Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.153
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167278, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38834101

RESUMEN

BACKGROUND: The dysfunction of human vascular smooth cells (hVSMCs) is significantly connected to the development of intracranial aneurysms (IAs). By suppressing the activity of microRNAs (miRNAs), circular RNAs (circRNAs) participate in IA pathogenesis. Nevertheless, the role of hsa_circ_0008571 in IAs remains unclear. METHODS: circRNA sequencing was used to identify circRNAs from human IA tissues. To determine the function of circ_0008571, Transwell, wound healing, and cell proliferation assays were conducted. To identify the target of circ_0008571, the analyses of CircInteractome and TargetScan, as well as the luciferase assay were carried out. Furthermore, circ_0008571 knockdown and over-expression were performed to investigate its functions in IA development and the underlying molecular mechanisms. RESULTS: Both hsa_circ_0008571 and Integrin beta 8 (ITGB8) were downregulated, while miR-145-5p transcription was elevated in the aneurysm wall of IAs patients compared to superficial temporal artery tissues. In vitro, cell migration and growth were dramatically suppressed after hsa_circ_0008571 overexpression. Mechanistically, has_circ_0008571 could suppress miR-145-5p activity by direct sponging. Moreover, we found that ITGB8 expression and the activation of the TGF-ß-mediated signaling pathway were significantly enhanced. CONCLUSION: The hsa_circ_0008571-miR-145-5p-ITGB8 axis plays an essential role in IA progression.


Asunto(s)
Proliferación Celular , Aneurisma Intracraneal , MicroARNs , Músculo Liso Vascular , Miocitos del Músculo Liso , ARN Circular , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Aneurisma Intracraneal/genética , Aneurisma Intracraneal/patología , Aneurisma Intracraneal/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Proliferación Celular/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Movimiento Celular/genética , Fenotipo , Masculino , Femenino , Persona de Mediana Edad , Células Cultivadas , Cadenas beta de Integrinas
2.
MAbs ; 16(1): 2365891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38889315

RESUMEN

Integrins are cell surface receptors that mediate the interactions of cells with their surroundings and play essential roles in cell adhesion, migration, and homeostasis. Eight of the 24 integrins bind to the tripeptide Arg-Gly-Asp (RGD) motif in their extracellular ligands, comprising the RGD-binding integrin subfamily. Despite similarity in recognizing the RGD motif and some redundancy, these integrins can selectively recognize RGD-containing ligands to fulfill specific functions in cellular processes. Antibodies against individual RGD-binding integrins are desirable for investigating their specific functions, and were selected here from a synthetic yeast-displayed Fab library. We discovered 11 antibodies that exhibit high specificity and affinity toward their target integrins, i.e. αVß3, αVß5, αVß6, αVß8, and α5ß1. Of these, six are function-blocking antibodies and contain a ligand-mimetic R(G/L/T)D motif in their CDR3 sequences. We report antibody-binding specificity, kinetics, and binding affinity for purified integrin ectodomains, as well as intact integrins on the cell surface. We further used these antibodies to reveal binding preferences of the αV subunit for its 5 ß-subunit partners: ß6 = ß8 > ß3 > ß1 = ß5.


Asunto(s)
Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Cadenas beta de Integrinas/inmunología , Cadenas beta de Integrinas/química , Cadenas beta de Integrinas/metabolismo , Cadenas beta de Integrinas/genética , Integrina alfaV/inmunología , Integrina alfaV/metabolismo , Integrinas/inmunología , Integrinas/metabolismo , Biblioteca de Péptidos , Técnicas de Visualización de Superficie Celular , Unión Proteica , Especificidad de Anticuerpos
3.
Head Face Med ; 20(1): 37, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890650

RESUMEN

BACKGROUND: The treatment of oral squamous cell carcinoma (OSCC) remains challenging and survival rates have not been improved significantly over the past decades. Integrins have been recognized driving the cancer progression and high expression levels cause poor outcomes in patients afflicted with OSCC. Integrin αvß6 and its subunit integrin beta 6 (ITGB6) were discovered to enhance the invasiveness by providing beneficial effects on downstream pathways promoting the cancer progression. The objective of this study was to establish a CRISPR/Cas9-mediated knock out of ITGB6 in the human OSCC cell line HN and investigate the effects on the migration and proliferation ability. METHODS: ITGB6 knock out was performed using the CRISPR/Cas9-system, RNPs, and lipofection. Monoclonal cell clones were achieved by limiting dilution and knock out verification was carried out by sanger sequencing and FACS on protein level. The effects of the knock out on the proliferation and migration ability were evaluated by using MTT and scratch assays. In addition, in silico TCGA analysis was utilized regarding the effects of ITGB6 on overall survival and perineural invasion. RESULTS: In silico analysis revealed a significant impact of ITGB6 mRNA expression levels on the overall survival of patients afflicted with OSCC. Additionally, a significantly higher rate of perineural invasion was discovered. CRISPR/Cas9-mediated knock out of ITGB6 was performed in the OSCC cell line HN, resulting in the generation of a monoclonal knock out clone. The knock out clone exhibited a significantly reduced migration and proliferation ability when compared to the wildtype. CONCLUSIONS: ITGB6 is a relevant factor in the progression of OSCC and can be used for the development of novel treatment strategies. The present study is the first to establish a monoclonal CRISPR/Cas9-mediated ITGB6 knockout cell clone derived from an OSCC cell line. It suggests that ITGB6 has a significant impact on the proliferative and migratory capacity in vitro.


Asunto(s)
Sistemas CRISPR-Cas , Carcinoma de Células Escamosas , Movimiento Celular , Proliferación Celular , Cadenas beta de Integrinas , Neoplasias de la Boca , Humanos , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Línea Celular Tumoral , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Cadenas beta de Integrinas/genética , Técnicas de Inactivación de Genes , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Invasividad Neoplásica/genética , Regulación Neoplásica de la Expresión Génica
4.
Cancer Lett ; 592: 216953, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38729557

RESUMEN

TGFBR2, a key regulator of the TGFß signaling pathway, plays a crucial role in gastric cancer (GC) metastasis through its endosomal recycling process. Despite its importance, the mechanisms governing this process remain unclear. Here, we identify integrin ß5 (ITGB5) as a critical mediator that promotes TGFBR2 endosomal recycling. Our study reveals elevated expression of ITGB5 in GC, particularly in metastatic cases, correlating with poor patient outcomes. Knockdown of ITGB5 impairs GC cell metastasis both in vitro and in vivo. Mechanistically, ITGB5 facilitates epithelial-mesenchymal transition mediated by TGFß signaling, thereby enhancing GC metastasis. Acting as a scaffold, ITGB5 interacts with TGFBR2 and SNX17, facilitating SNX17-mediated endosomal recycling of TGFBR2 and preventing lysosomal degradation, thereby maintaining its surface distribution on tumor cells. Notably, TGFß signaling directly upregulates ITGB5 expression, establishing a positive feedback loop that exacerbates GC metastasis. Our findings shed light on the role of ITGB5 in promoting GC metastasis through SNX17-mediated endosomal recycling of TGFBR2, providing insights for the development of targeted cancer therapies.


Asunto(s)
Endosomas , Transición Epitelial-Mesenquimal , Receptor Tipo II de Factor de Crecimiento Transformador beta , Transducción de Señal , Neoplasias Gástricas , Animales , Humanos , Ratones , Línea Celular Tumoral , Endosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Cadenas beta de Integrinas/metabolismo , Cadenas beta de Integrinas/genética , Metástasis de la Neoplasia , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
5.
Eur J Immunol ; 54(6): e2350619, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38532599

RESUMEN

This study sought to compare the behavior of Treg subsets displaying different coexpression patterns of Neuropilin-1 (Nrp1) and Helios, under the influence of gut stress unrelated to hematopoietic stem cell transplantation, pretransplantation conditioning, and posttransplant gastrointestinal acute graft versus host disease (GI-aGvHD). Host CD4+/CD25hi/Foxp3+ Treg cells, identified by flow cytometry, were isolated from various tissues of mice affected by these stressors. Expression of CD25, CTLA-4, CD39, OX40, integrin-ß7, LAG3, TGFß/LAP, granzyme-A, -B, and interleukin-10 was compared in four Treg subsets displaying Helios or Nrp1 only, both or none. Fluorescence-activated cell sorter-sorted Treg subsets, displaying markers affected in a conditioning- and GI-aGVHD-restricted manner, were further investigated by transcriptome profiling and T-cell suppression assays. We found that conditioning by irradiation greatly diminished the relative frequency of Helios+/Nrp1+ Treg, shifting the balance toward Helios-/Nrp1- Treg in the host. Upregulation of integrin-ß7 and OX40 occurred in GI-aGvHD-dependent manner in Helios+/Nrp1+ cells but not in Helios-/Nrp1- Treg. Sorted Treg subsets, confirmed to overexpress Nrp1, Helios, OX40, or integrin-ß7, displayed superior immunosuppressive activity and enrichment in activation-related messenger RNA transcripts. Our data suggest that conditioning-induced shrinkage of the Nrp1+/Helios+ Treg subset may contribute to the development of GI-GvHD by impairing gut homing and decreasing the efficiency of Treg-mediated immunosuppression.


Asunto(s)
Enfermedad Injerto contra Huésped , Cadenas beta de Integrinas , Neuropilina-1 , Linfocitos T Reguladores , Animales , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/metabolismo , Linfocitos T Reguladores/inmunología , Ratones , Neuropilina-1/metabolismo , Neuropilina-1/genética , Cadenas beta de Integrinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Acondicionamiento Pretrasplante/métodos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ratones Endogámicos C57BL , Enfermedades Gastrointestinales/inmunología , Ratones Endogámicos BALB C , Receptores OX40/metabolismo , Enfermedad Aguda , Trasplante de Células Madre Hematopoyéticas , Femenino , Ligando OX40
6.
Pharmacol Res ; 203: 107142, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522759

RESUMEN

ZLDI-8 is an A disintegrin and metalloproteinase domain 17 (ADAM17) inhibitor that suppresses the shedding of Notch1 to the Notch1 intracellular domain (NICD). In previous studies, we found that ZLDI-8 was able to sensitize HCC to sorafenib, but the mechanism of action remains unclear. The sensitizing effects of ZLDI-8 were tested both in vitro and in vivo. EMT-related factors, sorafenib sensitivity-related proteins and ECM-related gene expression were assessed using immunohistochemistry, RTPCR and Western blotting. Knockdown assays were conducted to determine the relationship between the Notch and Integrin pathways. CoIP assays, nuclear and cytoplasmic fractionation and immunofluorescence colocalization were applied to explore the interaction between the Notch and Integrin pathways. Appropriate statistical analysis methods were used to assess the significance of the experimental results and to ensure the scientific validity and reliability of the experimental design. We found that ECM- and EMT-related proteins were downregulated after ZLDI-8 treatment (P<0.05). ZLDI-8 significantly downregulated Integrinß1 and Integrinß3 in HCC in vitro and in vivo (P<0.05), possibly through Foxc2-dependent regulation. Mechanistically, interfering with the expression of both Integrin-linked kinase (ILK) and the NICD may downregulate the expression of proteins targeted by sorafenib, thereby sensitizing cells to sorafenib. The retroregulation of Integrinß by ILK may occur through the interaction between the NICD and ILK and may be the result of the translocation of the complexus. Our study indicates that blocking the Notch pathway may affect Integrinß through crosstalk between the Notch1 and Integrinß/ILK signaling pathways, thus providing a potential therapeutic strategy for HCC.


Asunto(s)
Proteína ADAM17 , Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptor Notch1 , Sorafenib , Sorafenib/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Humanos , Animales , Receptor Notch1/metabolismo , Receptor Notch1/genética , Antineoplásicos/farmacología , Línea Celular Tumoral , Proteína ADAM17/metabolismo , Proteína ADAM17/antagonistas & inhibidores , Ratones Desnudos , Masculino , Cadenas beta de Integrinas/metabolismo , Cadenas beta de Integrinas/genética , Ratones Endogámicos BALB C , Transducción de Señal/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ratones
7.
J Virol ; 98(2): e0194823, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38299843

RESUMEN

The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.


Asunto(s)
Membrana Celular , Factor 4E Eucariótico de Iniciación , Virus de la Diarrea Epidémica Porcina , Biosíntesis de Proteínas , Internalización del Virus , Animales , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virología , Chlorocebus aethiops , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Cadenas beta de Integrinas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Virus de la Diarrea Epidémica Porcina/fisiología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Porcinos , Tetraspaninas/metabolismo , Células Vero
8.
Exp Cell Res ; 436(1): 113962, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38316250

RESUMEN

Non-small cell lung cancer (NSCLC) is a prevalent tumor and acidic tumor microenvironment provides an energy source driving tumor progression. We previously demonstrated significantly upregulated Integrin ß6 (ITGB6) in NSCLC cells. This study was designed to investigate the role of ITGB6 in NSCLC metastasis and explore the potential mechanisms. The expression of ITGB6 was evaluated in patients with NSCLC. Migration and invasion assays were utilized to investigate the role of ITGB6, and ChIP-qPCR and dual-luciferase reporter experiments preliminarily analyzed the relationship between ETS proto-oncogene 1 (ETS1) and ITGB6. Bioinformatics analysis and rescue models were performed to explore the underlying mechanisms. The results demonstrated that ITGB6 was upregulated in NSCLC patients and the difference was even more pronounced in patients with poor prognosis. Functionally, acidity-induced ITGB6 promoted migration and invasion of NSCLC cells in vitro, and epithelial-mesenchymal transition (EMT) and focal adhesion were the important mechanisms responsible for ITGB6-involved metastasis. Mechanistically, we revealed ETS1 enriched in the ITGB6 promoter region and promoted transcription to triggered the activation of subsequent signaling pathways. Moreover, ChIP-qPCR and dual-luciferase reporter experiments demonstrated that ETS1 played an important role in directly mediating ITGB6 expression. Furthermore, we found ITGB6 was responsible for the acidic microenvironment-mediated migration and invasion processes in NSCLC by performing rescue experiments with ITGB6 knockdown. Our findings indicated acidic microenvironment directly induced ETS1 to regulate the expression of ITGB6, and then the highly expressed ITGB6 further mediate EMT and activates the downstream focal adhesion pathways, eventually promotes the invasion and migration in NSCLC progression and metastasis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Cadenas beta de Integrinas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Adhesiones Focales/metabolismo , Luciferasas , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , Microambiente Tumoral
9.
J Biol Chem ; 300(2): 105631, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199575

RESUMEN

Integrins are cell adhesion receptors that dimerize to mediate cell-cell interactions and regulate processes, including proliferation, inflammation, and tissue repair. The role of integrins in regulating insulin signaling is incompletely understood. We have previously shown that binding of the integrin ligand milk fat globule epidermal growth factor like 8 (MFGE8) to the αvß5 integrin promotes termination of insulin receptor signaling in mice. Upon ligation of MFGE8, integrin ß5 complexes with the insulin receptor beta (IRß) in skeletal muscle, resulting in dephosphorylation of IRß and reduction of insulin-stimulated glucose uptake. Here, we investigate the mechanism by which the interaction between ß5 and IRß impacts IRß phosphorylation status. We show in in vitro and in vivo in skeletal muscle in mice that antibody-mediated blockade of the ß5 integrin inhibits and recombinant MFGE8 promotes PTP1B binding to and dephosphorylation of IRß resulting in increased or reduced insulin-stimulated glucose uptake, respectively. The ß5-PTP1B complex is recruited by MFGE8 to IRß leading to termination of canonical insulin signaling. ß5 blockade enhances insulin-stimulated glucose uptake in wildtype but not Ptp1b KO mice indicating that PTP1B functions downstream of MFGE8 in modulating insulin receptor signaling. Furthermore, in a human cohort, we report serum MFGE8 levels correlate with indices of insulin resistance. These data provide mechanistic insights into the role of MFGE8 and ß5 in regulating insulin signaling.


Asunto(s)
Insulina , Receptor de Insulina , Animales , Humanos , Ratones , Antígenos de Superficie/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Cadenas beta de Integrinas , Proteínas de la Leche/metabolismo , Receptor de Insulina/genética , Ratones Endogámicos C57BL , Masculino , Línea Celular
10.
Chin Med J (Engl) ; 137(2): 209-221, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-37390491

RESUMEN

BACKGROUND: Bladder cancer, characterized by a high potential of tumor recurrence, has high lifelong monitoring and treatment costs. To date, tumor cells with intrinsic softness have been identified to function as cancer stem cells in several cancer types. Nonetheless, the existence of soft tumor cells in bladder tumors remains elusive. Thus, our study aimed to develop a micro-barrier microfluidic chip to efficiently isolate deformable tumor cells from distinct types of bladder cancer cells. METHODS: The stiffness of bladder cancer cells was determined by atomic force microscopy (AFM). The modified microfluidic chip was utilized to separate soft cells, and the 3D Matrigel culture system was to maintain the softness of tumor cells. Expression patterns of integrin ß8 (ITGB8), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) were determined by Western blotting. Double immunostaining was conducted to examine the interaction between F-actin and tripartite motif containing 59 (TRIM59). The stem-cell-like characteristics of soft cells were explored by colony formation assay and in vivo studies upon xenografted tumor models. RESULTS: Using our newly designed microfluidic approach, we identified a small fraction of soft tumor cells in bladder cancer cells. More importantly, the existence of soft tumor cells was confirmed in clinical human bladder cancer specimens, in which the number of soft tumor cells was associated with tumor relapse. Furthermore, we demonstrated that the biomechanical stimuli arising from 3D Matrigel activated the F-actin/ITGB8/TRIM59/AKT/mTOR/glycolysis pathways to enhance the softness and tumorigenic capacity of tumor cells. Simultaneously, we detected a remarkable up-regulation in ITGB8, TRIM59, and phospho-AKT in clinical bladder recurrent tumors compared with their non-recurrent counterparts. CONCLUSIONS: The ITGB8/TRIM59/AKT/mTOR/glycolysis axis plays a crucial role in modulating tumor softness and stemness. Meanwhile, the soft tumor cells become more sensitive to chemotherapy after stiffening, that offers new insights for hampering tumor progression and recurrence.


Asunto(s)
Cadenas beta de Integrinas , Proteínas Proto-Oncogénicas c-akt , Neoplasias de la Vejiga Urinaria , Animales , Ratones , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Actinas/metabolismo , Recurrencia Local de Neoplasia , Serina-Treonina Quinasas TOR/metabolismo , Glucólisis , Línea Celular Tumoral , Proliferación Celular , Mamíferos/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
11.
Chin Med J (Engl) ; 137(5): 565-576, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37500497

RESUMEN

BACKGROUND: Hyperglycemia frequently induces apoptosis in endothelial cells and ultimately contributes to microvascular dysfunction in patients with diabetes mellitus (DM). Previous research reported that the expression of integrins as well as their ligands was elevated in the diseased vessels of DM patients. However, the association between integrins and hyperglycemia-induced cell death is still unclear. This research was designed to investigate the role played by integrin subunit ß5 (ITGB5) in hyperglycemia-induced endothelial cell apoptosis. METHODS: We used leptin receptor knockout (Lepr-KO) ( db / db ) mice as spontaneous diabetes animal model. Selective deletion of ITGB5 in endothelial cell was achieved by injecting vascular targeted adeno-associated virus via tail vein. Besides, we also applied small interfering RNA in vitro to study the mechanism of ITGB5 in regulating high glucose-induced cell apoptosis. RESULTS: ITGB5 and its ligand, fibronectin, were both upregulated after exposure to high glucose in vivo and in vitro . ITGB5 knockdown alleviated hyperglycemia-induced vascular endothelial cell apoptosis and microvascular rarefaction in vivo.In vitro analysis revealed that knockdown of either ITGB5 or fibronectin ameliorated high glucose-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). In addition, knockdown of ITGB5 inhibited fibronectin-induced HUVEC apoptosis, which indicated that the fibronectin-ITGB5 interaction participated in high glucose-induced endothelial cell apoptosis. By using RNA-sequencing technology and bioinformatic analysis, we identified Forkhead Box Protein O1 (FoxO1) as an important downstream target regulated by ITGB5. Moreover, we demonstrated that the excessive macroautophagy induced by high glucose can contribute to HUVEC apoptosis, which was regulated by the ITGB5-FoxO1 axis. CONCLUSION: The study revealed that high glucose-induced endothelial cell apoptosis was positively regulated by ITGB5, which suggested that ITGB5 could potentially be used to predict and treat DM-related vascular complications.


Asunto(s)
Células Endoteliales , Hiperglucemia , Ratones , Animales , Humanos , Células Endoteliales/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Fibronectinas , Macroautofagia , Cadenas beta de Integrinas , Apoptosis/genética , Glucosa/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo
12.
Transl Res ; 265: 36-50, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37931653

RESUMEN

Diabetic kidney disease (DKD) is one of the leading causes to develop end-stage kidney disease worldwide. Pericytes are implicated in the development of tissue fibrosis. However, the underlying mechanisms of pericytes in DKD remain largely unknown. We isolated and cultured primary pericytes and rat mesangial cells (HBZY-1). Western blot and qRT-PCR analysis were used to explore the role and regulatory mechanism of Integrin ß8/transforming growth factor beta 1 (TGF-ß1) pathway. We also constructed pericyte-specific Integrin ß8 knock-in mice as the research objects to determine the role of Integrin ß8 in vivo. We discovered that reduced Integrin ß8 expression was closely associated with pericyte transition in DKD. Overexpressed Integrin ß8 in pericytes dramatically suppressed TGF-ß1/TGF beta receptor 1 (TGFBR1)/Smad3 signaling pathway and protected glomerular endothelial cells (GECs) in vitro. In vivo, pericyte-specific Integrin ß8 knock-in ameliorated pericyte transition, endothelium injury and renal fibrosis in STZ-induced diabetic mice. Mechanistically, Murine double minute 2 (MDM2) was found to increase the degradation of Integrin ß8 and caused TGF-ß1 release and activation. Knockdown MDM2 could partly reverse the decline of Integrin ß8 and suppress pericytes transition. In conclusion, the present findings suggested that upregulated MDM2 expression contributes to the degradation of Integrin ß8 and activation of TGF-ß1/TGFBR1/Smad3 signaling pathway, which ultimately leads to pericyte transition during DKD progression. These results indicate MDM2/Integrin ß8 might be considered as therapeutic targets for DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Cadenas beta de Integrinas , Animales , Ratones , Ratas , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Células Endoteliales/metabolismo , Fibrosis , Riñón/patología , Miofibroblastos/patología , Pericitos/metabolismo , Pericitos/patología , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
13.
Apoptosis ; 29(5-6): 570-585, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38127283

RESUMEN

Integrin ß6 (ITGB6), a member of the integrin family of proteins, is only present in epithelial tissues and frequently associates with integrin subunit αv to form transmembrane heterodimers named integrin αvß6. Importantly, ITGB6 determines αvß6 expression and availability. In addition to being engaged in organ fibrosis, ITGB6 is also directly linked to the emergence of cancer, periodontitis, and several potential genetic diseases. Therefore, it is of great significance to study the molecular-biological mechanism of ITGB6, which could provide novel insights for future clinical diagnosis and therapy. This review introduces the structure, distribution, and biological function of ITGB6. This review also expounds on ITGB6-related diseases, detailing the known biological effects of ITGB6.


Asunto(s)
Antígenos de Neoplasias , Fibrosis , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Fibrosis/genética , Fibrosis/metabolismo , Animales , Cadenas beta de Integrinas/metabolismo , Cadenas beta de Integrinas/genética , Integrinas/metabolismo , Integrinas/genética , Periodontitis/genética , Periodontitis/metabolismo , Periodontitis/patología
14.
Comput Biol Med ; 165: 107433, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37660569

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor characterized by inter and intra-tumor heterogeneity and complex tumor microenvironment. To uncover the molecular targets in this milieu, we systematically identified immune and stromal interactions at the glial cell type level that leverages on RNA-sequencing data of GBM patients from The Cancer Genome Atlas. The perturbed genes between the high vs low immune and stromal scored patients were subjected to weighted gene co-expression network analysis to identify the glial cell type specific networks in immune and stromal infiltrated patients. The intramodular connectivity analysis identified the highly connected genes in each module. Combining it with univariable and multivariable prognostic analysis revealed common vital gene ITGB2, between the immune and stromal infiltrated patients enriched in microglia and newly formed oligodendrocytes. We found following unique hub genes in immune infiltrated patients; COL6A3 (microglia), ITGAM (oligodendrocyte precursor cells), TNFSF9 (microglia), and in stromal infiltrated patients, SERPINE1 (microglia) and THBS1 (newly formed oligodendrocytes, oligodendrocyte precursor cells). To validate these hub genes, we used external GBM patient single cell RNA-sequencing dataset and this identified ITGB2 to be significantly enriched in microglia, newly formed oligodendrocytes, T-cells, macrophages and adipocyte cell types in both immune and stromal datasets. The tumor infiltration analysis of ITGB2 showed that it is correlated with myeloid dendritic cells, macrophages, monocytes, neutrophils, B-cells, fibroblasts and adipocytes. Overall, the systematic screening of tumor microenvironment components at glial cell types uncovered ITGB2 as a potential target in primary GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Cadenas beta de Integrinas , Humanos , Neoplasias Encefálicas/genética , Glioblastoma/genética , Macrófagos , Neuroglía , Microambiente Tumoral/genética , Cadenas beta de Integrinas/metabolismo
15.
Respir Res ; 24(1): 165, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344798

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare but fatal cardiopulmonary disease mainly characterized by pulmonary vascular remodeling. Aberrant expression of circRNAs has been reported to play a crucial role in pulmonary vascular remodeling. The existing literature predominantly centers on studies that examined the sponge mechanism of circRNAs. However, the mechanism of circRNAs in regulating PAH-related protein remains largely unknown. This study aimed to investigate the effect of circItgb5 on pulmonary vascular remodeling and the underlying functional mechanism. MATERIALS AND METHODS: High-throughput circRNAs sequencing was used to detect circItgb5 expression in control and PDGF-BB-treated pulmonary arterial smooth muscle cells (PASMCs). Localization of circItgb5 in PASMCs was determined via the fluorescence in situ hybridization assay. Sanger sequencing was applied to analyze the circularization of Itgb5. The identification of proteins interacting with circItgb5 was achieved through a RNA pull-down assay. To assess the impact of circItgb5 on PASMCs proliferation, an EdU assay was employed. Additionally, the cell cycle of PASMCs was examined using a flow cytometry assay. Western blotting was used to detect biomarkers associated with the phenotypic switch of PASMCs. Furthermore, a monocrotaline (MCT)-induced PAH rat model was established to explore the effect of silencing circItgb5 on pulmonary vascular remodeling. RESULTS: CircItgb5 was significantly upregulated in PDGF-BB-treated PASMCs and was predominately localized in the cytoplasm of PASMCs. In vivo experiments revealed that the knockdown of circItgb5 attenuated MCT-induced pulmonary vascular remodeling and right ventricular hypertrophy. In vitro experiments revealed that circItgb5 promoted the transition of PASMCs to synthetic phenotype. Mechanistically, circItgb5 sponged miR-96-5p to increase mTOR level and interacted with Uba1 protein to activate the Ube2n/Mdm2/ACE2 pathway. CONCLUSIONS: CircItgb5 promoted the transition of PASMCs to synthetic phenotype by interacting with miR-96-5p and Uba1 protein. Knockdown of circItgb5 mitigated pulmonary arterial pressure, pulmonary vascular remodeling and right ventricular hypertrophy. Overall, circItgb5 has the potential for application as a therapeutic target for PAH.


Asunto(s)
Hipertensión Pulmonar , Cadenas beta de Integrinas , ARN Circular , Animales , Masculino , Ratas , Células Cultivadas , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , MicroARNs/metabolismo , Monocrotalina , Mioblastos del Músculo Liso/metabolismo , Proteínas Proto-Oncogénicas c-sis , Ratas Sprague-Dawley , ARN Circular/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba , Remodelación Vascular , Cadenas beta de Integrinas/genética
16.
Mol Cell Endocrinol ; 572: 111955, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37187284

RESUMEN

The progression of diabetic kidney disease (DKD) is associated with increased fibronectin (FN) levels in proximal tubular epithelial cells. Bioinformatics analysis showed that integrin ß6 and cell adhesion function were significantly changed in the cortices of db/db mice. Remodelling of cell adhesion is one of the core changes during epithelial-mesenchymal transition (EMT) in DKD. Integrin is a family of transmembrane proteins that regulates cell adhesion and migration, and extracellular FN is the major ligand of integrin ß6. We found that the expression of integrin ß6 was elevated in the proximal tubules of db/db mice and FN-induced renal proximal tubule cells. The levels of EMT were also significantly increased in vivo and in vitro. In addition, FN treatment activated the Fak/Src pathway, increased the expression of p-YAP, and then upregulated the Notch1 pathway in diabetic proximal tubules. Knockdown of integrin ß6 or Notch1 reduced the EMT aggravation induced by FN. Furthermore, urinary integrin ß6 was significantly increased in DKD patients. Our findings reveal a critical role of integrin ß6 in regulating EMT in proximal tubular epithelial cells and identify a novel direction for the detection and treatment of DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/metabolismo , Transición Epitelial-Mesenquimal , Transducción de Señal/fisiología , Cadenas beta de Integrinas/metabolismo
17.
Adv Clin Exp Med ; 32(12): 1413-1422, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37212774

RESUMEN

BACKGROUND: The regulatory effect of integrin ß6 (ITGB6) on sweat gland cells in primary palmar hyperhidrosis (PPH) remains unclear. OBJECTIVES: This study investigated the involvement of ITGB6 in the pathogenesis of PPH. MATERIAL AND METHODS: Sweat gland tissues were collected from PPH patients and healthy volunteers. The expression levels of ITGB6 in sweat gland tissues were detected with quantitative polymerase chain reaction (qPCR), western blot and immunohistochemical staining. Sweat gland cells were extracted from PPH patients, and identified with immunofluorescence staining of CEA and CK7. The expression of aquaporin 5 (AQP5) and Na-K-Cl cotransporter 1 (NKCC1) in primary sweat gland cells that overexpress ITGB6 were also detected. Through a series of bioinformatic methods, differentially expressed genes in sweat gland tissues were examined and validated via comparing PPH samples and controls. The key proteins and biological functions enriched in PPH were determined using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS: The ITGB6 was upregulated in sweat gland tissues of PPH patients compared to that of healthy volunteers. The CEA and CK7 were positively expressed in sweat gland cells extracted from PPH patients. The overexpression of ITGB6 upregulated AQP5 and NKCC1 protein expression in the sweat gland cells of PPH patients. A total of 562 differentially expressed mRNAs were identified using high-throughput sequencing (394 upregulated, 168 downregulated), which were mainly active in the chemokine and Wnt signaling pathways. After verification with qPCR and western blot, the overexpression of ITGB6 significantly upregulated CXCL3, CXCL5, CXCL10, and CXCL11, and downregulated Wnt2 mRNA and protein expression in sweat gland cells. CONCLUSIONS: The ITGB6 is upregulated in PPH patients. It may be involved in the pathogenesis of PPH by upregulating AQP5, NKCC1, CXCL3, CXCL5, CXCL10, and CXCL11, and downregulating Wnt2 expression in sweat glands.


Asunto(s)
Hiperhidrosis , Glándulas Sudoríparas , Humanos , Regulación hacia Arriba , Glándulas Sudoríparas/metabolismo , Glándulas Sudoríparas/patología , Cadenas beta de Integrinas/genética , Cadenas beta de Integrinas/metabolismo , Acuaporina 5/genética , Acuaporina 5/metabolismo , Hiperhidrosis/genética , Hiperhidrosis/metabolismo , Hiperhidrosis/patología
18.
Clin Epigenetics ; 15(1): 18, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36737807

RESUMEN

BACKGROUND: Oncogenic overexpression of integrin-ß7 (ITGB7) in cases of high-risk multiple myeloma (MM) was reported to promote enhanced interactions between neoplastic plasma-B cells and stromal cells to develop cell-adhesion mediated drug resistance. METHODS: Expression profiles of adhesion related genes were analyzed in a cohort of MM patients containing major IgH translocations or hyperdiploidies (HY), diagnosed at the premalignant monoclonal gammopathy of undetermined significance (MGUS; n = 103), smoldering multiple myeloma; (SMM; n = 190) or MM (MM; n = 53) stage. Differential expression was integrated with loci-specific alterations in DNA-methylation and chromatin marks in MM patients. A CRISPR-based targeted induction of DNA-methylation at the ITGB7 super-enhancer (SE) in MM.1S cells was employed to intersect the impact of cis-regulatory elements on ITGB7 expression. RESULTS: ITGB7 was significantly (p < 0.05) upregulated in patients with t(14;16) and t(14;20) subgroups in all MGUS, SMM and MM stages, but sporadically upregulated in t(4;14) subgroup at the MM stage. We demonstrate a predetermined enhancer state on ITGB7 in primary-B cells that is maintained under bivalent chromatin, which undergoes a process of chromatin-state alterations and develops into an active enhancer in cases of the t(4;14) subgroup or SE in cases of the t(14;16) subgroup. We also demonstrate that while targeted induction of DNA-methylation at the ITGB7-SE further upregulated the gene, inhibition of ITGB7-SE-associated transcription factor bromodomain-4 downregulated expression of the gene. CONCLUSIONS: Our findings suggest an epigenetic regulation of oncogenic overexpression of ITGB7 in MM cells, which could be critical in MM progression and an attractive therapeutic target.


Asunto(s)
Gammopatía Monoclonal de Relevancia Indeterminada , Mieloma Múltiple , Humanos , Cromatina/genética , Análisis Citogenético , Progresión de la Enfermedad , ADN/metabolismo , Metilación de ADN , Epigénesis Genética , Cadenas beta de Integrinas , Integrinas/genética , Integrinas/metabolismo , Gammopatía Monoclonal de Relevancia Indeterminada/diagnóstico , Gammopatía Monoclonal de Relevancia Indeterminada/genética , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Mieloma Múltiple/genética , Mieloma Múltiple/patología
19.
Sci Transl Med ; 15(678): eabl7895, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36630483

RESUMEN

Pancreatic and lung cancers frequently develop resistance to chemotherapy-induced cell apoptosis during the treatment, indicating that targeting nonapoptotic-related pathways, such as pyroptosis, can be an alternative cancer treatment strategy. Pyroptosis is a gasdermin-driven lytic programmed cell death triggered by inflammatory caspases when initiated by canonical or noncanonical pathways that has been recently seen as a potential therapeutic target in cancer treatment. However, overcoming chemoresistance in cancers by modulating pyroptosis has not been explored. Here, we demonstrate that ß5-integrin represses chemotherapy-induced canonical pyroptosis to confer cancer chemoresistance through ASAH2-driven sphingolipid metabolic reprogramming. Clinically, high ß5-integrin expression associates with poor patient prognosis and chemotherapeutic responses in cancers. In addition, chemoresistant cells in vitro fail to undergo chemotherapy-induced pyroptosis, which is controlled by ß5-integrin. Mechanistically, proteomic and lipidomic analyses indicate that ß5-integrin up-regulates sphingolipid metabolic enzyme ceramidase (ASAH2) expression through Src-signal transducer and activator of transcription 3 (STAT3) signaling, which then reduces the metabolite ceramide concentration and subsequent ROS production to prohibit chemotherapy-induced canonical pyroptosis. Using cancer cell lines, patient-derived tumor organoids, and orthotopic lung and pancreatic animal models, we show that administration of a Src or ceramidase inhibitor rescues the response of chemoresistant pancreatic and lung cancer cells to chemotherapy by reactivating pyroptosis in vitro and in vivo. Overall, our results suggest that pyroptosis-based therapy is a means to improve cancer treatment and warrants further investigation.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas pp60(c-src) , Piroptosis , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Integrinas/metabolismo , Pulmón/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Proteómica , Piroptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas pp60(c-src)/efectos de los fármacos , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Humanos , Cadenas beta de Integrinas/metabolismo , Factor de Transcripción STAT3/metabolismo , Ceramidasas/metabolismo , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA