite regulates the expression of genes IGF-1, TGF-ß, MSTN, CASP3, CASP2 and proteins such as CALP1, CALP2, MyoD, MyoG which are responsible for the growth, proliferation, and differentiation of satellite cells. Together, the prepared Ti@Fe2O3 nanocomposites afford additional support for the applications of nanomaterials in skeletal muscle repair and tissue regeneration engineering.


Asunto(s)
Compuestos Férricos/química , Nanopartículas del Metal/química , Nanocompuestos/química , Estrés Oxidativo/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Titanio/química , Animales , Bovinos , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Fibras Musculares Esqueléticas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Regeneración , Ingeniería de Tejidos , Andamios del Tejido/química
20.
Nat Cell Biol ; 22(11): 1307-1318, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33106654

RESUMEN

Tissue regeneration declines with ageing but little is known about whether this arises from changes in stem-cell heterogeneity. Here, in homeostatic skeletal muscle, we identify two quiescent stem-cell states distinguished by relative CD34 expression: CD34High, with stemness properties (genuine state), and CD34Low, committed to myogenic differentiation (primed state). The genuine-quiescent state is unexpectedly preserved into later life, succumbing only in extreme old age due to the acquisition of primed-state traits. Niche-derived IGF1-dependent Akt activation debilitates the genuine stem-cell state by imposing primed-state features via FoxO inhibition. Interventions to neutralize Akt and promote FoxO activity drive a primed-to-genuine state conversion, whereas FoxO inactivation deteriorates the genuine state at a young age, causing regenerative failure of muscle, as occurs in geriatric mice. These findings reveal transcriptional determinants of stem-cell heterogeneity that resist ageing more than previously anticipated and are only lost in extreme old age, with implications for the repair of geriatric muscle.


Asunto(s)
Antígenos CD34/metabolismo , Proliferación Celular , Autorrenovación de las Células , Senescencia Celular , Factores de Transcripción Forkhead/metabolismo , Músculo Esquelético/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Factores de Edad , Animales , Cardiotoxinas/toxicidad , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Autorrenovación de las Células/efectos de los fármacos , Autorrenovación de las Células/genética , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/trasplante , Fenotipo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regeneración/efectos de los fármacos , Regeneración/genética , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/trasplante , Transducción de Señal , Nicho de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...