Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 602
Filtrar
1.
ACS Chem Neurosci ; 14(10): 1896-1904, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37146126

RESUMEN

Cochlear calcium (Ca2+) waves are vital regulators of the cochlear development and establishment of hearing function. Inner supporting cells are believed to be the main region generating Ca2+ waves that work as internal stimuli to coordinate the development of hair cells and the mapping of neurons in the cochlea. However, Ca2+ waves in interdental cells (IDCs) that connect to inner supporting cells and spiral ganglion neurons are rarely observed and poorly understood. Herein, we reported the mechanism of IDC Ca2+ wave formation and propagation by developing a single-cell Ca2+ excitation technology, which can easily be accomplished using a two-photon microscope for simultaneous microscopy and femtosecond laser Ca2+ excitation in any target individual cell in fresh cochlear tissues. We demonstrated that the store-operated Ca2+ channels in IDCs are responsible for Ca2+ wave formation in these cells. The specific architecture of the IDCs determines the propagation of Ca2+ waves. Our results provide the mechanism of Ca2+ formation in IDCs and a controllable, precise, and noninvasive technology to excite local Ca2+ waves in the cochlea, with good potential for research on cochlear Ca2+ and hearing functions.


Asunto(s)
Señalización del Calcio , Cóclea , Proteínas Sensoras del Calcio Intracelular , Análisis de la Célula Individual , Cóclea/citología , Cóclea/crecimiento & desarrollo , Proteínas Sensoras del Calcio Intracelular/fisiología , Análisis de la Célula Individual/métodos , Microscopía de Fluorescencia por Excitación Multifotónica , Animales , Ratones , Ratones Endogámicos C57BL
2.
J Histochem Cytochem ; 70(8): 583-596, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35975307

RESUMEN

Herein, we aimed to use double-labeling immunofluorescence to describe the expression pattern of Calbindin-D28K (CaBP28K) in the mouse cochlea from late embryonic (E) stages to the adulthood. CaBP28K was expressed in the inner hair cells (IHCs) and the greater epithelial ridge (GER) at E17. In addition, its expression was observed in the interdental cells. On postnatal day 1 (P1), CaBP28K immunoreactivity was observed in the IHCs and outer hair cells (OHCs) and was also specifically expressed in the nucleus and the cytoplasm of spiral ganglion neurons (SGNs). At P8, CaBP28K labeling disappeared from the interdental cells, and the CaBP28K-positive domain within the GER shifted from the entire cytoplasm to only the apical and basal regions. At P14, CaBP28K immunoreactivity was lost from the GER; however, its expression in the IHCs and OHCs, as well as the SGNs, persisted into adulthood. The identification of CaBP28K in the hair cells (HCs) and cuticular plates, as well as SGNs, was confirmed by its colocalization with several markers for Sox2, Myosin VIIa, Phalloidin, and Tuj1. We also detected colocalization with calmodulin in the cytoplasm of both HCs and SGNs. Western blot revealed an increase in CaBP28K postnatal expression in the mouse cochlea.


Asunto(s)
Calbindina 1/genética , Cóclea/crecimiento & desarrollo , Neuronas , Ganglio Espiral de la Cóclea , Animales , Calbindina 1/análisis , Calbindina 1/metabolismo , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Ratones , Neuronas/metabolismo
3.
Protein Pept Lett ; 29(7): 567-573, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35546749

RESUMEN

Protein tyrosine phosphatase receptor-type Q (PTPRQ), a member of the type III tyrosine phosphatase receptor (R3 PTPR) family, is composed of three domains, including 18 extracellular fibronectin type III (FN3) repeats, a transmembrane helix, and a cytoplasmic phosphotyrosine phosphatase (PTP) domain. PTPRQ was initially identified as a transcript upregulated in glomerular mesangial cells in a rat model of glomerulonephritis. Subsequently, studies found that PTPRQ has phosphotyrosine phosphatase and phosphatidylinositol phosphatase activities and can regulate cell proliferation, apoptosis, differentiation, and survival. Further in vivo studies showed that PTPRQ is necessary for the maturation of cochlear hair bundles and is considered a potential gene for deafness. In the recent two decades, 21 mutations in PTPRQ have been linked to autosomal recessive hearing loss (DFNB84) and autosomal dominant hearing loss (DFNA73). Recent mutations, deletions, and amplifications of PTPRQ have been observed in many types of cancers, which indicate that PTPRQ might play an essential role in the development of many cancers. In this review, we briefly describe PTPRQ structure and enzyme activity and focus on the correlation between PTPRQ and human disease. A profound understanding of PTPRQ could be helpful in the identification of new therapeutic targets to treat associated diseases.


Asunto(s)
Cóclea/metabolismo , Pérdida Auditiva , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Animales , Cóclea/crecimiento & desarrollo , Fibronectinas , Pérdida Auditiva/genética , Humanos , Fosfatidilinositoles , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Ratas , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/química
4.
J Chem Neuroanat ; 118: 102023, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34481914

RESUMEN

Spontaneous bursting activity is already generated in the cochlea before hearing onset and represents an important condition of the functional and anatomical organization of auditory brainstem nuclei. In the present study, cochlea ablation induced changes were characterized in auditory brainstem nuclei indirectly innervated by auditory nerve fibers before hearing onset. In Meriones unguiculatus immunohistochemical labeling of calbindin-D28k (CB) and synaptophysin (SYN) were performed. The influence of cochlea-ablation on CB or SYN was analyzed by considering their differential immunoreaction during development. During the normal postnatal development, CB was first detected in somata of the medial nucleus of the trapezoid body (MNTB) at postnatal day (P)4. The immunoreaction increased gradually in parallel to the appearance of CB-immunoreactive terminal fields in distinct superior olivary complex (SOC) nuclei. Cochlear removal at P5 or P9 in animals with 24 and 48 h survival times resulted in an increase in somatic CB-labeling in the lesioned MNTB including terminal fields compared to the non-lesioned MNTB. SYN-immunolabeling was first detected at P0 and began to strongly encircle the MNTB neurons at P4. A further progression was observed with age. Cochlear ablation resulted in a significant reduction of SYN-labeled MNTB areas of P5-cochlea-ablated gerbils after 48 h post-lesion. In P9 cochlea-ablated gerbils, a redistribution of SYN-positive terminals was seen after 24 and 48 h. Taken together, the destruction of cochlea differentially influences CB- and SYN-labeling in the MNTB, which should be considered in association with different critical periods before hearing onset.


Asunto(s)
Vías Auditivas/crecimiento & desarrollo , Calbindinas/metabolismo , Cóclea/fisiología , Audición/fisiología , Sinaptofisina/metabolismo , Cuerpo Trapezoide/crecimiento & desarrollo , Envejecimiento/fisiología , Animales , Vías Auditivas/efectos de los fármacos , Cóclea/crecimiento & desarrollo , Núcleo Coclear , Gerbillinae , Inmunohistoquímica , Neuronas/fisiología , Núcleo Olivar/crecimiento & desarrollo , Terminales Presinápticos/fisiología , Cuerpo Trapezoide/efectos de los fármacos
5.
Endocrinology ; 162(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34436572

RESUMEN

Type 2 deiodinase (Dio2) amplifies levels of 3,5,3'-L-triiodothyronine (T3), the active form of thyroid hormone, and is essential for cochlear maturation and auditory development. However, cellular routes for endocrine signaling in the compartmentalized, anatomically complex cochlea are little understood. Dio2 generates T3 from thyroxine (T4), a more abundant thyroid hormone precursor in the circulation, and is dramatically induced in the cochlea before the onset of hearing. The evidence implies that specific Dio2-expressing cell types critically mediate T3 signaling but these cell types are poorly defined because Dio2 is expressed transiently at low levels. Here, using a Dio2CreERt2 knockin that activates a fluorescent reporter, we define Dio2-expressing cochlear cell types at high resolution in male or female mice. Dio2-positive cells were detected in vascularized supporting tissues but not in avascular internal epithelia, indicating segregation of T3-generating and T3-responding tissues. In the spiral ligament and spiral limbus, Dio2-positive fibrocytes clustered around vascular networks that convey T4 into cochlear tissues. In the otic capsule, Dio2-positive osteoblasts localized at cartilage surfaces as the bony labyrinth matures. We corroborated the identities of Dio2-positive lineages by RNA-sequencing of individual cells. The results suggest a previously unrecognized role for fibrocytes in mediating hormonal signaling. We discuss a model whereby fibrocytes mediate paracrine-like control of T3 signaling to the organ of Corti and epithelial target tissues.


Asunto(s)
Cóclea/metabolismo , Fibroblastos/metabolismo , Yoduro Peroxidasa/genética , Osteoblastos/metabolismo , Animales , Animales Recién Nacidos , Linaje de la Célula/genética , Rastreo Celular/métodos , Cóclea/crecimiento & desarrollo , Femenino , Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Técnicas de Sustitución del Gen , Genes Reporteros , Integrasas/genética , Yoduro Peroxidasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoblastos/fisiología , Análisis de la Célula Individual , Yodotironina Deyodinasa Tipo II
6.
Neural Plast ; 2021: 5511010, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34306061

RESUMEN

As a general sensory disorder, hearing loss was a major concern worldwide. Autophagy is a common cellular reaction to stress that degrades cytoplasmic waste through the lysosome pathway. Autophagy not only plays major roles in maintaining intracellular homeostasis but is also involved in the development and pathogenesis of many diseases. In the auditory system, several studies revealed the link between autophagy and hearing protection. In this review, we aimed to establish the correlation between autophagy and hair cells (HCs) from the aspects of ototoxic drugs, aging, and acoustic trauma and discussed whether autophagy could serve as a potential measure in the protection of HCs.


Asunto(s)
Autofagia , Pérdida Auditiva Sensorineural/prevención & control , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Autofagia/efectos de los fármacos , Cisplatino/toxicidad , Cóclea/irrigación sanguínea , Cóclea/crecimiento & desarrollo , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Pérdida Auditiva Provocada por Ruido , Pérdida Auditiva Sensorineural/etiología , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/fisiología , Isquemia/fisiopatología , Ratones , Ratones Noqueados , MicroARNs/genética , Estrés Oxidativo , Resveratrol/uso terapéutico , Privación de Sueño/complicaciones
7.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061174

RESUMEN

During embryonic development, the otic epithelium and surrounding periotic mesenchymal cells originate from distinct lineages and coordinate to form the mammalian cochlea. Epithelial sensory precursors within the cochlear duct first undergo terminal mitosis before differentiating into sensory and non-sensory cells. In parallel, periotic mesenchymal cells differentiate to shape the lateral wall, modiolus and pericochlear spaces. Previously, Wnt activation was shown to promote proliferation and differentiation of both otic epithelial and mesenchymal cells. Here, we fate-mapped Wnt-responsive epithelial and mesenchymal cells in mice and found that Wnt activation resulted in opposing cell fates. In the post-mitotic cochlear epithelium, Wnt activation via ß-catenin stabilization induced clusters of proliferative cells that dedifferentiated and lost epithelial characteristics. In contrast, Wnt-activated periotic mesenchyme formed ectopic pericochlear spaces and cell clusters showing a loss of mesenchymal and gain of epithelial features. Finally, clonal analyses via multi-colored fate-mapping showed that Wnt-activated epithelial cells proliferated and formed clonal colonies, whereas Wnt-activated mesenchymal cells assembled as aggregates of mitotically quiescent cells. Together, we show that Wnt activation drives transition between epithelial and mesenchymal states in a cell type-dependent manner.


Asunto(s)
Cóclea/embriología , Epitelio/metabolismo , Células Madre Mesenquimatosas/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Desdiferenciación Celular , Diferenciación Celular , Proliferación Celular , Cóclea/citología , Cóclea/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Proteínas Wnt , beta Catenina/metabolismo
8.
Curr Med Sci ; 41(1): 153-157, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33582920

RESUMEN

K+ cycling in the cochlea is critical to maintain hearing. Many sodium-potassium pumps are proved to participate in K+ cycling, such as Na/K-ATPase. The α2-Na/K-ATPase is an important isoform of Na/K-ATPase. The expression of α2-Na/K-ATPase in the cochlea is not clear. In this study, we used C57BL/6 mice as a model of presbycusis and implemented immunohistochemistry staining and quantitative real time-PCR, and the α2-Na/K-ATPase expression pattern was confirmed in the inner ear. It was found α2-Na/K-ATPase was expressed widely in cochlea and its mRNA and protein expression was gradually reduced with aging (4-, 14-, 26- and 48-weeks old mice). We suspected that, the down-regulation of α2-Na/K-ATPase expression might be associated with the remodeling of K+ cycling, degeneration of morphological structure and decrease of hearing function in aging C57 mice. In conclusion, we speculated that the reduction of α2-Na/K-ATPase might play an important role in the pathogenesis of age-related hearing loss.


Asunto(s)
Envejecimiento/metabolismo , Cóclea/metabolismo , Pérdida Auditiva Sensorineural/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , Envejecimiento/patología , Animales , Cóclea/crecimiento & desarrollo , Pérdida Auditiva Sensorineural/genética , Ratones , Ratones Endogámicos C57BL , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
9.
FEBS J ; 288(1): 325-353, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32323465

RESUMEN

Cochlear development is a complex process with precise spatiotemporal patterns. A detailed understanding of this process is important for studies of congenital hearing loss and regenerative medicine. However, much of our understanding of cochlear development is based on rodent models. Animal models that bridge the gap between humans and rodents are needed. In this study, we investigated the development of hearing organs in a small New World monkey species, the common marmoset (Callithrix jacchus). We describe the general stages of cochlear development in comparison with those of humans and mice. Moreover, we examined more than 25 proteins involved in cochlear development and found that expression patterns were generally conserved between rodents and primates. However, several proteins involved in supporting cell processes and neuronal development exhibited interspecific expression differences. Human fetal samples for studies of primate-specific cochlear development are extremely rare, especially for late developmental stages. Our results support the use of the common marmoset as an effective alternative for analyses of primate cochlear development.


Asunto(s)
Callithrix/genética , Cóclea/metabolismo , Regulación del Desarrollo de la Expresión Génica , Modelos Animales , Organogénesis/genética , Animales , Acuaporina 4/genética , Acuaporina 4/metabolismo , Calbindina 1/genética , Calbindina 1/metabolismo , Callithrix/embriología , Callithrix/crecimiento & desarrollo , Callithrix/metabolismo , Cóclea/anatomía & histología , Cóclea/citología , Cóclea/crecimiento & desarrollo , Secuencia Conservada , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Embrión de Mamíferos , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Humanos , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Ratones , Miosina VIIa/genética , Miosina VIIa/metabolismo , Parvalbúminas/genética , Parvalbúminas/metabolismo , Periferinas/genética , Periferinas/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Especificidad de la Especie , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Factor de Transcripción Brn-3C/genética , Factor de Transcripción Brn-3C/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
10.
J Neurosci ; 41(4): 594-612, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33303678

RESUMEN

Spontaneous bursts of electrical activity in the developing auditory system arise within the cochlea before hearing onset and propagate through future sound-processing circuits of the brain to promote maturation of auditory neurons. Studies in isolated cochleae revealed that this intrinsically generated activity is initiated by ATP release from inner supporting cells (ISCs), resulting in activation of purinergic autoreceptors, K+ efflux, and subsequent depolarization of inner hair cells. However, it is unknown when this activity emerges or whether different mechanisms induce activity during distinct stages of development. Here we show that spontaneous electrical activity in mouse cochlea from both sexes emerges within ISCs during the late embryonic period, preceding the onset of spontaneous correlated activity in inner hair cells and spiral ganglion neurons, which begins at birth and follows a base to apex developmental gradient. At all developmental ages, pharmacological inhibition of P2Y1 purinergic receptors dramatically reduced spontaneous activity in these three cell types. Moreover, in vivo imaging within the inferior colliculus revealed that auditory neurons within future isofrequency zones exhibit coordinated neural activity at birth. The frequency of these discrete bursts increased progressively during the postnatal prehearing period yet remained dependent on P2RY1. Analysis of mice with disrupted cholinergic signaling in the cochlea indicate that this efferent input modulates, rather than initiates, spontaneous activity before hearing onset. Thus, the auditory system uses a consistent mechanism involving ATP release from ISCs and activation of P2RY1 autoreceptors to elicit coordinated excitation of neurons that will process similar frequencies of sound.SIGNIFICANCE STATEMENT In developing sensory systems, groups of neurons that will process information from similar sensory space exhibit highly correlated electrical activity that is critical for proper maturation and circuit refinement. Defining the period when this activity is present, the mechanisms responsible and the features of this activity are crucial for understanding how spontaneous activity influences circuit development. We show that, from birth to hearing onset, the auditory system relies on a consistent mechanism to elicit correlate firing of neurons that will process similar frequencies of sound. Targeted disruption of this activity will increase our understanding of how these early circuits mature and may provide insight into processes responsible for developmental disorders of the auditory system.


Asunto(s)
Vías Auditivas/crecimiento & desarrollo , Vías Auditivas/fisiología , Receptores Purinérgicos/fisiología , Adenosina Trifosfato/metabolismo , Animales , Señalización del Calcio/fisiología , Cóclea/crecimiento & desarrollo , Cóclea/fisiología , Femenino , Células Ciliadas Auditivas/fisiología , Células Ciliadas Auditivas Internas/fisiología , Colículos Inferiores/fisiología , Células Laberínticas de Soporte/fisiología , Masculino , Ratones , Sistema Nervioso Parasimpático/efectos de los fármacos , Sistema Nervioso Parasimpático/fisiología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y1/fisiología , Retina/fisiología , Ganglio Espiral de la Cóclea/fisiología
11.
J Neurosci Res ; 99(2): 699-728, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33181864

RESUMEN

Neuronal diversity in the cochlea is largely determined by ion channels. Among voltage-gated channels, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open with hyperpolarization and depolarize the cell until the resting membrane potential. The functions for hearing are not well elucidated and knowledge about localization is controversial. We created a detailed map of subcellular location and co-expression of all four HCN subunits across different mammalian species including CBA/J, C57Bl/6N, Ly5.1 mice, guinea pigs, cats, and human subjects. We correlated age-related hearing deterioration in CBA/J and C57Bl/6N with expression levels of HCN1, -2, and -4 in individual auditory neurons from the same cohort. Spatiotemporal expression during murine postnatal development exposed HCN2 and HCN4 involvement in a critical phase of hair cell innervation. The huge diversity of subunit composition, but lack of relevant heteromeric pairing along the perisomatic membrane and axon initial segments, highlighted an active role for auditory neurons. Neuron clusters were found to be the hot spots of HCN1, -2, and -4 immunostaining. HCN channels were also located in afferent and efferent fibers of the sensory epithelium. Age-related changes on HCN subtype expression were not uniform among mice and could not be directly correlated with audiometric data. The oldest mice groups revealed HCN channel up- or downregulation, depending on the mouse strain. The unexpected involvement of HCN channels in outer hair cell function where HCN3 overlaps prestin location emphasized the importance for auditory function. A better understanding may open up new possibilities to tune neuronal responses evoked through electrical stimulation by cochlear implants.


Asunto(s)
Envejecimiento/metabolismo , Cóclea/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Neuronas/metabolismo , Canales de Potasio/fisiología , Animales , Gatos , Cóclea/crecimiento & desarrollo , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Regulación de la Expresión Génica , Cobayas , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/metabolismo , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/biosíntesis , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Neuronas/ultraestructura , Canales de Potasio/biosíntesis , Canales de Potasio/genética , Fracciones Subcelulares/metabolismo
12.
J Neurosci ; 40(49): 9401-9413, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33127852

RESUMEN

During cochlear development, the Notch ligand JAGGED 1 (JAG1) plays an important role in the specification of the prosensory region, which gives rise to sound-sensing hair cells and neighboring supporting cells (SCs). While JAG1's expression is maintained in SCs through adulthood, the function of JAG1 in SC development is unknown. Here, we demonstrate that JAG1 is essential for the formation and maintenance of Hensen's cells, a highly specialized SC subtype located at the edge of the auditory epithelium. Using Sox2CreERT2/+::Jag1loxP/loxP mice of both genders, we show that Jag1 deletion at the onset of differentiation, at embryonic day 14.5, disrupted Hensen's cell formation. Similar loss of Hensen's cells was observed when Jag1 was deleted after Hensen's cell formation at postnatal day (P) 0/P1 and fate-mapping analysis revealed that in the absence of Jag1, some Hensen's cells die, but others convert into neighboring Claudius cells. In support of a role for JAG1 in cell survival, genes involved in mitochondrial function and protein synthesis were downregulated in the sensory epithelium of P0 cochlea lacking Jag1 Finally, using Fgfr3-iCreERT2 ::Jag1loxP/loxP mice to delete Jag1 at P0, we observed a similar loss of Hensen's cells and found that adult Jag1 mutant mice have hearing deficits at the low-frequency range.SIGNIFICANCE STATEMENT Hensen's cells play an essential role in the development and homeostasis of the cochlea. Defects in the biophysical or functional properties of Hensen's cells have been linked to auditory dysfunction and hearing loss. Despite their importance, surprisingly little is known about the molecular mechanisms that guide their development. Morphologic and fate-mapping analyses in our study revealed that, in the absence of the Notch ligand JAGGED1, Hensen's cells died or converted into Claudius cells, which are specialized epithelium-like cells outside the sensory epithelium. Confirming a link between JAGGED1 and cell survival, transcriptional profiling showed that JAGGED1 maintains genes critical for mitochondrial function and tissue homeostasis. Finally, auditory phenotyping revealed that JAGGED1's function in supporting cells is necessary for low-frequency hearing.


Asunto(s)
Cóclea/metabolismo , Proteína Jagged-1/metabolismo , Células Laberínticas de Soporte/fisiología , Animales , Supervivencia Celular , Cóclea/citología , Cóclea/crecimiento & desarrollo , Regulación hacia Abajo , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Proteína Jagged-1/genética , Masculino , Ratones , Ratones Noqueados , Embarazo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
13.
Development ; 147(12)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32571852

RESUMEN

The cochlea, a coiled structure located in the ventral region of the inner ear, acts as the primary structure for the perception of sound. Along the length of the cochlear spiral is the organ of Corti, a highly derived and rigorously patterned sensory epithelium that acts to convert auditory stimuli into neural impulses. The development of the organ of Corti requires a series of inductive events that specify unique cellular characteristics and axial identities along its three major axes. Here, we review recent studies of the cellular and molecular processes regulating several aspects of cochlear development, such as axial patterning, cochlear outgrowth and cellular differentiation. We highlight how the precise coordination of multiple signaling pathways is required for the successful formation of a complete organ of Corti.


Asunto(s)
Cóclea/crecimiento & desarrollo , Animales , Percepción Auditiva , Diferenciación Celular , Cóclea/anatomía & histología , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Mitosis , Órgano Espiral/anatomía & histología , Órgano Espiral/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal
14.
Nat Commun ; 11(1): 2389, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404924

RESUMEN

Mammalian hearing requires the development of the organ of Corti, a sensory epithelium comprising unique cell types. The limited number of each of these cell types, combined with their close proximity, has prevented characterization of individual cell types and/or their developmental progression. To examine cochlear development more closely, we transcriptionally profile approximately 30,000 isolated mouse cochlear cells collected at four developmental time points. Here we report on the analysis of those cells including the identification of both known and unknown cell types. Trajectory analysis for OHCs indicates four phases of gene expression while fate mapping of progenitor cells suggests that OHCs and their surrounding supporting cells arise from a distinct (lateral) progenitor pool. Tgfßr1 is identified as being expressed in lateral progenitor cells and a Tgfßr1 antagonist inhibits OHC development. These results provide insights regarding cochlear development and demonstrate the potential value and application of this data set.


Asunto(s)
Cóclea/citología , Células Ciliadas Auditivas Internas/citología , Células Ciliadas Auditivas Externas/citología , Células Ciliadas Auditivas/citología , Órgano Espiral/citología , Animales , Células Cultivadas , Cóclea/embriología , Cóclea/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Ratones , Órgano Espiral/embriología , Órgano Espiral/crecimiento & desarrollo , Análisis de la Célula Individual/métodos , Factores de Tiempo
15.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32070057

RESUMEN

In mammals Homer1, Homer2 and Homer3 constitute a family of scaffolding proteins with key roles in Ca2+ signaling and Ca2+ transport. In rodents, Homer proteins and mRNAs have been shown to be expressed in various postnatal tissues and to be enriched in brain. However, whether the Homers are expressed in developing tissues is hitherto largely unknown. In this work, we used immunohistochemistry and in situ hybridization to analyze the expression patterns of Homer1, Homer2 and Homer3 in developing cephalic structures. Our study revealed that the three Homer proteins and their encoding genes are expressed in a wide range of developing tissues and organs, including the brain, tooth, eye, cochlea, salivary glands, olfactory and respiratory mucosae, bone and taste buds. We show that although overall the three Homers exhibit overlapping distribution patterns, the proteins localize at distinct subcellular domains in several cell types, that in both undifferentiated and differentiated cells Homer proteins are concentrated in puncta and that the vascular endothelium is enriched with Homer3 mRNA and protein. Our findings suggest that Homer proteins may have differential and overlapping functions and are expected to be of value for future research aiming at deciphering the roles of Homer proteins during embryonic development.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Andamiaje Homer/genética , Animales , Encéfalo/crecimiento & desarrollo , Diferenciación Celular/genética , Cóclea/crecimiento & desarrollo , Cóclea/metabolismo , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Glándulas Salivales/crecimiento & desarrollo , Glándulas Salivales/metabolismo , Transducción de Señal/genética , Diente/crecimiento & desarrollo , Diente/metabolismo
16.
J Comp Neurol ; 528(12): 1967-1985, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31994726

RESUMEN

During inner ear development, primary auditory neurons named spiral ganglion neurons (SGNs) are surrounded by otic mesenchyme cells, which express the transcription factor Pou3f4. Mutations in Pou3f4 are associated with DFNX2, the most common form of X-linked deafness and typically include developmental malformations of the middle ear and inner ear. It is known that interactions between Pou3f4-expressing mesenchyme cells and SGNs are important for proper axon bundling during development. However, Pou3f4 continues to be expressed through later phases of development, and potential interactions between Pou3f4 and SGNs during this period had not been explored. To address this, we documented Pou3f4 protein expression in the early postnatal mouse cochlea and compared SGNs in Pou3f4 knockout mice and littermate controls. In Pou3f4y/- mice, SGN density begins to decline by the end of the first postnatal week, with approximately 25% of SGNs ultimately lost. This period of SGN loss in Pou3f4y/- cochleae coincides with significant elevations in SGN apoptosis. Interestingly, this period also coincides with the presence of a transient population of Pou3f4-expressing cells around and within the spiral ganglion. To determine if Pou3f4 is normally required for SGN peripheral axon extension into the sensory domain, we used a genetic sparse labeling approach to track SGNs and found no differences compared with controls. We also found that Pou3f4 loss did not lead to changes in the proportions of Type I SGN subtypes. Overall, these data suggest that otic mesenchyme cells may play a role in maintaining SGN populations during the early postnatal period.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Factores del Dominio POU/metabolismo , Ganglio Espiral de la Cóclea/metabolismo , Animales , Supervivencia Celular , Cóclea/citología , Cóclea/crecimiento & desarrollo , Cóclea/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/crecimiento & desarrollo
17.
Yi Chuan ; 41(11): 994-1008, 2019 Nov 20.
Artículo en Chino | MEDLINE | ID: mdl-31735703

RESUMEN

Deafness has become one of the most frequent health problems worldwide, and affects almost every age group. Hair cell damage or absence is the main cause of hearing loss, but there is no successful treatment to heal deafness. MicroRNA (miRNA), as a highly conserved endogenous non-coding small RNA, plays an important role in inner ear cochlea and hair cell development. In this review, we elaborate on the expression and function of miRNAs in cochlear hair cell development, and reveal its indispensable important role. We summarize the molecular mechanism of miRNA in regulating transcription factors involved in cochlear hair cell development, which may provide references and insights for hair cell regeneration in vivo and cellular transplantation therapy of deafness.


Asunto(s)
Células Ciliadas Auditivas/fisiología , MicroARNs/genética , Cóclea/crecimiento & desarrollo , Oído Interno/crecimiento & desarrollo , Humanos , Neurogénesis
18.
J Neurosci ; 39(41): 8013-8023, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31462532

RESUMEN

Type II spiral ganglion neurons provide afferent innervation to outer hair cells of the cochlea and are proposed to have nociceptive functions important for auditory function and homeostasis. These neurons are anatomically distinct from other classes of spiral ganglion neurons because they extend a peripheral axon beyond the inner hair cells that subsequently makes a distinct 90 degree turn toward the cochlear base. As a result, patterns of outer hair cell innervation are coordinated with the tonotopic organization of the cochlea. Previously, it was shown that peripheral axon turning is directed by a nonautonomous function of the core planar cell polarity (PCP) protein VANGL2. We demonstrate using mice of either sex that Fzd3 and Fzd6 similarly regulate axon turning, are functionally redundant with each other, and that Fzd3 genetically interacts with Vangl2 to guide this process. FZD3 and FZD6 proteins are asymmetrically distributed along the basolateral wall of cochlear-supporting cells, and are required to promote or maintain the asymmetric distribution of VANGL2 and CELSR1. These data indicate that intact PCP complexes formed between cochlear-supporting cells are required for the nonautonomous regulation of axon pathfinding. Consistent with this, in the absence of PCP signaling, peripheral axons turn randomly and often project toward the cochlear apex. Additional analyses of Porcn mutants in which WNT secretion is reduced suggest that noncanonical WNT signaling establishes or maintains PCP signaling in this context. A deeper understanding of these mechanisms is necessary for repairing auditory circuits following acoustic trauma or promoting cochlear reinnervation during regeneration-based deafness therapies.SIGNIFICANCE STATEMENT Planar cell polarity (PCP) signaling has emerged as a complementary mechanism to classical axon guidance in regulating axon track formation, axon outgrowth, and neuronal polarization. The core PCP proteins are also required for auditory circuit assembly, and coordinate hair cell innervation with the tonotopic organization of the cochlea. This is a non-cell-autonomous mechanism that requires the formation of PCP protein complexes between cochlear-supporting cells located along the trajectory of growth cone navigation. These findings are significant because they demonstrate how the fidelity of auditory circuit formation is ensured during development, and provide a mechanism by which PCP proteins may regulate axon outgrowth and guidance in the CNS.


Asunto(s)
Cóclea/inervación , Receptores Frizzled/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Ganglio Espiral de la Cóclea/citología , Aciltransferasas/genética , Animales , Axones/fisiología , Axones/ultraestructura , Polaridad Celular , Cóclea/crecimiento & desarrollo , Femenino , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Externas , Masculino , Proteínas de la Membrana/genética , Ratones , Mutación/genética , Órgano Espiral/crecimiento & desarrollo , Órgano Espiral/fisiología , Receptores Acoplados a Proteínas G/fisiología , Ganglio Espiral de la Cóclea/crecimiento & desarrollo , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
19.
Reprod Toxicol ; 89: 21-27, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31238098

RESUMEN

Maternal stress may affect the fetal auditory system than direct sound exposure. The objective of this study was to evaluate the role of prenatal stress due to high-decibel (dB) sound exposure on postnatal hearing and cochlear structure. Pregnant rats were exposed to 95 or 65 dB noise or music for 2 h once a day from gestational day 15 until delivery. The serum corticosterone was measured in the pregnant dams and pups. On postnatal day 22, pups underwent auditory brainstem response (ABR) testing. Then, the cochleae were immediately harvested for biochemical and molecular investigations. Prenatal stress impaired reproductive parameters, increased serum corticosterone and ABR thresholds with the decrease in wave I peak amplitude and the number of pre-synaptic ribbon. Thus, prenatal stress induces postnatal hearing loss in young rats, which are related to the reduction of ribbon synapses.


Asunto(s)
Trastornos de la Audición/etiología , Exposición Materna/efectos adversos , Ruido/efectos adversos , Efectos Tardíos de la Exposición Prenatal/etiología , Estrés Psicológico/etiología , Sinapsis/fisiología , Estimulación Acústica , Animales , Umbral Auditivo/fisiología , Cóclea/crecimiento & desarrollo , Cóclea/fisiopatología , Corticosterona/sangre , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Femenino , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Ratas Sprague-Dawley
20.
J Neurosci ; 39(36): 7037-7048, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31217330

RESUMEN

The auditory system in many mammals is immature at birth but precisely organized in adults. Spontaneous activity in the inner ear plays a critical role in guiding this maturation process. This is shaped by an efferent pathway that descends from the brainstem and makes transient direct synaptic contacts with inner hair cells. In this work, we used an α9 cholinergic nicotinic receptor knock-in mouse model (of either sex) with enhanced medial efferent activity (Chrna9L9'T, L9'T) to further understand the role of the olivocochlear system in the correct establishment of auditory circuits. Wave III of auditory brainstem responses (which represents synchronized activity of synapses within the superior olivary complex) was smaller in L9'T mice, suggesting a central dysfunction. The mechanism underlying this functional alteration was analyzed in brain slices containing the medial nucleus of the trapezoid body (MNTB), where neurons are topographically organized along a mediolateral (ML) axis. The topographic organization of MNTB physiological properties observed in wildtype (WT) was abolished in L9'T mice. Additionally, electrophysiological recordings in slices indicated MNTB synaptic alterations. In vivo multielectrode recordings showed that the overall level of MNTB activity was reduced in the L9'T The present results indicate that the transient cochlear efferent innervation to inner hair cells during the critical period before the onset of hearing is involved in the refinement of topographic maps as well as in setting the properties of synaptic transmission at a central auditory nucleus.SIGNIFICANCE STATEMENT Cochlear inner hair cells of altricial mammals display spontaneous electrical activity before hearing onset. The pattern and firing rate of these cells are crucial for the correct maturation of the central auditory pathway. A descending efferent innervation from the CNS contacts the hair cells during this developmental window. The present work shows that genetic enhancement of efferent function disrupts the orderly topographic distribution of biophysical and synaptic properties in the auditory brainstem and causes severe synaptic dysfunction. This work adds to the notion that the transient efferent innervation to the cochlea is necessary for the correct establishment of the central auditory circuitry.


Asunto(s)
Cóclea/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico , Núcleo Olivar/fisiología , Potenciales Sinápticos , Cuerpo Trapezoide/fisiología , Animales , Percepción Auditiva , Cóclea/crecimiento & desarrollo , Cóclea/metabolismo , Femenino , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/fisiología , Masculino , Ratones , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Núcleo Olivar/crecimiento & desarrollo , Núcleo Olivar/metabolismo , Receptores Nicotínicos/genética , Cuerpo Trapezoide/crecimiento & desarrollo , Cuerpo Trapezoide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA