Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.892
Filtrar
1.
Nat Commun ; 15(1): 3473, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724563

RESUMEN

Neuronal differentiation-the development of neurons from neural stem cells-involves neurite outgrowth and is a key process during the development and regeneration of neural functions. In addition to various chemical signaling mechanisms, it has been suggested that thermal stimuli induce neuronal differentiation. However, the function of physiological subcellular thermogenesis during neuronal differentiation remains unknown. Here we create methods to manipulate and observe local intracellular temperature, and investigate the effects of noninvasive temperature changes on neuronal differentiation using neuron-like PC12 cells. Using quantitative heating with an infrared laser, we find an increase in local temperature (especially in the nucleus) facilitates neurite outgrowth. Intracellular thermometry reveals that neuronal differentiation is accompanied by intracellular thermogenesis associated with transcription and translation. Suppression of intracellular temperature increase during neuronal differentiation inhibits neurite outgrowth. Furthermore, spontaneous intracellular temperature elevation is involved in neurite outgrowth of primary mouse cortical neurons. These results offer a model for understanding neuronal differentiation induced by intracellular thermal signaling.


Asunto(s)
Diferenciación Celular , Neuronas , Transducción de Señal , Temperatura , Animales , Células PC12 , Neuronas/fisiología , Neuronas/citología , Ratones , Ratas , Proyección Neuronal , Neurogénesis/fisiología , Neuritas/metabolismo , Neuritas/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Termometría/métodos , Termogénesis/fisiología
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731901

RESUMEN

Growing demand for therapeutic tissue repair recurrently focusses scientists' attention on critical assessment of postmortal collection of live cells, especially stem cells. Our study aimed to assess the survival of neuronal progenitors in postmortal spinal cord and their differentiation potential. Postmortal samples of spinal cords were obtained from human-sized animals (goats) at 6, 12, 24, 36, and 54 h after slaughter. Samples were studied by immunohistology, differentiation assay, Western blot and flow cytometry for the presence and location of GD2-positive neural progenitors and their susceptibility to cell death. TUNEL staining of the goat spinal cord samples over 6-54 h postmortem revealed no difference in the number of positive cells per cross-section. Many TUNEL-positive cells were located in the gray commissure around the central canal of the spinal cord; no increase in TUNEL-positive cells was recorded in either posterior or anterior horns of the gray matter where many GD2-positive neural progenitors can be found. The active caspase 3 amount as measured by Western blot at the same intervals was moderately increasing over time. Neuronal cells were enriched by magnetic separation with antibodies against CD24; among them, the GD2-positive neural progenitor subpopulation did not overlap with apoptotic cells having high pan-caspase activity. Apoptotic cell death events are relatively rare in postmortal spinal cords and are not increased in areas of the neural progenitor cell's location, within measured postmortal intervals, or among the CD24/GD2-positive cells. Data from our study suggest postmortal spinal cords as a valuable source for harvesting highly viable allogenic neural progenitor cells.


Asunto(s)
Apoptosis , Cabras , Células-Madre Neurales , Médula Espinal , Animales , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Médula Espinal/metabolismo , Médula Espinal/citología , Diferenciación Celular , Supervivencia Celular , Caspasa 3/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713624

RESUMEN

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Corteza Cerebral , Receptores ErbB , Proteínas Hedgehog , Proteínas del Tejido Nervioso , Células-Madre Neurales , Neurogénesis , Factor de Transcripción 2 de los Oligodendrocitos , Factor de Transcripción PAX6 , Animales , Neurogénesis/fisiología , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Ratones , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Factor de Transcripción PAX6/metabolismo , Factor de Transcripción PAX6/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Proteína Gli3 con Dedos de Zinc/metabolismo , Proteína Gli3 con Dedos de Zinc/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción Paired Box/genética , Neuroglía/metabolismo , Neuroglía/citología , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/citología , Linaje de la Célula , Humanos
4.
J Nanobiotechnology ; 22(1): 220, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698449

RESUMEN

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can differentiate into Schwann cells (SCs) during peripheral nerve injury; in our previous research, we showed that SC-derived exosomes (SC-exos) played a direct induction role while fibroblast-derived exosomes (Fb-exos) had no obvious induction role. The induction role of neural stem cell (NSC)-derived exosomes (NSC-exos) has also been widely confirmed. However, no studies have compared the induction effects of these three types of cells at the same time. Therefore, by investigating the effect of these three cell-derived exosomes upon the induction of BMSCs to differentiate into SCs, this study explored the role of different exosomes in promoting the differentiation of stem cells into SCs cells, and conducted a comparison between the two groups by RNA sequencing to further narrow the range of target genes and related gene pathways in order to study their related mechanisms. MATERIALS AND METHODS: We extracted exosomes from SCs, fibroblasts (Fb) and neural stem cells (NSC) and then investigated the ability of these exosomes to induce differentiation into BMSCs under different culture conditions. The expression levels of key proteins and gene markers were detected in induced cells by fluorescence immunoassays, western blotting and polymerase chain reaction (PCR); then, we statistically compared the relative induction effects under different conditions. Finally, we analyzed the three types of exosomes by RNA-seq to predict target genes and related gene pathways. RESULTS: BMSCs were cultured by three media: conventional (no induction), pre-induction or pre-induction + original induction medium (ODM) with exosomes of the same cell origin under different culture conditions. When adding the three different types of exosomes separately, the overall induction of BMSCs to differentiate into SCs was significantly increased (P < 0.05). The induction ability was ranked as follows: pre-induction + ODM + exosome group > pre-induction + exosome group > non-induction + exosome group. Using exosomes from different cell sources under the same culture conditions, we observed the following trends under the three culture conditions: RSC96-exos group ≥ NSC-exos group > Fb-exos group. The overall ability to induce BMSCs into SCs was significantly greater in the RSC96-exos group and the NSC-exos group. Although there was no significant difference in induction efficiency when comparing these two groups, the overall induction ability of the RSC96-exos group was slightly higher than that of the NSC-exos group. By combining the differentiation induction results with the RNA-seq data, the three types of exosomes were divided into three comparative groups: RSC vs. NSC, RSC vs. Fb and NSC vs. Fb. We identified 203 differentially expressed mRNA target genes in these three groups. Two differentially expressed genes were upregulated simultaneously, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). We did not identify any co-upregulated target genes for the miRNAs, but did identify one target gene of the lncRNAs, namely ENSRNOG00000065005. Analysis identified 90 GO terms related to nerves and axons in the mRNAs; in addition, KEGG enrichment and GASA analysis identified 13 common differential expression pathways in the three groups. CONCLUSIONS: Our analysis found that pre-induction + ODM + RSC96/NSC-exos culture conditions were most conducive with regards to induction and differentiation. RSC96-exos and NSC-exos exhibited significantly greater differentiation efficiency of BMSCs into SCs. Although there was no statistical difference, the data indicated a trend for RSC96-exos to be advantageous We identified 203 differentially expressed mRNAs between the three groups and two differentially expressed target mRNAs were upregulated, namely riboflavin kinase (RFK, ENSRNOG00000022273) and ribosomal RNA processing 36 (Rrp36, ENSRNOG00000017836). 90 GO terms were related to nerves and axons. Finally, we identified 13 common differentially expressed pathways across our three types of exosomes. It is hoped that the efficiency of BMSCs induction differentiation into SCs can be improved, bringing hope to patients and more options for clinical treatment.


Asunto(s)
Diferenciación Celular , Exosomas , Células Madre Mesenquimatosas , Células de Schwann , Exosomas/metabolismo , Células de Schwann/citología , Células de Schwann/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Ratas , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Ratas Sprague-Dawley , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo
5.
Fly (Austin) ; 18(1): 2352938, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38741287

RESUMEN

To identify genes required for brain growth, we took an RNAi knockdown reverse genetic approach in Drosophila. One potential candidate isolated from this effort is the anti-lipogenic gene adipose (adp). Adp has an established role in the negative regulation of lipogenesis in the fat body of the fly and adipose tissue in mammals. While fat is key to proper development in general, adp has not been investigated during brain development. Here, we found that RNAi knockdown of adp in neuronal stem cells and neurons results in reduced brain lobe volume and sought to replicate this with a mutant fly. We generated a novel adp mutant that acts as a loss-of-function mutant based on buoyancy assay results. We found that despite a change in fat content in the body overall and a decrease in the number of larger (>5 µm) brain lipid droplets, there was no change in the brain lobe volume of mutant larvae. Overall, our work describes a novel adp mutant that can functionally replace the long-standing adp60 mutant and shows that the adp gene has no obvious involvement in brain growth.


Asunto(s)
Encéfalo , Proteínas de Drosophila , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Mutación con Pérdida de Función , Interferencia de ARN , Neuronas/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Drosophila/genética , Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Tejido Adiposo/metabolismo , Mutación
6.
Tissue Eng Regen Med ; 21(4): 625-639, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578425

RESUMEN

BACKGROUND: Syringomyelia is a progressive chronic disease that leads to nerve pain, sensory dissociation, and dyskinesia. Symptoms often do not improve after surgery. Stem cells have been widely explored for the treatment of nervous system diseases due to their immunoregulatory and neural replacement abilities. METHODS: In this study, we used a rat model of syringomyelia characterized by focal dilatation of the central canal to explore an effective transplantation scheme and evaluate the effect of mesenchymal stem cells and induced neural stem cells for the treatment of syringomyelia. RESULTS: The results showed that cell transplantation could not only promote syrinx shrinkage but also stimulate the proliferation of ependymal cells, and the effect of this result was related to the transplantation location. These reactions appeared only when the cells were transplanted into the cavity. Additionally, we discovered that cell transplantation transformed activated microglia into the M2 phenotype. IGF1-expressing M2 microglia may play a significant role in the repair of nerve pain. CONCLUSION: Cell transplantation can promote cavity shrinkage and regulate the local inflammatory environment. Moreover, the proliferation of ependymal cells may indicate the activation of endogenous stem cells, which is important for the regeneration and repair of spinal cord injury.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Células-Madre Neurales , Ratas Sprague-Dawley , Siringomielia , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Siringomielia/terapia , Ratas , Proliferación Celular , Epéndimo , Masculino , Microglía/metabolismo , Modelos Animales de Enfermedad
7.
Biofabrication ; 16(3)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38565133

RESUMEN

Spinal cord injury (SCI) can cause permanent impairment to motor or sensory functions. Pre-cultured neural stem cell (NSC) hydrogel scaffolds have emerged as a promising approach to treat SCI by promoting anti-inflammatory effects, axon regrowth, and motor function restoration. Here, in this study, we performed a coaxial extrusion process to fabricate a core-shell hydrogel microfiber with high NSC density in the core portion. Oxidized hyaluronic acid, carboxymethyl chitosan, and matrigel blend were used as a matrix for NSC growth and to facilitate the fabrication process. During thein vitrodifferentiation culture, it was found that NSC microfibers could differentiate into neurons and astrocytes with higher efficiency compared to NSC cultured in petri dishes. Furthermore, duringin vivotransplantation, NSC microfibers were coated with polylactic acid nanosheets by electrospinning for reinforcement. The coated NSC nanofibers exhibited higher anti-inflammatory effect and lesion cavity filling rate compared with the control group. Meanwhile, more neuron- and oligodendrocyte-like cells were visualized at the lesion epicenter. Finally, axon regrowth across the whole lesion site was observed, demonstrating that the microfiber could guide renascent axon regrowth. Experiment results indicate that the NSC microfiber is a promising bioactive treatment for complete SCI treatment with superior outcomes.


Asunto(s)
Axones , Diferenciación Celular , Células-Madre Neurales , Neuronas , Traumatismos de la Médula Espinal , Andamios del Tejido , Animales , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Axones/efectos de los fármacos , Axones/fisiología , Axones/metabolismo , Diferenciación Celular/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Andamios del Tejido/química , Ratas Sprague-Dawley , Hidrogeles/química , Hidrogeles/farmacología , Quitosano/química , Quitosano/farmacología , Quitosano/análogos & derivados , Células Cultivadas , Regeneración Nerviosa/efectos de los fármacos , Nanofibras/química , Ratas , Femenino
8.
Cells ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667283

RESUMEN

Astrocytes and ependymal cells have been reported to be able to switch from a mature cell identity towards that of a neural stem/progenitor cell. Astrocytes are widely scattered in the brain where they exert multiple functions and are routinely targeted for in vitro and in vivo reprogramming. Ependymal cells serve more specialized functions, lining the ventricles and the central canal, and are multiciliated, epithelial-like cells that, in the spinal cord, act as bi-potent progenitors in response to injury. Here, we isolate or generate ependymal cells and post-mitotic astrocytes, respectively, from the lateral ventricles of the mouse brain and we investigate their capacity to reverse towards a progenitor-like identity in culture. Inhibition of the GSK3 and TGFß pathways facilitates the switch of mature astrocytes to Sox2-expressing, mitotic cells that generate oligodendrocytes. Although this medium allows for the expansion of quiescent NSCs, isolated from live rats by "milking of the brain", it does not fully reverse astrocytes towards the bona fide NSC identity; this is a failure correlated with a concomitant lack of neurogenic activity. Ependymal cells could be induced to enter mitosis either via exposure to neuraminidase-dependent stress or by culturing them in the presence of FGF2 and EGF. Overall, our data confirm that astrocytes and ependymal cells retain a high capacity to reverse to a progenitor identity and set up a simple and highly controlled platform for the elucidation of the molecular mechanisms that regulate this reversal.


Asunto(s)
Astrocitos , Epéndimo , Fenotipo , Animales , Astrocitos/metabolismo , Astrocitos/citología , Epéndimo/citología , Epéndimo/metabolismo , Ratones , Células Cultivadas , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Diferenciación Celular , Encéfalo/citología , Encéfalo/metabolismo , Ratas , Factores de Transcripción SOXB1/metabolismo , Ratones Endogámicos C57BL , Mitosis , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Animales Recién Nacidos
9.
Cells ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667286

RESUMEN

Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Accidente Cerebrovascular Isquémico , Células-Madre Neurales , Sinapsis , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Células-Madre Neurales/citología , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/terapia , Ratas , Sinapsis/metabolismo , Masculino , Neuritas/metabolismo , Encéfalo/patología , Isquemia Encefálica/terapia , Isquemia Encefálica/patología , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/patología
10.
EMBO Rep ; 25(5): 2202-2219, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600346

RESUMEN

Neural progenitor cells within the cerebral cortex undergo a characteristic switch between symmetric self-renewing cell divisions early in development and asymmetric neurogenic divisions later. Yet, the mechanisms controlling this transition remain unclear. Previous work has shown that early but not late neural progenitor cells (NPCs) endogenously express the autism-linked transcription factor Foxp1, and both loss and gain of Foxp1 function can alter NPC activity and fate choices. Here, we show that premature loss of Foxp1 upregulates transcriptional programs regulating angiogenesis, glycolysis, and cellular responses to hypoxia. These changes coincide with a premature destabilization of HIF-1α, an elevation in HIF-1α target genes, including Vegfa in NPCs, and precocious vascular network development. In vitro experiments demonstrate that stabilization of HIF-1α in Foxp1-deficient NPCs rescues the premature differentiation phenotype and restores NPC maintenance. Our data indicate that the endogenous decline in Foxp1 expression activates the HIF-1α transcriptional program leading to changes in the tissue environment adjacent to NPCs, which, in turn, might alter their self-renewal and neurogenic capacities.


Asunto(s)
Corteza Cerebral , Factores de Transcripción Forkhead , Subunidad alfa del Factor 1 Inducible por Hipoxia , Células-Madre Neurales , Proteínas Represoras , Transducción de Señal , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Animales , Ratones , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Neovascularización Fisiológica/genética , Diferenciación Celular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Neurogénesis/genética , Glucólisis , Angiogénesis
11.
Exp Neurol ; 376: 114779, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621449

RESUMEN

Neural stem cells have exhibited efficacy in pre-clinical models of spinal cord injury (SCI) and are on a translational path to human testing. We recently reported that neural stem cells must be driven to a spinal cord fate to optimize host axonal regeneration into sites of implantation in the injured spinal cord, where they subsequently form neural relays across the lesion that support significant functional improvement. We also reported methods of deriving and culturing human spinal cord neural stem cells derived from embryonic stem cells that can be sustained over serial high passage numbers in vitro, providing a potentially optimized cell source for human clinical trials. We now report further optimization of methods for deriving and sustaining cultures of human spinal cord neural stem cell lines that result in improved karyotypic stability while retaining anatomical efficacy in vivo. This development improves prospects for safe human translation.


Asunto(s)
Diferenciación Celular , Células-Madre Neurales , Traumatismos de la Médula Espinal , Médula Espinal , Humanos , Células-Madre Neurales/citología , Médula Espinal/citología , Animales , Traumatismos de la Médula Espinal/terapia , Diferenciación Celular/fisiología , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Ratones , Trasplante de Células Madre/métodos
12.
Nat Commun ; 15(1): 3365, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664376

RESUMEN

Hedgehog (Hh) signaling relies on the primary cilium, a cell surface organelle that serves as a signaling hub for the cell. Using proximity labeling and quantitative proteomics, we identify Numb as a ciliary protein that positively regulates Hh signaling. Numb localizes to the ciliary pocket and acts as an endocytic adaptor to incorporate Ptch1 into clathrin-coated vesicles, thereby promoting Ptch1 exit from the cilium, a key step in Hh signaling activation. Numb loss impedes Sonic hedgehog (Shh)-induced Ptch1 exit from the cilium, resulting in reduced Hh signaling. Numb loss in spinal neural progenitors reduces Shh-induced differentiation into cell fates reliant on high Hh activity. Genetic ablation of Numb in the developing cerebellum impairs the proliferation of granule cell precursors, a Hh-dependent process, resulting in reduced cerebellar size. This study highlights Numb as a regulator of ciliary Ptch1 levels during Hh signal activation and demonstrates the key role of ciliary pocket-mediated endocytosis in cell signaling.


Asunto(s)
Cerebelo , Cilios , Proteínas Hedgehog , Proteínas del Tejido Nervioso , Receptor Patched-1 , Transducción de Señal , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Cilios/metabolismo , Animales , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Cerebelo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Humanos , Endocitosis , Diferenciación Celular , Proliferación Celular , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ratones Noqueados
13.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38664022

RESUMEN

Neural stem cells (NSCs) reside in discrete regions of the adult mammalian brain where they can differentiate into neurons, astrocytes, and oligodendrocytes. Several studies suggest that mitochondria have a major role in regulating NSC fate. Here, we evaluated mitochondrial properties throughout NSC differentiation and in lineage-specific cells. For this, we used the neurosphere assay model to isolate, expand, and differentiate mouse subventricular zone postnatal NSCs. We found that the levels of proteins involved in mitochondrial fusion (Mitofusin [Mfn] 1 and Mfn 2) increased, whereas proteins involved in fission (dynamin-related protein 1 [DRP1]) decreased along differentiation. Importantly, changes in mitochondrial dynamics correlated with distinct patterns of mitochondrial morphology in each lineage. Particularly, we found that the number of branched and unbranched mitochondria increased during astroglial and neuronal differentiation, whereas the area occupied by mitochondrial structures significantly reduced with oligodendrocyte maturation. In addition, comparing the three lineages, neurons revealed to be the most energetically flexible, whereas astrocytes presented the highest ATP content. Our work identified putative mitochondrial targets to enhance lineage-directed differentiation of mouse subventricular zone-derived NSCs.


Asunto(s)
Astrocitos , Diferenciación Celular , Linaje de la Célula , Dinaminas , Mitocondrias , Dinámicas Mitocondriales , Células-Madre Neurales , Neuronas , Oligodendroglía , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Mitocondrias/metabolismo , Ratones , Diferenciación Celular/genética , Linaje de la Célula/genética , Astrocitos/metabolismo , Astrocitos/citología , Oligodendroglía/metabolismo , Oligodendroglía/citología , Neuronas/metabolismo , Neuronas/citología , Células Cultivadas , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Neurogénesis , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo
14.
J Vis Exp ; (206)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682901

RESUMEN

Neural stem cells (NSCs) divide and produce newborn neurons in the adult brain through a process called adult neurogenesis. Adult NSCs are primarily quiescent, a reversible cell state where they have exited the cell cycle (G0) yet remain responsive to the environment. In the first step of adult neurogenesis, quiescent NSCs (qNSCs) receive a signal and activate, exiting quiescence and re-entering the cell cycle. Thus, understanding the regulators of NSC quiescence and quiescence exit is critical for future strategies targeting adult neurogenesis. However, our understanding of NSC quiescence is limited by technical constraints in identifying quiescent NSCs (qNSCs) and activated NSCs (aNSCs). This protocol describes a new approach to identify and enrich qNSCs and aNSCs generated in in vitro cultures by imaging NSC autofluorescence. First, this protocol describes how to use a confocal microscope to identify autofluorescent markers of qNSCs and aNSCs to classify NSC activation state using autofluorescence intensity. Second, this protocol describes how to use a fluorescent activated cell sorter (FACS) to classify NSC activation state and enrich samples for qNSCs or aNSCs using autofluorescence intensity. Third, this protocol describes how to use a multiphoton microscope to perform fluorescence lifetime imaging (FLIM) at single-cell resolution, classify NSC activation state, and track the dynamics of quiescent exit using both autofluorescence intensities and fluorescence lifetimes. Thus, this protocol provides a live-cell, label-free, single-cell resolution toolkit for studying NSC quiescence and quiescence exit.


Asunto(s)
Células-Madre Neurales , Células-Madre Neurales/citología , Animales , Ratones , Microscopía Confocal/métodos , Citometría de Flujo/métodos , Imagen Óptica/métodos , Neurogénesis/fisiología
15.
J Vis Exp ; (206)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682940

RESUMEN

Resolutive cures for spinal cord injuries (SCIs) are still lacking, due to the complex pathophysiology. One of the most promising regenerative approaches is based on stem cell transplantation to replace lost tissue and promote functional recovery. This approach should be further explored better in vitro and ex vivo for safety and efficacy before proceeding with more expensive and time-consuming animal testing. In this work, we show the establishment of a long-term platform based on mouse spinal cord (SC) organotypic slices transplanted with human neural stem cells to test cellular replacement therapies for SCIs. Standard SC organotypic cultures are maintained for around 2 or 3 weeks in vitro. Here, we describe an optimized protocol for long-term maintenance (≥30 days) for up to 90 days. The medium used for long-term culturing of SC slices was also optimized for transplanting neural stem cells into the organotypic model. Human SC-derived neuroepithelial stem (h-SC-NES) cells carrying a green fluorescent protein (GFP) reporter were transplanted into mouse SC slices. Thirty days after the transplant, cells still show GFP expression and a low apoptotic rate, suggesting that the optimized environment sustained their survival and integration inside the tissue. This protocol represents a robust reference for efficiently testing cell replacement therapies in the SC tissue. This platform will allow researchers to perform an ex vivo pre-screening of different cell transplantation therapies, helping them to choose the most appropriate strategy before proceeding with in vivo experiments.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Médula Espinal , Animales , Ratones , Traumatismos de la Médula Espinal/terapia , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Médula Espinal/citología , Técnicas de Cultivo de Órganos/métodos , Trasplante de Células Madre/métodos
16.
Sci Adv ; 10(17): eade1650, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669326

RESUMEN

While the kinesin-2 motors KIF3A and KIF3B have essential roles in ciliogenesis and Hedgehog (HH) signal transduction, potential role(s) for another kinesin-2 motor, KIF17, in HH signaling have yet to be explored. Here, we investigated the contribution of KIF17 to HH-dependent cerebellar development, where Kif17 is expressed in both HH-producing Purkinje cells and HH-responding cerebellar granule neuron progenitors (CGNPs). Germline Kif17 deletion in mice results in cerebellar hypoplasia due to reduced CGNP proliferation, a consequence of decreased HH pathway activity mediated through decreased Sonic HH (SHH) protein. Notably, Purkinje cell-specific Kif17 deletion partially phenocopies Kif17 germline mutants. Unexpectedly, CGNP-specific Kif17 deletion results in the opposite phenotype-increased CGNP proliferation and HH target gene expression due to altered GLI transcription factor processing. Together, these data identify KIF17 as a key regulator of HH-dependent cerebellar development, with dual and opposing roles in HH-producing Purkinje cells and HH-responding CGNPs.


Asunto(s)
Cerebelo , Cerebelo/anomalías , Proteínas Hedgehog , Cinesinas , Malformaciones del Sistema Nervioso , Células de Purkinje , Animales , Cinesinas/metabolismo , Cinesinas/genética , Cerebelo/metabolismo , Cerebelo/crecimiento & desarrollo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Ratones , Células de Purkinje/metabolismo , Transducción de Señal , Proliferación Celular , Ratones Noqueados , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Discapacidades del Desarrollo
17.
Sci Rep ; 14(1): 9355, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654093

RESUMEN

Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs. Immunostaining showed MCT8 membrane expression in neuronal progenitor cell types including early neuroepithelial cells, radial glia cells (RGCs), intermediate progenitors and outer RGCs. In addition, we detected robust MCT8 protein expression in deep layer and upper layer neurons. Spatiotemporal SLC16A2 mRNA expression, detected by fluorescent in situ hybridization (FISH), was highly concordant with MCT8 protein expression across cortical cell layers. FISH detected THRA mRNA expression already in neuroepithelium before the onset of neurogenesis. THRA mRNA expression remained low in the ventricular zone, increased in the subventricular zone whereas strong THRA expression was observed in excitatory neurons. In combination with a robust up-regulation of known T3 response genes following T3 treatment, these observations show that hCOs provide a promising and experimentally tractable model to probe local TH action during human cortical neurogenesis and eventually to model the consequences of impaired TH function for early cortex development.


Asunto(s)
Corteza Cerebral , Transportadores de Ácidos Monocarboxílicos , Neurogénesis , Organoides , ARN Mensajero , Simportadores , Receptores alfa de Hormona Tiroidea , Femenino , Humanos , Embarazo , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Neurogénesis/genética , Neuronas/metabolismo , Organoides/metabolismo , Primer Trimestre del Embarazo/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Simportadores/genética , Simportadores/metabolismo , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética
18.
Acta Biomater ; 180: 308-322, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615813

RESUMEN

Motor functional improvement represents a paramount treatment objective in the post-spinal cord injury (SCI) recovery process. However, neuronal cell death and axonal degeneration following SCI disrupt neural signaling, impeding the motor functional recovery. In this study, we developed a multifunctional decellularized spinal cord-derived extracellular matrix (dSECM), crosslinked with glial cell-derived neurotrophic factor (GDNF), to promote differentiation of stem cells into neural-like cells and facilitate axonogenesis and remyelination. After decellularization, the immunogenic cellular components were effectively removed in dSECM, while the crucial protein components were retained which supports stem cells proliferation and differentiation. Furthermore, sustained release of GDNF from the dSECM facilitated axonogenesis and remyelination by activating the PI3K/Akt and MEK/Erk pathways. Our findings demonstrate that the dSECM-GDNF platform promotes neurogenesis, axonogenesis, and remyelination to enhance neural signaling, thereby yielding promising therapeutic effects for motor functional improvement after SCI. STATEMENT OF SIGNIFICANCE: The dSECM promotes the proliferation and differentiation of MSCs or NSCs by retaining proteins associated with positive regulation of neurogenesis and neuronal differentiation, while eliminating proteins related to negative regulation of neurogenesis. After crosslinking, GDNF can be gradually released from the platform, thereby promoting neural differentiation, axonogenesis, and remyelination to enhance neural signaling through activation of the PI3K/Akt and MEK/Erk pathways. In vivo experiments demonstrated that dSECM-GDNF/MSC@GelMA hydrogel exhibited the ability to facilitate neuronal regeneration at 4 weeks post-surgery, while promoting axonogenesis and remyelination at 8 weeks post-surgery, ultimately leading to enhanced motor functional recovery. This study elucidates the ability of neural regeneration strategy to promote motor functional recovery and provides a promising approach for designing multifunctional tissue for SCI treatment.


Asunto(s)
Matriz Extracelular , Factor Neurotrófico Derivado de la Línea Celular Glial , Neurogénesis , Ratas Sprague-Dawley , Recuperación de la Función , Remielinización , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Neurogénesis/efectos de los fármacos , Remielinización/efectos de los fármacos , Matriz Extracelular/metabolismo , Recuperación de la Función/efectos de los fármacos , Ratas , Femenino , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo
19.
PLoS Comput Biol ; 20(4): e1012054, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38648250

RESUMEN

Neural organoids model the development of the human brain and are an indispensable tool for studying neurodevelopment. Whole-organoid lineage tracing has revealed the number of progenies arising from each initial stem cell to be highly diverse, with lineage sizes ranging from one to more than 20,000 cells. This high variability exceeds what can be explained by existing stochastic models of corticogenesis and indicates the existence of an additional source of stochasticity. To explain this variability, we introduce the SAN model which distinguishes Symmetrically diving, Asymmetrically dividing, and Non-proliferating cells. In the SAN model, the additional source of stochasticity is the survival time of a lineage's pool of symmetrically dividing cells. These survival times result from neutral competition within the sub-population of all symmetrically dividing cells. We demonstrate that our model explains the experimentally observed variability of lineage sizes and derive the quantitative relationship between survival time and lineage size. We also show that our model implies the existence of a regulatory mechanism which keeps the size of the symmetrically dividing cell population constant. Our results provide quantitative insight into the clonal composition of neural organoids and how it arises. This is relevant for many applications of neural organoids, and similar processes may occur in other developing tissues both in vitro and in vivo.


Asunto(s)
Organoides , Organoides/citología , Humanos , Linaje de la Célula/fisiología , Biología Computacional , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Procesos Estocásticos , Modelos Biológicos , Neuronas/fisiología , Neuronas/citología , Encéfalo/citología , Encéfalo/fisiología , Proliferación Celular/fisiología , Neurogénesis/fisiología
20.
Exp Cell Res ; 438(1): 114049, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642790

RESUMEN

BACKGROUND: Acellular nerve allografts (ANAs) have been successfully applied to bridge facial nerve defects, and transplantation of stem cells may enhance the regenerative results. Up to now, application of hair follicle epidermal neural crest stem cell-derived Schwann cell-like cells (EPI-NCSC-SCLCs) combined with ANAs for bridging facial nerve defects has not been reported. METHODS: The effect of ANAs laden with green fluorescent protein (GFP)-labeled EPI-NCSC-SCLCs (ANA + cells) on bridging rat facial nerve trunk defects (5-mm-long) was detected by functional and morphological examination, as compared with autografts and ANAs, respectively. RESULTS: (1) EPI-NCSC-SCLCs had good compatibility with ANAs in vitro. (2) In the ANA + cells group, the GFP signals were observed by in vivo imaging system for small animals within 8 weeks, and GFP-labeled EPI-NCSC-SCLCs were detected in the tissue slices at 16 weeks postoperatively. (3) The facial symmetry at rest after surgery in the ANA + cells group was better than that in the ANA group (p < 0.05), and similar to that in the autograft group (p > 0.05). The initial recovery time of vibrissal and eyelid movement in the ANA group was 2 weeks later than that in the other two groups. (4) The myelinated fibers, myelin sheath thickness and diameter of the axons of the buccal branches in the ANA group were significantly worse than those in the other two groups (P < 0.05), and the results in the ANA + cells group were similar to those in the autograft group (p > 0.05). CONCLUSIONS: EPI-NCSC-SCLCs could promote functional and morphological recovery of rat facial nerve defects, and GFP labeling could track the transplanted EPI-NCSC-SCLCs in vivo for a certain period of time. These may provide a novel choice for clinical treatment of peripheral nerve defects.


Asunto(s)
Aloinjertos , Nervio Facial , Proteínas Fluorescentes Verdes , Folículo Piloso , Regeneración Nerviosa , Cresta Neural , Células de Schwann , Animales , Células de Schwann/trasplante , Folículo Piloso/trasplante , Folículo Piloso/citología , Cresta Neural/citología , Cresta Neural/trasplante , Ratas , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Regeneración Nerviosa/fisiología , Células-Madre Neurales/trasplante , Células-Madre Neurales/citología , Ratas Sprague-Dawley , Traumatismos del Nervio Facial/terapia , Traumatismos del Nervio Facial/patología , Traumatismos del Nervio Facial/cirugía , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA