Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.052
Filtrar
1.
Mol Pain ; 20: 17448069241285357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39237258

RESUMEN

Background: IL-1ß plays a critical role in the pathophysiology of neuroinflammation. The presence of cleaved IL-1ß (cIL-1ß) in the neurons of the dorsal root ganglion (DRG) implicates its function in biological signaling arising from the sensory neuron. This study was conducted to analyze the role of IL-1ß in nociceptive transduction after tissue injury. Methods: A plantar incision was made in C57BL/6 mice, following which immunohistochemistry and RNA scope in situ hybridization were performed at various time points to analyze cIL-1ß, caspase-1, and IL-1 receptor 1 (IL-1R1) expression in the DRG. The effect of intrathecal administration of a caspase-1 inhibitor or regional anesthesia using local anesthetics on cIL-1ß expression and pain hypersensitivity was analyzed by immunohistochemistry and behavioral analysis. ERK phosphorylation was also analyzed to investigate the effect of IL-1ß on the activity of spinal dorsal horn neurons. Results: cIL-1ß expression was significantly increased in caspase-1-positive DRG neurons 5 min after the plantar incision. Intrathecal caspase-1 inhibitor treatment inhibited IL-1ß cleavage and pain hypersensitivity after the plantar incision. IL-1R1 was also detected in the DRG neurons, although the majority of IL-1R1-expressing neurons lacked cIL-1ß expression. Regional anesthesia using local anesthetics prevented cIL-1ß processing. Plantar incision-induced phosphorylation of ERK was inhibited by the caspase-1 inhibitor. Conclusion: IL-1ß in the DRG neuron undergoes rapid cleavage in response to tissue injury in an activity-dependent manner. Cleaved IL-1ß causes injury-induced functional activation of sensory neurons and pain hypersensitivity. IL-1ß in the primary afferent neurons is involved in physiological nociceptive signal transduction.


Asunto(s)
Ganglios Espinales , Interleucina-1beta , Animales , Masculino , Ratones , Caspasa 1/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Hiperalgesia/metabolismo , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Células del Asta Posterior/metabolismo , Células del Asta Posterior/efectos de los fármacos , Receptores Tipo I de Interleucina-1/metabolismo
2.
J Pharmacol Sci ; 156(3): 180-187, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39313276

RESUMEN

Fibromyalgia (FM) is an intractable disease with a chief complaint of chronic widespread pain. Amitriptyline (AMI) and duloxetine (DLX), which are antidepressant drugs, have been reported to ameliorate pain in patients with FM and pain-related behaviors in several rodent models of FM. However, the mechanisms of action of AMI and DLX are not yet fully understood. Here, we examined the effects of these drugs on the responsiveness of superficial dorsal horn (SDH) neurons in the spinal cord, using a rat FM model developed by injecting a biogenic amine depleter (reserpine). Extracellular recordings of SDH neurons in vivo demonstrated that bath application of AMI and DLX at concentrations of 0.1-1.0 mM on the dorsal surface of the spinal cord markedly suppressed spontaneous discharge and von Frey filament-evoked mechanical firing in SDH neurons. The suppression induced by the drugs was noted in a concentration-dependent manner and the suppressive effects resolved after washing the spinal cord surface. These results show that SDH neurons are the site of action for AMI and DLX in a rat reserpine-induced FM model. Spinal mechanisms may underlie the therapeutic effects of these drugs in patients with FM.


Asunto(s)
Amitriptilina , Modelos Animales de Enfermedad , Clorhidrato de Duloxetina , Fibromialgia , Células del Asta Posterior , Ratas Sprague-Dawley , Reserpina , Animales , Clorhidrato de Duloxetina/farmacología , Amitriptilina/farmacología , Fibromialgia/tratamiento farmacológico , Fibromialgia/inducido químicamente , Células del Asta Posterior/efectos de los fármacos , Masculino , Ratas , Antidepresivos/farmacología , Relación Dosis-Respuesta a Droga
3.
Neuropharmacology ; 254: 109994, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750803

RESUMEN

Neuronal voltage-gated KCNQ (Kv7) channels, expressed centrally and peripherally, mediate low-threshold and non-inactivating M-currents responsible for the control of tonic excitability of mammalian neurons. Pharmacological opening of KCNQ channels has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we examined the possible involvement of central KCNQ channels in the analgesic effects of retigabine, a KCNQ channel opener. Behaviorally, intraperitoneally applied retigabine exerted analgesic effects on thermal and mechanical hypersensitivity in male mice developing neuropathic pain after partial sciatic nerve ligation, which was antagonized by the KCNQ channel blocker XE991 preadministered intraperitoneally and intrathecally. Intrathecally applied retigabine also exerted analgesic effects that were inhibited by intrathecally injected XE991. We then explored the synaptic mechanisms underlying the analgesic effects of retigabine in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult male mice developing neuropathic pain, and the effects of retigabine on miniature and afferent-evoked postsynaptic currents were examined. Retigabine reduced the amplitude of A-fiber-mediated EPSCs without affecting C-fiber-mediated excitatory synaptic transmission. A-fiber-mediated EPSCs remained unaltered by retigabine in the presence of XE991, consistently with the behavioral findings. The frequency and amplitude of mEPSCs were not affected by retigabine. Thus, opening of KCNQ channels in the central terminals of primary afferent A-fibers inhibits excitatory synaptic transmission in the spinal dorsal horn, most likely contributing to the analgesic effect of retigabine.


