RESUMEN
Establishing how neural function emerges from network properties is a fundamental problem in neuroscience1. Here, to better understand the relationship between the structure and the function of a nervous system, we systematically measure signal propagation in 23,433 pairs of neurons across the head of the nematode Caenorhabditis elegans by direct optogenetic activation and simultaneous whole-brain calcium imaging. We measure the sign (excitatory or inhibitory), strength, temporal properties and causal direction of signal propagation between these neurons to create a functional atlas. We find that signal propagation differs from model predictions that are based on anatomy. Using mutants, we show that extrasynaptic signalling not visible from anatomy contributes to this difference. We identify many instances of dense-core-vesicle-dependent signalling, including on timescales of less than a second, that evoke acute calcium transients-often where no direct wired connection exists but where relevant neuropeptides and receptors are expressed. We propose that, in such cases, extrasynaptically released neuropeptides serve a similar function to that of classical neurotransmitters. Finally, our measured signal propagation atlas better predicts the neural dynamics of spontaneous activity than do models based on anatomy. We conclude that both synaptic and extrasynaptic signalling drive neural dynamics on short timescales, and that measurements of evoked signal propagation are crucial for interpreting neural function.
Asunto(s)
Caenorhabditis elegans , Vías Nerviosas , Neuronas , Animales , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Calcio/análisis , Calcio/metabolismo , Modelos Neurológicos , Mutación , Vías Nerviosas/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Neuropéptidos/metabolismo , Sinapsis/metabolismo , Transducción de Señal/fisiologíaAsunto(s)
Caenorhabditis elegans , Red Nerviosa , Tejido Nervioso , Neuronas , Transducción de Señal , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/citología , Red Nerviosa/fisiología , Tejido Nervioso/anatomía & histología , Tejido Nervioso/citología , Tejido Nervioso/fisiología , Neuronas/fisiología , Neuropéptidos/metabolismo , Transmisión Sináptica , AnimalesRESUMEN
Animals maintain the ability to survive and reproduce by acclimating to environmental temperatures. We showed here that Caenorhabditis elegans exhibited temperature acclimation plasticity, which was regulated by a head-tail-head neural circuitry coupled with gut fat storage. After experiencing cold, C. elegans individuals memorized the experience and were prepared against subsequent cold stimuli. The cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) regulated temperature acclimation in the ASJ thermosensory neurons and RMG head interneurons, where it modulated ASJ thermosensitivity in response to past cultivation temperature. The PVQ tail interneurons mediated the communication between ASJ and RMG via glutamatergic signaling. Temperature acclimation occurred via gut fat storage regulation by the triglyceride lipase ATGL-1, which was activated by a neuropeptide, FLP-7, downstream of CREB. Thus, a head-tail-head neural circuit coordinated with gut fat influenced experience-dependent temperature acclimation.
Asunto(s)
Aclimatación , Tejido Adiposo , Caenorhabditis elegans , Frío , Sistema Digestivo , Cabeza , Vías Nerviosas , Cola (estructura animal) , Aclimatación/fisiología , Tejido Adiposo/metabolismo , Animales , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Sistema Digestivo/metabolismo , Ácido Glutámico/metabolismo , Cabeza/inervación , Interneuronas/metabolismo , Lipasa/metabolismo , Neuropéptidos/metabolismo , Cola (estructura animal)/inervación , Sensación TérmicaRESUMEN
An animal's nervous system changes as its body grows from birth to adulthood and its behaviours mature1-8. The form and extent of circuit remodelling across the connectome is unknown3,9-15. Here we used serial-section electron microscopy to reconstruct the full brain of eight isogenic Caenorhabditis elegans individuals across postnatal stages to investigate how it changes with age. The overall geometry of the brain is preserved from birth to adulthood, but substantial changes in chemical synaptic connectivity emerge on this consistent scaffold. Comparing connectomes between individuals reveals substantial differences in connectivity that make each brain partly unique. Comparing connectomes across maturation reveals consistent wiring changes between different neurons. These changes alter the strength of existing connections and create new connections. Collective changes in the network alter information processing. During development, the central decision-making circuitry is maintained, whereas sensory and motor pathways substantially remodel. With age, the brain becomes progressively more feedforward and discernibly modular. Thus developmental connectomics reveals principles that underlie brain maturation.
Asunto(s)
Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Caenorhabditis elegans/citología , Conectoma , Modelos Neurológicos , Vías Nerviosas , Sinapsis/fisiología , Envejecimiento/metabolismo , Animales , Encéfalo/anatomía & histología , Encéfalo/ultraestructura , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/ultraestructura , Individualidad , Interneuronas/citología , Microscopía Electrónica , Neuronas/citología , Conducta EstereotipadaRESUMEN
Quantitative micromechanical characterization of single cells and multicellular tissues or organisms is of fundamental importance to the study of cellular growth, morphogenesis, and cell-cell interactions. However, due to limited manipulation capabilities at the microscale, systems used for mechanical characterizations struggle to provide complete three-dimensional coverage of individual specimens. Here, we combine an acoustically driven manipulation device with a micro-force sensor to freely rotate biological samples and quantify mechanical properties at multiple regions of interest within a specimen. The versatility of this tool is demonstrated through the analysis of single Lilium longiflorum pollen grains, in combination with numerical simulations, and individual Caenorhabditis elegans nematodes. It reveals local variations in apparent stiffness for single specimens, providing previously inaccessible information and datasets on mechanical properties that serve as the basis for biophysical modelling and allow deeper insights into the biomechanics of these living systems.
Asunto(s)
Imagenología Tridimensional/métodos , Micromanipulación/instrumentación , Micromanipulación/métodos , Microscopía de Fuerza Atómica/métodos , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Acústica , Animales , Fenómenos Biomecánicos , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/citología , Pared Celular/ultraestructura , Lilium/citología , Microscopía Electrónica de Rastreo , Morfogénesis , Células Vegetales , Polen/citología , Polen/ultraestructuraRESUMEN
Animal nervous system organization is crucial for all body functions and its disruption can lead to severe cognitive and behavioural impairment1. This organization relies on features across scales-from the localization of synapses at the nanoscale, through neurons, which possess intricate neuronal morphologies that underpin circuit organization, to stereotyped connections between different regions of the brain2. The sheer complexity of this organ means that the feat of reconstructing and modelling the structure of a complete nervous system that is integrated across all of these scales has yet to be achieved. Here we present a complete structure-function model of the main neuropil in the nematode Caenorhabditis elegans-the nerve ring-which we derive by integrating the volumetric reconstructions from two animals with corresponding3 synaptic and gap-junctional connectomes. Whereas previously the nerve ring was considered to be a densely packed tract of neural processes, we uncover internal organization and show how local neighbourhoods spatially constrain and support the synaptic connectome. We find that the C. elegans connectome is not invariant, but that a precisely wired core circuit is embedded in a background of variable connectivity, and identify a candidate reference connectome for the core circuit. Using this reference, we propose a modular network architecture of the C. elegans brain that supports sensory computation and integration, sensorimotor convergence and brain-wide coordination. These findings reveal scalable and robust features of brain organization that may be universal across phyla.
Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Conectoma , Animales , Encéfalo/anatomía & histología , Caenorhabditis elegans/anatomía & histología , Uniones Comunicantes , Modelos Biológicos , Vías Nerviosas , Neuritas , Neurópilo/citología , Neurópilo/fisiología , Sinapsis/metabolismoRESUMEN
We introduce a random-access parallel (RAP) imaging modality that uses a novel design inspired by a Newtonian telescope to image multiple spatially separated samples without moving parts or robotics. This scheme enables near-simultaneous image capture of multiple petri dishes and random-access imaging with sub-millisecond switching times at the full resolution of the camera. This enables the RAP system to capture long-duration records from different samples in parallel, which is not possible using conventional automated microscopes. The system is demonstrated by continuously imaging multiple cardiac monolayer and Caenorhabditis elegans preparations.
Asunto(s)
Caenorhabditis elegans/anatomía & histología , Microscopía/métodos , Animales , Corazón/anatomía & histología , Microscopía/clasificación , Microscopía/instrumentación , Miocardio/citologíaRESUMEN
One of the main problems when monitoring Caenorhabditis elegans nematodes (C. elegans) is tracking their poses by automatic computer vision systems. This is a challenge given the marked flexibility that their bodies present and the different poses that can be performed during their behaviour individually, which become even more complicated when worms aggregate with others while moving. This work proposes a simple solution by combining some computer vision techniques to help to determine certain worm poses and to identify each one during aggregation or in coiled shapes. This new method is based on the distance transformation function to obtain better worm skeletons. Experiments were performed with 205 plates, each with 10, 15, 30, 60 or 100 worms, which totals 100,000 worm poses approximately. A comparison of the proposed method was made to a classic skeletonisation method to find that 2196 problematic poses had improved by between 22% and 1% on average in the pose predictions of each worm.
Asunto(s)
Inteligencia Artificial , Caenorhabditis elegans/anatomía & histología , Modelos Anatómicos , Esqueleto/anatomía & histología , Algoritmos , Animales , Procesamiento de Imagen Asistido por ComputadorAsunto(s)
Mapeo Encefálico , Encéfalo/anatomía & histología , Encéfalo/citología , Vías Nerviosas , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Colaboración de las Masas , Conjuntos de Datos como Asunto , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Organismos Hermafroditas/citología , Organismos Hermafroditas/genética , Organismos Hermafroditas/crecimiento & desarrollo , Humanos , Larva/anatomía & histología , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Aprendizaje Automático , Masculino , Ratones , Microscopía , Neuronas/citología , Neuronas/metabolismo , NeurocienciasRESUMEN
Cell shape change is one of the driving forces of animal morphogenesis, and the model organism Caenorhabditis elegans has played a significant role in analyzing the underlying mechanisms involved. The analysis of cell shape change requires quantification of cellular shape descriptors, a method known as cellular morphometry. However, standard C. elegans live imaging methods limit the capability of cellular morphometry in 3D, as spherical aberrations generated by samples and the surrounding medium misalign optical paths. Here, we report a 3D live imaging method for C. elegans embryos that minimized spherical aberrations caused by refractive index (RI) mismatch. We determined the composition of a refractive index matching medium (RIMM) for C. elegans live imaging. The 3D live imaging with the RIMM resulted in a higher signal intensity in the deeper cell layers. We also found that the obtained images improved the 3D cell segmentation quality. Furthermore, our 3D cellular morphometry and 2D cell shape simulation indicated that the germ cell precursor P4 had exceptionally high cortical tension. Our results demonstrate that the RIMM is a cost-effective solution to improve the 3D cellular morphometry of C. elegans. The application of this method should facilitate understanding of C. elegans morphogenesis from the perspective of cell shape changes.
Asunto(s)
Caenorhabditis elegans/anatomía & histología , Imagenología Tridimensional/métodos , Refractometría/métodos , Animales , Pesos y Medidas Corporales/métodos , Caenorhabditis elegans/embriología , Forma de la Célula/fisiología , Células Germinativas , MorfogénesisRESUMEN
Sexual dimorphism is a device that supports genetic diversity while providing selective pressure against speciation. This phenomenon is at the core of sexually reproducing organisms. Caenorhabditis elegans provides a unique experimental system where males exist in a primarily hermaphroditic species. Early works of John Sulston, Robert Horvitz, and John White provided a complete map of the hermaphrodite nervous system, and recently the male nervous system was added. This addition completely realized the vision of C. elegans pioneer Sydney Brenner: a model organism with an entirely mapped nervous system. With this 'connectome' of information available, great strides have been made toward understanding concepts such as how a sex-shared nervous system (in hermaphrodites and males) can give rise to sex-specific functions, how neural plasticity plays a role in developing a dimorphic nervous system, and how a shared nervous system receives and processes external cues in a sexually-dimorphic manner to generate sex-specific behaviors. In C. elegans, the intricacies of male-mating behavior have been crucial for studying the function and circuitry of the male-specific nervous system and used as a model for studying human autosomal dominant polycystic kidney disease (ADPKD). With the emergence of CRISPR, a seemingly limitless tool for generating genomic mutations with pinpoint precision, the C. elegans model system will continue to be a useful instrument for pioneering research in the fields of behavior, reproductive biology, and neurogenetics.
Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/anatomía & histología , Proteínas de Ciclo Celular/genética , Organismos Hermafroditas/fisiología , Sistema Nervioso/anatomía & histología , Caracteres Sexuales , Estructuras Animales/crecimiento & desarrollo , Estructuras Animales/inervación , Estructuras Animales/ultraestructura , Animales , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Cilios/química , Proteínas de Unión al ADN/fisiología , Modelos Animales de Enfermedad , Vesículas Extracelulares/fisiología , Organismos Hermafroditas/ultraestructura , Humanos , Interneuronas/fisiología , Masculino , Sistema Nervioso/crecimiento & desarrollo , Plasticidad Neuronal , Neuronas/clasificación , Neuronas/fisiología , Neuronas/ultraestructura , Neurotransmisores/fisiología , No Disyunción Genética , Riñón Poliquístico Autosómico Dominante/genética , Conducta Sexual Animal/fisiología , Canales Catiónicos TRPP/genética , Factores de Transcripción/fisiologíaRESUMEN
An issue often encountered when acquiring image data from fixed or anesthetized C. elegans is that worms cross and cluster with their neighbors. This problem is aggravated with increasing density of worms and creates challenges for imaging and quantification. We developed a FIJI-based workflow, Worm-align, that can be used to generate single- or multi-channel montages of user-selected, straightened and aligned worms from raw image data of C. elegans. Worm-align is a simple and user-friendly workflow that does not require prior training of either the user or the analysis algorithm. Montages generated with Worm-align can aid the visual inspection of worms, their classification and representation. In addition, the output of Worm-align can be used for subsequent quantification of fluorescence intensity in single worms, either in FIJI directly, or in other image analysis software platforms. We demonstrate this by importing the Worm-align output into Worm_CP, a pipeline that uses the open-source CellProfiler software. CellProfiler's flexibility enables the incorporation of additional modules for high-content screening. As a practical example, we have used the pipeline on two datasets: the first dataset are images of heat shock reporter worms that express green fluorescent protein (GFP) under the control of the promoter of a heat shock inducible gene hsp-70, and the second dataset are images obtained from fixed worms, stained for fat-stores with a fluorescent dye.
Asunto(s)
Algoritmos , Caenorhabditis elegans/anatomía & histología , Procesamiento de Imagen Asistido por Computador , Animales , Caenorhabditis elegans/metabolismo , Fluorescencia , Programas InformáticosRESUMEN
High-speed imaging equipment can be an expensive investment, especially when certain applications require custom solutions. In this paper, we present a low-cost high-speed prototype camera built on a low-end Zynq-7000 System-on-Chip (SoC) platform and off-the-shelf components with the aim of removing the entry barrier into various high-speed imaging applications. The camera is standalone (does not require a host computer) and can achieve 211 frames per second (fps) at its maximum resolution of 1280x1024, and up to 2329 fps at a 256x256 resolution. With a current cost of only several hundred dollars and resource utilization of ~5%, the open-source design's modularity and customizability allows users with sufficient hardware or programming experience to modify the camera to suit their needs, potentially driving the cost lower. This can be done by utilizing the large remaining programmable logic for custom image processing algorithms, creating user interface software on the CPU, attaching extensions through the peripheral Module connections, or creating custom carrier or daughter boards. The development and design of the camera is described and a figure-of-merit is presented to provide a value assessment of some available commercial high-speed cameras against which our camera is competitive. Finally, the camera was tested to record low frequency spatial vibration and was found to be useful in investigating phenotypes associated with aging in a leading animal model, the nematode (worm) Caenorhabditis elegans.
Asunto(s)
Caenorhabditis elegans/anatomía & histología , Procesamiento de Imagen Asistido por Computador/instrumentación , Programas Informáticos , Grabación en Video/instrumentación , Animales , Caenorhabditis elegans/fisiología , Diseño de Equipo , Modelos Animales , Fenotipo , Grabación en Video/economíaRESUMEN
Detailed anatomical maps of individual organs and entire animals have served as invaluable entry points for ensuing dissection of their evolution, development, and function. The pharynx of the nematode Caenorhabditis elegans is a simple neuromuscular organ with a self-contained, autonomously acting nervous system, composed of 20 neurons that fall into 14 anatomically distinct types. Using serial electron micrograph (EM) reconstruction, we re-evaluate here the connectome of the pharyngeal nervous system, providing a novel and more detailed view of its structure and predicted function. Contrasting the previous classification of pharyngeal neurons into distinct inter- and motor neuron classes, we provide evidence that most pharyngeal neurons are also likely sensory neurons and most, if not all, pharyngeal neurons also classify as motor neurons. Together with the extensive cross-connectivity among pharyngeal neurons, which is more widespread than previously realized, the sensory-motor characteristics of most neurons define a shallow network architecture of the pharyngeal connectome. Network analysis reveals that the patterns of neuronal connections are organized into putative computational modules that reflect the known functional domains of the pharynx. Compared with the somatic nervous system, pharyngeal neurons both physically associate with a larger fraction of their neighbors and create synapses with a greater proportion of their neighbors. We speculate that the overall architecture of the pharyngeal nervous system may be reminiscent of the architecture of ancestral, primitive nervous systems.
Asunto(s)
Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/fisiología , Conectoma , Faringe/inervación , Faringe/fisiología , Animales , Conducta Alimentaria/fisiología , Neuronas Motoras/fisiología , Neuronas Motoras/ultraestructura , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/ultraestructura , Sinapsis/fisiología , Sinapsis/ultraestructuraRESUMEN
Magnetic resonance tomography typically applies the Fourier transform to k-space signals repeatedly acquired from a frequency encoded spatial region of interest, therefore requiring a stationary object during scanning. Any movement of the object results in phase errors in the recorded signal, leading to deformed images, phantoms, and artifacts, since the encoded information does not originate from the intended region of the object. However, if the type and magnitude of movement is known instantaneously, the scanner or the reconstruction algorithm could be adjusted to compensate for the movement, directly allowing high quality imaging with non-stationary objects. This would be an enormous boon to studies that tie cell metabolomics to spontaneous organism behaviour, eliminating the stress otherwise necessitated by restraining measures such as anesthesia or clamping. In the present theoretical study, we use a phantom of the animal model C. elegans to examine the feasibility to automatically predict its movement and position, and to evaluate the impact of movement prediction, within a sufficiently long time horizon, on image reconstruction. For this purpose, we use automated image processing to annotate body parts in freely moving C. elegans, and predict their path of movement. We further introduce an MRI simulation platform based on bright field videos of the moving worm, combined with a stack of high resolution transmission electron microscope (TEM) slice images as virtual high resolution phantoms. A phantom provides an indication of the spatial distribution of signal-generating nuclei on a particular imaging slice. We show that adjustment of the scanning to the predicted movements strongly reduces distortions in the resulting image, opening the door for implementation in a high-resolution NMR scanner.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Algoritmos , Animales , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/fisiología , Biología Computacional , Simulación por Computador , Estudios de Factibilidad , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Imagen por Resonancia Magnética/estadística & datos numéricos , Modelos Biológicos , Movimiento (Física) , Movimiento , Fantasmas de ImagenRESUMEN
Hawaiian isolates of the nematode species Caenorhabditis elegans have long been known to harbor genetic diversity greater than the rest of the worldwide population, but this observation was supported by only a small number of wild strains. To better characterize the niche and genetic diversity of Hawaiian C. elegans and other Caenorhabditis species, we sampled different substrates and niches across the Hawaiian islands. We identified hundreds of new Caenorhabditis strains from known species and a new species, Caenorhabditis oiwi. Hawaiian C. elegans are found in cooler climates at high elevations but are not associated with any specific substrate, as compared to other Caenorhabditis species. Surprisingly, admixture analysis revealed evidence of shared ancestry between some Hawaiian and non-Hawaiian C. elegans strains. We suggest that the deep diversity we observed in Hawaii might represent patterns of ancestral genetic diversity in the C. elegans species before human influence.
Asunto(s)
Caenorhabditis elegans/clasificación , Caenorhabditis elegans/genética , Caenorhabditis elegans/aislamiento & purificación , Variación Genética , Filogenia , Migración Animal , Animales , Caenorhabditis/genética , Caenorhabditis elegans/anatomía & histología , Femenino , Mapeo Geográfico , Haplotipos , Hawaii , Masculino , Análisis de Secuencia de ADN , Especificidad de la EspecieRESUMEN
Reproduction is a fundamental imperative of all forms of life. For all the advantages sexual reproduction confers, it has a deeply conserved flaw: it is temperature sensitive. As temperatures rise, fertility decreases. Across species, male fertility is particularly sensitive to elevated temperature. Previously, we have shown in the model nematode Caenorhabditiselegans that all males are fertile at 20°C, but almost all males have lost fertility at 27°C. Male fertility is dependent on the production of functional sperm, successful mating and transfer of sperm, and successful fertilization post-mating. To determine how male fertility is impacted by elevated temperature, we analyzed these aspects of male reproduction at 27°C in three wild-type strains of C. elegans: JU1171, LKC34 and N2. We found no effect of elevated temperature on the number of immature non-motile spermatids formed. There was only a weak effect of elevated temperature on sperm activation. In stark contrast, there was a strong effect of elevated temperature on male mating behavior, male tail morphology and sperm transfer such that males very rarely completed mating successfully when exposed to 27°C. Therefore, we propose a model where elevated temperature reduces male fertility as a result of the negative impacts of temperature on the somatic tissues necessary for mating. Loss of successful mating at elevated temperature overrides any effects that temperature may have on the germline or sperm cells.
Asunto(s)
Caenorhabditis elegans/fisiología , Fertilidad , Calor , Conducta Sexual Animal , Animales , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/genética , Masculino , Cola (estructura animal)/anatomía & histologíaRESUMEN
In large neuronal networks, it is believed that functions emerge through the collective behavior of many interconnected neurons. Recently, the development of experimental techniques that allow simultaneous recording of calcium concentration from a large fraction of all neurons in Caenorhabditis elegans-a nematode with 302 neurons-creates the opportunity to ask whether such emergence is universal, reaching down to even the smallest brains. Here, we measure the activity of 50+ neurons in C. elegans, and analyze the data by building the maximum entropy model that matches the mean activity and pairwise correlations among these neurons. To capture the graded nature of the cells' responses, we assign each cell multiple states. These models, which are equivalent to a family of Potts glasses, successfully predict higher statistical structure in the network. In addition, these models exhibit signatures of collective behavior: the state of single cells can be predicted from the state of the rest of the network; the network, despite being sparse in a way similar to the structural connectome, distributes its response globally when locally perturbed; the distribution over network states has multiple local maxima, as in models of memory; and the parameters that describe the real network are close to a critical surface in this family of models.
Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/fisiología , Modelos Neurológicos , Potenciales de Acción , Animales , Encéfalo/citología , Caenorhabditis elegans/citología , Entropía , Red Nerviosa/citología , Red Nerviosa/fisiología , Neuronas/citología , Tamaño de los ÓrganosRESUMEN
The execution of developmental programs of gene expression requires an accurate partitioning of the genome into subnuclear compartments, with active euchromatin enriched centrally and silent heterochromatin at the nuclear periphery1. The existence of degenerative diseases linked to lamin A mutations suggests that perinuclear binding of chromatin contributes to cell-type integrity2,3. The methylation of lysine 9 of histone H3 (H3K9me) characterizes heterochromatin and mediates both transcriptional repression and chromatin anchoring at the inner nuclear membrane4. In Caenorhabditis elegans embryos, chromodomain protein CEC-4 bound to the inner nuclear membrane tethers heterochromatin through H3K9me3,5, whereas in differentiated tissues, a second heterochromatin-sequestering pathway is induced. Here we use an RNA interference screen in the cec-4 background and identify MRG-1 as a broadly expressed factor that is necessary for this second chromatin anchor in intestinal cells. However, MRG-1 is exclusively bound to euchromatin, suggesting that it acts indirectly. Heterochromatin detachment in double mrg-1; cec-4 mutants is rescued by depleting the histone acetyltransferase CBP-1/p300 or the transcription factor ATF-8, a member of the bZIP family (which is known to recruit CBP/p300). Overexpression of CBP-1 in cec-4 mutants is sufficient to delocalize heterochromatin in an ATF-8-dependent manner. CBP-1 and H3K27ac levels increase in heterochromatin upon mrg-1 knockdown, coincident with delocalization. This suggests that the spatial organization of chromatin in C. elegans is regulated both by the direct perinuclear attachment of silent chromatin, and by an active retention of CBP-1/p300 in euchromatin. The two pathways contribute differentially in embryos and larval tissues, with CBP-1 sequestration by MRG-1 having a major role in differentiated cells.
Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Cromatina/genética , Cromatina/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Animales , Caenorhabditis elegans/anatomía & histología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Eucromatina/genética , Eucromatina/metabolismo , Mutación con Ganancia de Función , Genes Reporteros/genética , Histona Acetiltransferasas/deficiencia , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/química , Histonas/metabolismo , Intestinos/citología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
We report a generic smartphone app for quantitative annotation of complex images. The app is simple enough to be used by children, and annotation tasks are distributed across app users, contributing to efficient annotation. We demonstrate its flexibility and speed by annotating >30,000 images, including features of rice root growth and structure, stem cell aggregate morphology, and complex worm (Caenorhabditis elegans) postures, for which we show that the speed of annotation is >130-fold faster than state-of-the-art techniques with similar accuracy.