Asunto(s)
Analgésicos , Antracenos , Carbamatos , Canales de Potasio KCNQ , Fenilendiaminas , Animales , Masculino , Carbamatos/farmacología , Fenilendiaminas/farmacología , Canales de Potasio KCNQ/antagonistas & inhibidores , Canales de Potasio KCNQ/efectos de los fármacos , Antracenos/farmacología , Ratones , Analgésicos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Neuralgia/tratamiento farmacológico , Células del Asta Posterior/efectos de los fármacos , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/fisiología , Asta Dorsal de la Médula Espinal/efectos de los fármacos
4.
Brain ; 147(7): 2507-2521, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577773

RESUMEN

Opioid pain medications, such as morphine, remain the mainstay for treating severe and chronic pain. Prolonged morphine use, however, triggers analgesic tolerance and hyperalgesia (OIH), which can last for a long period after morphine withdrawal. How morphine induces these detrimental side effects remains unclear. Here, we show that morphine tolerance and OIH are mediated by Tiam1-coordinated synaptic structural and functional plasticity in the spinal nociceptive network. Tiam1 is a Rac1 GTPase guanine nucleotide exchange factor that promotes excitatory synaptogenesis by modulating actin cytoskeletal dynamics. We found that prolonged morphine treatment activated Tiam1 in the spinal dorsal horn and Tiam1 ablation from spinal neurons eliminated morphine antinociceptive tolerance and OIH. At the same time, the pharmacological blockade of Tiam1-Rac1 signalling prevented the development and reserved the established tolerance and OIH. Prolonged morphine treatment increased dendritic spine density and synaptic NMDA receptor activity in spinal dorsal horn neurons, both of which required Tiam1. Furthermore, co-administration of the Tiam1 signalling inhibitor NSC23766 was sufficient to abrogate morphine tolerance in chronic pain management. These findings identify Tiam1-mediated maladaptive plasticity in the spinal nociceptive network as an underlying cause for the development and maintenance of morphine tolerance and OIH and provide a promising therapeutic target to reduce tolerance and prolong morphine use in chronic pain management.


Asunto(s)
Analgésicos Opioides , Tolerancia a Medicamentos , Hiperalgesia , Morfina , Plasticidad Neuronal , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Animales , Morfina/farmacología , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Tolerancia a Medicamentos/fisiología , Ratones , Analgésicos Opioides/farmacología , Masculino , Ratones Endogámicos C57BL , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Proteína de Unión al GTP rac1/metabolismo
5.
J Pharmacol Sci ; 155(2): 63-73, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677787

RESUMEN

Remimazolam is an ultra-short benzodiazepine that acts on the benzodiazepine site of γ-aminobutyric acid (GABA) receptors in the brain and induces sedation. Although GABA receptors are found localized in the spinal dorsal horn, no previous studies have reported the analgesic effects or investigated the cellular mechanisms of remimazolam on the spinal dorsal horn. Behavioral measures, immunohistochemistry, and in vitro whole-cell patch-clamp recordings of dorsal horn neurons were used to assess synaptic transmission. Intrathecal injection of remimazolam induced behavioral analgesia in inflammatory pain-induced mechanical allodynia (six rats/dose; p < 0.05). Immunohistochemical staining revealed that remimazolam suppressed spinal phosphorylated extracellular signal-regulated kinase activation (five rats/group, p < 0.05). In vitro whole-cell patch-clamp analysis demonstrated that remimazolam increased the frequency of GABAergic miniature inhibitory post-synaptic currents, prolonged the decay time (six rats; p < 0.05), and enhanced GABA currents induced by exogenous GABA (seven rats; p < 0.01). However, remimazolam did not affect miniature excitatory post-synaptic currents or amplitude of monosynaptic excitatory post-synaptic currents evoked by Aδ- and C-fiber stimulation (seven rats; p > 0.05). This study suggests that remimazolam induces analgesia by enhancing GABAergic inhibitory transmission in the spinal dorsal horn, suggesting its potential utility as a spinal analgesic for inflammatory pain.


Asunto(s)
Benzodiazepinas , Células del Asta Posterior , Ratas Sprague-Dawley , Transmisión Sináptica , Animales , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Masculino , Transmisión Sináptica/efectos de los fármacos , Benzodiazepinas/farmacología , Técnicas de Placa-Clamp , Analgésicos/farmacología , Ácido gamma-Aminobutírico/metabolismo , Ratas , Inyecciones Espinales , Hiperalgesia/tratamiento farmacológico , Receptores de GABA/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
6.
Neurobiol Dis ; 159: 105466, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34390832

RESUMEN

Group I metabotropic glutamate receptors (mGluRs), mGluR1 and mGluR5, in the spinal cord are implicated in nociceptive transmission and plasticity through G protein-mediated second messenger cascades leading to the activation of various protein kinases such as extracellular signal-regulated kinase (ERK). In this study, we demonstrated that cytohesin-2, a guanine nucleotide exchange factor for ADP ribosylation factors (Arfs), is abundantly expressed in subsets of excitatory interneurons and projection neurons in the superficial dorsal horn. Cytohesin-2 is enriched in the perisynapse on the postsynaptic membrane of dorsal horn neurons and forms a protein complex with mGluR5 in the spinal cord. Central nervous system-specific cytohesin-2 conditional knockout mice exhibited reduced mechanical allodynia in inflammatory and neuropathic pain models. Pharmacological blockade of cytohesin catalytic activity with SecinH3 similarly reduced mechanical allodynia and inhibited the spinal activation of Arf6, but not Arf1, in both pain models. Furthermore, cytohesin-2 conditional knockout mice exhibited reduced mechanical allodynia and ERK1/2 activation following the pharmacological activation of spinal mGluR1/5 with 3,5-dihydroxylphenylglycine (DHPG). The present study suggests that cytothesin-2 is functionally associated with mGluR5 during the development of mechanical allodynia through the activation of Arf6 in spinal dorsal horn neurons.


Asunto(s)
Factor 6 de Ribosilación del ADP/metabolismo , Proteínas Activadoras de GTPasa/genética , Hiperalgesia/genética , Neuralgia/genética , Células del Asta Posterior/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Médula Espinal/metabolismo , Factor 1 de Ribosilacion-ADP/efectos de los fármacos , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 6 de Ribosilación del ADP/efectos de los fármacos , Animales , Proteínas Activadoras de GTPasa/antagonistas & inhibidores , Proteínas Activadoras de GTPasa/metabolismo , Hiperalgesia/metabolismo , Inflamación/genética , Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Noqueados , Neuralgia/metabolismo , Densidad Postsináptica/metabolismo , Células del Asta Posterior/efectos de los fármacos , Receptor del Glutamato Metabotropico 5/agonistas , Receptores de Glutamato Metabotrópico/agonistas , Médula Espinal/efectos de los fármacos , Asta Dorsal de la Médula Espinal , Triazoles/farmacología
7.
Neuropharmacology ; 198: 108755, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34416268

RESUMEN

Excitatory and inhibitory neurotransmission within the spinal dorsal horn is tightly controlled to regulate transmission of nociceptive signals to the brain. One aspect of this control is modulation of neuronal activity through cholinergic signaling. Nociceptive neurons in the dorsal horn express both nicotinic and muscarinic cholinergic receptors and activation of these receptors reduces pain in humans, while inhibition leads to nociceptive hypersensitivity. At a cellular level, acetylcholine (ACh) has diverse effects on excitability which is dependent on the receptor and neuronal subtypes involved. In the present study we sought to characterize the electrophysiological responses of specific subsets of lamina II interneurons from rat and marmoset spinal cord. Neurons were grouped by morphology and by action potential firing properties. Whole-cell voltage-clamp recordings from lamina II dorsal horn neurons of adult rats showed that bath applied acetylcholine increased, decreased or had no effect on spontaneous synaptic current activity in a cell-type specific manner. ACh modulated inhibitory synaptic activity in 80% of neurons, whereas excitatory synaptic activity was affected in less than 50% of neurons. In whole-cell current clamp recordings, brief somatic application of ACh induced cell-type specific responses in 79% of rat lamina II neurons, which included: depolarization and action potential firing, subthreshold membrane depolarization, biphasic responses characterized by transient depolarization followed by hyperpolarization and membrane hyperpolarization alone. Similar responses were seen in marmoset lamina II neurons and the properties of each neuron group were consistent across species. ACh-induced hyperpolarization was blocked by the muscarinic antagonist atropine and all forms of acetylcholine-induced depolarization were blocked by the nicotinic antagonist mecamylamine. The cholinergic system plays an important role in regulating nociception and this study contributes to our understanding of how circuit activity is controlled by ACh at a cellular level in primate and rodent spinal cord.


Asunto(s)
Acetilcolina/farmacología , Red Nerviosa/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Atropina/farmacología , Callithrix , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Interneuronas/efectos de los fármacos , Masculino , Mecamilamina/farmacología , Ratones , Antagonistas Muscarínicos/farmacología , Antagonistas Nicotínicos/farmacología , Nocicepción/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
8.
Neuropeptides ; 90: 102185, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34419803

RESUMEN

It has been shown that systemic and local administration of ultra-low dose morphine induced a hyperalgesic response via mu-opioid receptors. However, its exact mechanism(s) has not fully been clarified. It is documented that mu-opioid receptors functionally couple to T-type voltage dependent Ca+2 channels. Here, we investigated the role of T-type calcium channels, amiloride and mibefradil, on the induction of low-dose morphine hyperalgesia in male Wistar rats. The data showed that morphine (0.01 µg i.t. and 1 µg/kg i.p.) could elicit hyperalgesia as assessed by the tail-flick test. Administration of amiloride (5 and 10 µg i.t.) and mibefradil (2.5 and 5 µg i.t.) completely blocked low-dose morphine-induced hyperalgesia in spinal dorsal horn. Amiloride at doses of 1 and 5 mg/kg (i.p.) and mibefradil (9 mg/kg ip) 10 min before morphine (1 µg/kg i.p.) inhibited morphine-induced hyperalgesia. Our results indicate a role for T-type calcium channels in low dose morphine-induced hyperalgesia in rats.


Asunto(s)
Analgésicos Opioides/efectos adversos , Canales de Calcio Tipo T/efectos de los fármacos , Hiperalgesia/inducido químicamente , Morfina/efectos adversos , Amilorida/farmacología , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Inyecciones Intraperitoneales , Masculino , Mibefradil/farmacología , Morfina/administración & dosificación , Morfina/antagonistas & inhibidores , Dimensión del Dolor/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Ratas , Ratas Wistar , Receptores Opioides mu
9.
Toxicol Appl Pharmacol ; 429: 115698, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34428447

RESUMEN

In view of postsynaptic density 95kDA (PSD95) tethers neuronal NO synthase (nNOS) to N-methyl-d-aspartate receptor (NMDAR), the PSD95-nNOS complex represents a therapeutic target of neuropathic pain. This study therefore sought to explore the ability of PCC-0105002, a novel PSD95-nNOS small molecule inhibitor, to alter pain sensitivity in rodent neuropathic pain models. Firstly, the IC50 of PCC-0105002 for PSD95 and NOS1 binding activity was determined using an Alpha Screen assay kit. Then, we examined the effects of PCC-0105002 in the mouse formalin test and in the rat spinal nerve ligation (SNL) model, and explored the ability of PCC-0105002 to mediate analgesia and to effect motor coordination in a rota-rod test. Moreover, the mechanisms whereby PCC-0105002 mediates analgesia was explored via western blotting, Golgi staining, and co-immunoprecipitation experiments in dorsal horn. The outcomes indicated that PCC-0105002 exhibited dose-dependent attenuation of phase II pain-associated behaviors in the formalin test. The result indicated that PCC-0105002 disrupted the PSD95-nNOS interaction with IC50 of 1.408 µM. In the SNL model, PCC-0105002 suppressed mechanical allodynia, thermal hyperalgesia, and abnormal dorsal horn wide dynamic range neuron discharge. PCC-0105002 mediated an analgesic effect comparable to that of MK-801, while it was better able to enhance motor coordination as compared with MK-801. Moreover, PCC-0105002 altered signaling downstream of NMDAR and thus functionally and structurally attenuating synaptic plasticity through respective regulation of the NR2B/GluR1/CaMKIIα and Rac1/RhoA pathways. These findings suggest that the novel PSD95-nNOS inhibitor PCC-0105002 is an effective agent for alleviating neuropathic pain, and that it produces fewer motor coordination-associated side effects than do NMDAR antagonists.


Asunto(s)
Aminobenzoatos/uso terapéutico , Analgésicos/farmacología , Homólogo 4 de la Proteína Discs Large/metabolismo , Ésteres/uso terapéutico , Actividad Motora/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo I/metabolismo , Células del Asta Posterior/efectos de los fármacos , Nervios Espinales/efectos de los fármacos , Aminobenzoatos/farmacología , Analgésicos/toxicidad , Animales , Modelos Animales de Enfermedad , Ésteres/farmacología , Masculino , Ratones , Neuralgia/enzimología , Neuralgia/fisiopatología , Plasticidad Neuronal/efectos de los fármacos , Células del Asta Posterior/enzimología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas Sprague-Dawley , Prueba de Desempeño de Rotación con Aceleración Constante , Transducción de Señal , Nervios Espinales/enzimología , Nervios Espinales/fisiopatología
10.
Pharmacol Rep ; 73(4): 1096-1108, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34426901

RESUMEN

The role of adenosine A2A receptor (A2AR) and striatal-enriched protein tyrosine phosphatase (STEP) interactions in the striatal-pallidal GABA neurons was recently discussed in relation to A2AR overexpression and cocaine-induced increases of brain adenosine levels. As to phosphorylation, combined activation of A2AR and metabotropic glutamate receptor 5 (mGluR5) in the striatal-pallidal GABA neurons appears necessary for phosphorylation of the GluA1 unit of the AMPA receptor to take place. Robert Yasuda (J Neurochem 152: 270-272, 2020) focused on finding a general mechanism by which STEP activation is enhanced by increased A2AR transmission in striatal-pallidal GABA neurons expressing A2AR and dopamine D2 receptor. In his Editorial, he summarized in a clear way the significant effects of A2AR activation on STEP in the dorsal striatal-pallidal GABA neurons which involves a rise of intracellular levels of calcium causing STEP activation through its dephosphorylation. However, the presence of the A2AR in an A2AR-fibroblast growth factor receptor 1 (FGFR1) heteroreceptor complex can be required in the dorsal striatal-pallidal GABA neurons for the STEP activation. Furthermore, Won et al. (Proc Natl Acad Sci USA 116: 8028-8037, 2019) found in mass spectrometry experiments that the STEP splice variant STEP61 can bind to mGluR5 and inactivate it. In addition, A2AR overexpression can lead to increased formation of A2AR-mGluR5 heterocomplexes in ventral striatal-pallidal GABA neurons. It involves enhanced facilitatory allosteric interactions leading to increased Gq-mediated mGluR5 signaling activating STEP. The involvement of both A2AR and STEP in the actions of cocaine on synaptic downregulation was also demonstrated. The enhancement of mGluR5 protomer activity by the A2AR protomer in A2AR-mGluR5 heterocomplexes in the nucleus accumbens shell appears to have a novel significant role in STEP mechanisms by both enhancing the activation of STEP and being a target for STEP61.


Asunto(s)
Neuronas GABAérgicas/fisiología , Fosforilación/genética , Fosforilación/fisiología , Células del Asta Posterior/fisiología , Receptor de Adenosina A2A/metabolismo , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/patología , Neuronas GABAérgicas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Subunidades de Proteína/efectos de los fármacos , Proteínas Tirosina Fosfatasas/genética , Receptor de Adenosina A2A/genética , Receptor del Glutamato Metabotropico 5/genética
11.
J Neurochem ; 158(4): 928-942, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34008206

RESUMEN

Emerging evidence indicates the early growth response 1 (Egr1) plays an important role in the pathogenesis of chronic pain. However, the regulation of Egr1 expression in the DRG and spinal cord in neuropathic pain remains unclear. In the current study, the neuropathic pain was conducted by lumber 5 spinal nerve ligation (SNL) in rats. The role of miR-124-3p in Egr1 expression was examined. Our results showed that the SNL led to a significant increase in the expression of Egr1 mRNA and protein in the DRG and dorsal horn. This increased expression of Egr1 correlated with a reduction of miR-124-3p in the same region. Prior i.t. injection of Egr1 decoy AYX1 inhibited the expression of Egr1 and attenuated the neuropathic pain-like hypersensitivity following SNL. The dual-luciferase reporter assay revealed the luciferase activity of the Egr1 3'-UTR plasmid was inhibited by the miR-124-3p agomir. But this inhibition was completely reversed in the mutant 3'-UTR Egr1 group. In vivo, the SNL-induced behavioral signs of neuropathic pain and the increases in Egr1 mRNA and protein in the DRG and dorsal horn were prevented by prior to i.t. injection of miR-124-3p agomir. While, i.t. injection of miR-124-3p antagomir in naïve rats resulted in mechanical allodynia and thermal hyperalgesia and an overexpression of Egr1 in the DRG and dorsal horn. Together, our results suggest that the miR-124-3p-regulated Egr1 expression in the DRG and dorsal horn contributes to the development of neuropathic pain. Targeting miR-124-3p might be a promising therapeutic strategy in the treatment of chronic pain.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/efectos de los fármacos , Ganglios Espinales/efectos de los fármacos , Terapia Genética/métodos , MicroARNs/uso terapéutico , Neuralgia/terapia , Células del Asta Posterior/efectos de los fármacos , Regiones no Traducidas 3'/genética , Animales , Conducta Animal/efectos de los fármacos , Técnicas de Transferencia de Gen , Hiperalgesia/prevención & control , Ligadura , Masculino , Neuralgia/psicología , Traumatismos de los Nervios Periféricos , Ratas , Ratas Sprague-Dawley , Nervios Espinales/lesiones
12.
Mol Brain ; 14(1): 79, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33971918

RESUMEN

Astrocytes are critical regulators of neuronal function in the central nervous system (CNS). We have previously shown that astrocytes in the spinal dorsal horn (SDH) have increased intracellular Ca2+ levels following intraplantar injection of the noxious irritant, formalin. However, the underlying mechanisms remain unknown. We investigated these mechanisms by focusing on the role of descending noradrenergic (NAergic) signaling because our recent study revealed the essential role of the astrocytic Ca2+ responses evoked by intraplantar capsaicin. Using in vivo SDH imaging, we found that the Ca2+ level increase in SDH astrocytes induced by intraplantar formalin injection was suppressed by ablation of SDH-projecting locus coeruleus (LC)-NAergic neurons. Furthermore, the formalin-induced Ca2+ response was dramatically decreased by the loss of α1A-adrenaline receptors (ARs) in astrocytes located in the superficial laminae of the SDH. Moreover, similar inhibition was observed in mice pretreated intrathecally with an α1A-AR-specific antagonist. Therefore, activation of α1A-ARs via descending LC-NAergic signals may be a common mechanism underlying astrocytic Ca2+ responses in the SDH evoked by noxious stimuli, including chemical irritants.


Asunto(s)
Astrocitos/metabolismo , Norepinefrina/metabolismo , Transducción de Señal , Asta Dorsal de la Médula Espinal/patología , Animales , Astrocitos/efectos de los fármacos , Calcio/metabolismo , Formaldehído/administración & dosificación , Formaldehído/toxicidad , Ratones Endogámicos C57BL , Estimulación Física , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Células del Asta Posterior/patología
13.
Neurochem Res ; 46(7): 1771-1780, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33847855

RESUMEN

The mechanisms underlying postoperative pain differ from the inflammatory or neuropathic pain. Previous studies have demonstrated that intrathecal α-amino-3-hydroxy-5-methy-4-isoxazole propionate (AMPA) -kainate (KA) receptor antagonist inhibits the guarding pain behavior and mechanical hyperalgesia, indicating a critical role of spinal KA receptors in postoperative pain hypersensitivity. However, how the functional regulations of spinal KA receptor subunits are involved in the postoperative pain hypersensitivity remains elusive. Therefore, in the current study, we investigated the synaptic delivery of spinal KA receptor subunits and the interaction between KA receptor subunits and glutamate receptor-interacting protein (GRIP) during the postoperative pain. Our data indicated that plantar incision induced the synaptic delivery of GluK2, but not GluK1 or GluK3 in ipsilateral spinal cord dorsal horns. The co-immunoprecipitation showed an increased GluK2 -GRIP interaction in ipsilateral dorsal horn neurons at 6 h post-incision. Interestingly, Intrathecal pretreatment of GRIP siRNA increased the paw withdrawal thresholds to mechanical stimuli and decreased the cumulative pain scores in the paws ipsilateral to the incision at 6 h post-incision. Additionally, Intrathecal pretreatment of GRIP siRNA reduced the synaptic abundance of GluK2 in ipsilateral spinal dorsal horn at 6 h after plantar incision. In general, our data have demonstrated that the GluK2- GRIP interaction-mediated synaptic abundance of GluK2 in dorsal horn neurons plays an important role in the postoperative pain hypersensitivity. Disrupting the GluK2- GRIP interaction may provide a new approach for relieving postoperative pain.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dolor Postoperatorio/tratamiento farmacológico , ARN Interferente Pequeño/uso terapéutico , Receptores de Ácido Kaínico/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Sinapsis/efectos de los fármacos , Animales , Procedimientos Quirúrgicos Dermatologicos , Regulación hacia Abajo/efectos de los fármacos , Pie/cirugía , Miembro Anterior/cirugía , Inyecciones Espinales , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , ARN Interferente Pequeño/administración & dosificación , Ratas , Piel/efectos de los fármacos , Asta Dorsal de la Médula Espinal/citología , Sinapsis/metabolismo , Receptor de Ácido Kaínico GluK2
14.
Neuropharmacology ; 189: 108533, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33744339

RESUMEN

Using neurokinin 1 receptor (NK1R) internalization to measure of substance P release in rat spinal cord slices, we found that it was induced by the adenylyl cyclase (AC) activator forskolin, by the protein kinase A (PKA) activators 6-Bnz-cAMP and 8-Br-cAMP, and by the activator of exchange protein activated by cAMP (Epac) 8-pCPT-2-O-Me-cAMP (CPTOMe-cAMP). Conversely, AC and PKA inhibitors decreased substance P release induced by electrical stimulation of the dorsal root. Therefore, the cAMP signaling pathway mediates substance P release in the dorsal horn. The effects of forskolin and 6-Bnz-cAMP were not additive with NMDA-induced substance P release and were decreased by the NMDA receptor blocker MK-801. In cultured dorsal horn neurons, forskolin increased NMDA-induced Ca2+ entry and the phosphorylation of the NR1 and NR2B subunits of the NMDA receptor. Therefore, cAMP-induced substance P release is mediated by the activating phosphorylation by PKA of NMDA receptors. Voltage-gated Ca2+ channels, but not by TRPV1 or TRPA1, also contributed to cAMP-induced substance P release. Activation of PKA was required for the effects of forskolin and the three cAMP analogs. Epac2 contributed to the effects of forskolin and CPTOMe-cAMP, signaling through a Raf - mitogen-activated protein kinase pathway to activate Ca2+ channels. Epac1 inhibitors induced NK1R internalization independently of substance P release. In rats with latent sensitization to pain, the effect of 6-Bnz-cAMP was unchanged, whereas the effect of forskolin was decreased due to the loss of the stimulatory effect of Epac2. Hence, substance P release induced by cAMP decreases during pain hypersensitivity.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Sustancia P/metabolismo , Animales , Células Cultivadas , Colforsina/farmacología , AMP Cíclico/agonistas , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Factores de Intercambio de Guanina Nucleótido/agonistas , Hiperalgesia/metabolismo , Masculino , Técnicas de Cultivo de Órganos , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Médula Espinal/efectos de los fármacos
15.
Sci Rep ; 11(1): 2249, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500423

RESUMEN

Brain-derived neurotrophic factor (BDNF) is critically involved in the pathophysiology of chronic pain. However, the mechanisms of BDNF action on specific neuronal populations in the spinal superficial dorsal horn (SDH) requires further study. We used chronic BDNF treatment (200 ng/ml, 5-6 days) of defined-medium, serum-free spinal organotypic cultures to study intracellular calcium ([Ca2+]i) fluctuations. A detailed quantitative analysis of these fluctuations using the Frequency-independent biological signal identification (FIBSI) program revealed that BDNF simultaneously depressed activity in some SDH neurons while it unmasked a particular subpopulation of 'silent' neurons causing them to become spontaneously active. Blockade of gap junctions disinhibited a subpopulation of SDH neurons and reduced BDNF-induced synchrony in BDNF-treated cultures. BDNF reduced neuronal excitability assessed by measuring spontaneous excitatory postsynaptic currents. This was similar to the depressive effect of BDNF on the [Ca2+]i fluctuations. This study reveals novel regulatory mechanisms of SDH neuronal excitability in response to BDNF.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Células del Asta Posterior/fisiología , 1-Octanol/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Análisis por Conglomerados , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Modelos Neurológicos , Células del Asta Posterior/efectos de los fármacos , Ratas
16.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498178

RESUMEN

The mechanisms of inflammatory pain need to be identified in order to find new superior treatments. Protease-activated receptors 2 (PAR2) and transient receptor potential vanilloid 1 (TRPV1) are highly co-expressed in dorsal root ganglion neurons and implicated in pain development. Here, we examined the role of spinal PAR2 in hyperalgesia and the modulation of synaptic transmission in carrageenan-induced peripheral inflammation, using intrathecal (i.t.) treatment in the behavioral experiments and recordings of spontaneous, miniature and dorsal root stimulation-evoked excitatory postsynaptic currents (sEPSCs, mEPSCs and eEPSCs) in spinal cord slices. Intrathecal PAR2-activating peptide (AP) administration aggravated the carrageenan-induced thermal hyperalgesia, and this was prevented by a TRPV1 antagonist (SB 366791) and staurosporine i.t. pretreatment. Additionally, the frequency of the mEPSC and sEPSC and the amplitude of the eEPSC recorded from the superficial dorsal horn neurons were enhanced after acute PAR2 AP application, while prevented with SB 366791 or staurosporine pretreatment. PAR2 antagonist application reduced the thermal hyperalgesia and decreased the frequency of mEPSC and sEPSC and the amplitude of eEPSC. Our findings highlight the contribution of spinal PAR2 activation to carrageenan-induced hyperalgesia and the importance of dorsal horn PAR2 and TRPV1 receptor interactions in the modulation of nociceptive synaptic transmission.


Asunto(s)
Hiperalgesia/metabolismo , Células del Asta Posterior/metabolismo , Receptor PAR-2/metabolismo , Anilidas/farmacología , Animales , Carragenina/farmacología , Carragenina/toxicidad , Cinamatos/farmacología , Potenciales Postsinápticos Excitadores , Hiperalgesia/etiología , Hiperalgesia/fisiopatología , Masculino , Potenciales Postsinápticos Miniatura , Nocicepción , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/fisiología , Ratas , Ratas Wistar , Estaurosporina/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo
17.
Brain Res ; 1750: 147149, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33035497

RESUMEN

Menthol, which acts as an agonist for transient receptor potential melastatin 8 (TRPM8), has complex effects on nociceptive transmission, including pain relief and hyperalgesia. Here, we addressed the effects of menthol on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs, respectively) in medullary dorsal horn neurons, using a whole-cell patch-clamp technique. Menthol significantly increased sEPSC frequency, in a concentration-dependent manner, without affecting current amplitudes. The menthol-induced increase in sEPSC frequency could be completely blocked by AMTB, a TRPM8 antagonist, but was not blocked by HC-030031, a transient receptor potential ankyrin 1 (TRPA1) antagonist. Menthol still increased sEPSC frequency in the presence of Cd2+, a general voltage-gated Ca2+ channel blocker, suggesting that voltage-gated Ca2+ channels are not involved in the menthol-induced increase in sEPSC frequency. However, menthol failed to increase sEPSC frequency in the absence of extracellular Ca2+, suggesting that TRPM8 on primary afferent terminals is Ca2+ permeable. On the other hand, menthol also increased sIPSC frequency, without affecting current amplitudes. The menthol-induced increase in sIPSC frequency could be completely blocked by either AMTB or CNQX, an AMPA/KA receptor antagonist, suggesting that the indirect increase in excitability of inhibitory interneurons may lead to the facilitation of spontaneous GABA and/or glycine release. The present results suggested that menthol exerts analgesic effects, via the enhancement of inhibitory synaptic transmission, through central feed-forward neural circuits within the medullary dorsal horn region.


Asunto(s)
Mentol/farmacología , Células del Asta Posterior/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Mentol/metabolismo , Técnicas de Placa-Clamp , Células del Asta Posterior/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/citología , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Asta Dorsal de la Médula Espinal/metabolismo , Transmisión Sináptica/fisiología , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPC/metabolismo
18.
Acta Pharmacol Sin ; 42(2): 189-198, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32694753

RESUMEN

Chronic pain is a common and undertreated nonmotor symptom in Parkinson's disease (PD). Although chronic pain is improved by L-dopa in some PD patients, the underlying mechanisms remain unclear. In this study, we established PD mice by unilateral microinjection of 6-OHDA in the medial forebrain bundle to investigate the contribution of spinal cord dopamine receptors to parkinsonian pain hypersensitivity. The von Frey filament tests and thermal pain tests revealed that these PD mice displayed decreased nociceptive thresholds in both hindpaws; intrathecal injection of L-dopa or apomorphine significantly increased the mechanical and thermal nociceptive thresholds, and the analgesic effect was mimicked by ropinirole (a D2 receptor agonist), but not SKF38393 (a D1/D5 receptor agonist), and blocked by sulpiride (a D2 receptor antagonist), but not SKF83566 (a D1/D5 receptor antagonist). Whole-cell recordings in lumber spinal cord slices showed that superficial dorsal horn (SDH) neurons in PD mice exhibited hyperexcitability, including more depolarized resting membrane potentials and more action potentials evoked by depolarizing current steps, which were mitigated by ropinirole. Furthermore, ropinirole inhibited the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in SDH neurons more strongly in PD mice than in control mice. However, sulpiride caused less disinhibition of sEPSCs in PD mice than in control mice. Taken together, our data reveal that pain hypersensitivity in PD mice is associated with hyperexcitability of SDH neurons, and both events are reversed by activation of spinal D2 receptors. Therefore, spinal D2 receptors can be promising therapeutic targets for the treatment of PD pain.


Asunto(s)
Dolor Crónico/tratamiento farmacológico , Trastornos Parkinsonianos/tratamiento farmacológico , Células del Asta Posterior/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Dolor Crónico/etiología , Dolor Crónico/fisiopatología , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Indoles/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidopamina , Trastornos Parkinsonianos/complicaciones , Trastornos Parkinsonianos/fisiopatología , Técnicas de Placa-Clamp , Células del Asta Posterior/metabolismo , Receptores de Dopamina D2/metabolismo , Médula Espinal/efectos de los fármacos , Sulpirida/farmacología
19.
J Pain ; 22(1): 32-47, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32574785

RESUMEN

N-methyl-D-aspartate (NMDA) receptor activation is known to be critical in remifentanil-induced hyperalgesia. Evidence indicates that iron accumulation participates in NMDA neurotoxicity. This study aims to investigate the role of iron accumulation in remifentanil-induced hyperalgesia. Remifentanil was delivered intravenously in rats to induce hyperalgesia. The NMDA receptor antagonist MK-801 was intrathecally administrated. The levels of divalent metal transporter 1 without iron-responsive element [DMT1(-)IRE] and iron were detected. Behavior testing was performed in DMT1(-)IRE knockdown rats and rats treated with iron chelator DFO. Meanwhile, the spinal dorsal horn neurons were cultured and transfected with DMT1(-)IRE siRNA, and then respectively incubated with remifentanil and MK-801. The levels of intracellular Ca2+ and iron were assessed by fluorescence imaging. Our data revealed that spinal DMT1(-)IRE and iron content significantly increased in remifentanil-treated rats, and MK-801 inhibited the enhancements. DMT1(-)IRE knockdown and DFO prevented against remifentanil-induced hyperalgesia. Notably, the levels of Ca2+ and iron increased in remifentanil-incubated neurons, and these growths can be blocked by MK-801. DMT1(-)IRE knockdown attenuated iron accumulation but did not influence Ca2+ influx. This study suggests that DMT1(-)IRE-mediated iron accumulation is likely to be the downstream event following NMDA receptor activation and Ca2+ influx, contributing to remifentanil-induced hyperalgesia. PERSPECTIVE: Remifentanil-induced hyperalgesia is common even when used within clinical accepted doses. This study presents that aberrant iron accumulation is involved in the development of remifentanil-induced hyperalgesia in vivo and in vitro. Iron chelation may be a potential therapeutic strategy for the prevention of hyperalgesia in populations at high risk.


Asunto(s)
Analgésicos Opioides/farmacología , Proteínas de Transporte de Catión/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Hiperalgesia/inducido químicamente , Hiperalgesia/prevención & control , Quelantes del Hierro/farmacología , Hierro/metabolismo , Células del Asta Posterior/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Remifentanilo/farmacología , Columna Vertebral/metabolismo , Analgésicos Opioides/administración & dosificación , Animales , Células Cultivadas , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores Opioides mu/agonistas , Remifentanilo/administración & dosificación , Transducción de Señal/fisiología
20.
Neuroreport ; 32(2): 77-81, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33323835

RESUMEN

Isoflurane is an inhaled anesthetic, though its actions at the cellular level remain controversial. By using acute spinal cord slices from adult rats and the whole-cell recording technique, we found that aqueous isoflurane at the minimum alveolar concentration decreased postsynaptic neural excitability and enhanced membrane conductance, while suppressing glutamate release from presynaptic afferent onto substantia gelatinosa (lamina II) neurons in the dorsal horn. The data demonstrate that isoflurane modulates synaptic transmission from peripheral to the spinal cord via both pre- and postsynaptic effects and these actions may underlie its spinal anesthesia.


Asunto(s)
Anestésicos por Inhalación/farmacología , Isoflurano/farmacología , Sustancia Gelatinosa/efectos de los fármacos , Animales , Ácido Glutámico/efectos de los fármacos , Ácido Glutámico/metabolismo , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Técnicas de Placa-Clamp , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Ratas , Asta Dorsal de la Médula Espinal/citología , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Asta Dorsal de la Médula Espinal/metabolismo , Sustancia Gelatinosa/metabolismo , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...