Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.402
Filtrar
1.
Theriogenology ; 223: 108-114, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703550

RESUMEN

Protein glycosylation is a post-translational modification involved in wide range of biological processes. In mammalian spermatozoa this modification has been identified in numerous proteins, and membrane glycoproteins are involved in the fertilization process. The objective of the present study was to identify changes in protein glycosylation after acrosome reaction (AR) induction using the 4-Br-A23187 ionophore. Our results showed that treatment with 10 µM of 4-Br-A23187 for 20 min significantly increased the percentage of live acrosome-reacted spermatozoa compared to the control (69.8 ± 0.8 vs. 6.4 ± 0.5; mean % ± SEM, respectively). Also, we observed an increase in 32 kDa tyrosine-phosphorylated protein (p32) and a decrease in serine/threonine phosphorylation of the protein kinase A substrates (phospho-PKA-substrates) after ionophore treatment. Furthermore, changes in glycosylated proteins following AR induction were analyzed using different HRP-conjugated lectins (GNA, DSA, and SNA), revealing changes in mannose and sialic acid residues. Proteomic analysis of isolated proteins using GNA lectin revealed that 50 proteins exhibited significantly different abundance (q-value < 0.01). Subsequent analysis using Uniprot database identified 39 downregulated and 11 upregulated proteins in the presence of 4-Br-A23187. Notably, six of these proteins were classified as transmembrane proteins, namely LRRC37A/B like protein 1 C-terminal domain-containing protein, Membrane metalloendopeptidase like 1, VWFA domain-containing protein, Syndecan, Membrane spanning 4-domains A14 and Serine protease 54. This study shows a novel protocol to induce acrosome reaction in boar spermatozoa and identifies new transmembrane proteins containing mannose residues. Further work is needed to elucidate the role of these proteins in sperm-oocyte fusion.


Asunto(s)
Reacción Acrosómica , Calcimicina , Espermatozoides , Animales , Masculino , Reacción Acrosómica/efectos de los fármacos , Porcinos , Espermatozoides/metabolismo , Espermatozoides/efectos de los fármacos , Calcimicina/farmacología , Glicoproteínas/metabolismo , Glicosilación , Proteoma , Ionóforos de Calcio/farmacología
2.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339001

RESUMEN

UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To elucidate NET distribution in the dorsal skin, male ICR mice, exposed to UVB irradiation, were immunohistologically analyzed to detect citrullinated histone H3 (citH3) and peptidylarginine deiminase 4 (PAD4). Reactive oxygen species (ROS) production in the bloodstream was analyzed. To establish the involvement of NET-released DNA in this inflammatory response, mice were UV-B irradiated following the intraperitoneal administration of DNase I. In vitro experiments were performed to scrutinize the impact of Hochu-ekki-to on A23187-induced NETs in neutrophil-like HL-60 cells. UV-B irradiation induced dorsal skin inflammation, coinciding with a significant increase in citH3 and PAD4 expression. Administration of DNase I attenuated UV-B-induced skin inflammation, whereas Hochu-ekki-to administration considerably suppressed the inflammation, correlating with diminished levels of citH3 and PAD4 in the dorsal skin. UV-B irradiation conspicuously augmented ROS and hydrogen peroxide (H2O2) production in the blood. Hochu-ekki-to significantly inhibited ROS and H2O2 generation. In vitro experiments demonstrated that Hochu-ekki-to notably inhibited A23187-induced NETs in differentiated neutrophil-like cells. Hence, NETs have been implicated in UV-B-induced skin inflammation, and their inhibition reduces cutaneous inflammation. Additionally, Hochu-ekki-to mitigated skin inflammation by impeding neutrophil infiltration and NETs in the dorsal skin of mice.


Asunto(s)
Desoxirribonucleasa I , Medicamentos Herbarios Chinos , Trampas Extracelulares , Rayos Ultravioleta , Animales , Masculino , Ratones , Calcimicina/farmacología , Desoxirribonucleasa I/farmacología , Desoxirribonucleasa I/metabolismo , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/efectos de la radiación , Histonas/metabolismo , Peróxido de Hidrógeno/metabolismo , Inflamación/metabolismo , Ratones Endogámicos ICR , Neutrófilos/metabolismo , Desiminasas de la Arginina Proteica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rayos Ultravioleta/efectos adversos
3.
Andrology ; 12(2): 459-471, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37300872

RESUMEN

BACKGROUND: Equine spermatozoa appear to differ from spermatozoa of other species in using oxidative phosphorylation preferentially over glycolysis. However, there is little information regarding effects of different energy sources on measured parameters in equine spermatozoa. OBJECTIVE: To determine the effect of three individual energy substrates, glucose, pyruvate, and lactate, on motion characteristics, membrane integrity, and acrosomal status of stallion spermatozoa. MATERIALS AND METHODS: Freshly ejaculated stallion spermatozoa were incubated with combinations of glucose (5 mm), pyruvate (10 mm), and lactate (10 mm) for 0.5 to 4 h. Response to calcium ionophore A23187 (5 µm) was used to evaluate capacitation status. Motility was evaluated using computer-assisted sperm analysis, and plasma membrane and acrosomal integrity were evaluated by flow cytometry. RESULTS: Incubation with lactate alone for 2 h increased acrosomal sensitivity to A23187. Notably, incubation with lactate alone for 4 h induced a significant spontaneous increase in acrosome-reacted, membrane-intact (viable) spermatozoa, to approximately 50% of the live population, whereas no increase was seen with incubation in glucose or pyruvate alone. This acrosomal effect was observed in spermatozoa incubated at physiological pH as well as under alkaline conditions (medium pH approximately 8.5). Sperm motility declined concomitantly with the increase in acrosome-reacted spermatozoa. Sperm motility was significantly higher in pyruvate-only medium than in glucose or lactate. The addition of pyruvate to lactate-containing medium increased sperm motility but reduced the proportion of live acrosome-reacted spermatozoa in a dose-dependent fashion. DISCUSSION: This is the first study to demonstrate that incubation with a specific energy substrate, lactate, is associated with spontaneous acrosome reaction in spermatozoa. The proportion of live, acrosome-reacted spermatozoa obtained is among the highest reported for equine spermatozoa. CONCLUSION: These findings highlight the delicate control of key sperm functions, and may serve as a basis to increase our understanding of stallion sperm physiology.


Asunto(s)
Reacción Acrosómica , Ácido Láctico , Masculino , Animales , Caballos , Reacción Acrosómica/fisiología , Ácido Láctico/metabolismo , Calcimicina/farmacología , Semen , Motilidad Espermática , Espermatozoides/metabolismo , Acrosoma , Piruvatos/metabolismo , Piruvatos/farmacología , Glucosa/metabolismo , Capacitación Espermática
4.
Biomed Pharmacother ; 170: 116009, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38134632

RESUMEN

The goal of the present work was to develop novel ß-substituted-α-halomethyl acrylates from a methodology in an aqueous phase and to evaluate their bioactivity as potential inhibitors of mast cell activation. Eleven ß-substituted-α-halomethyl acrylates were synthesized through a modified Horner-Wadsworth-Emmons reaction. Compound 48/80 and the calcium ionophore A23187 stimulated the release of ß-hexosaminidase from mast cells. The effect induced by compound 48/80 was inhibited by compound 5 (320 µM) and compound 9 (160 and 320 µM) without causing cytotoxic effects. The effect induced by A23187 was inhibited by compound 5 (40, 80, 160, and 320 µM) without affecting cell viability. The inhibitory effects exhibited by compounds 5 and 9 were more potent than those of the reference compound sodium cromoglycate at the same concentrations. The biochemical results were consistent with the morphological findings obtained by light and transmission electron microscopy. This study reports, for the first time, that the new synthetic compounds methyl (Z)- 2-bromo-3-(furan-3-yl)acrylate (compound 5) and methyl (E)- 2-bromo-3-(3-bromophenyl)acrylate (compound 9) strongly inhibit mast cell degranulation, without affecting cell viability. The implications of these results are relevant as a basis for developing new anti-inflammatory and mast cell stabilizing drugs.


Asunto(s)
Degranulación de la Célula , Mastocitos , Calcimicina/farmacología , Acrilatos/farmacología , p-Metoxi-N-metilfenetilamina/farmacología
5.
Biochim Biophys Acta Gen Subj ; 1868(2): 130535, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103757

RESUMEN

BACKGROUND: Calcimycin (A23187) is a polyether antibiotic and divalent cation ionophore, extracted from Streptomyces chartrecensis. With wide variety of antimicrobial activities, it also exhibits cytotoxicity of tumor cells. Calcimycin exhibit therapeutic potential against tumor cell growth; however, the molecular mechanism remains to be fully elucidated. Present study explores the mechanism of calcimycin-induced apoptosis cancer cell lines. METHODS: Apoptotic induction in a dose-dependent manner were recorded with MTT assays, Phase contrast imaging, wound healing assay, fluorescence imaging by DAPI and AO/EB staining and FACS using cell line model. Mitochondrial potential was analyzed by TMRM assay as Ca2+ signaling is well known to be influenced and synchronized by mitochondria also. RESULTS: Calcimycin induces apoptosis in dose dependent manner, also accompanied by increased intracellular calcium-level and expression of purinergic receptor-P2RX4, a ligand-gated ion channel. CONCLUSION: Calcimycin tends to increase the intracellular calcium level, mRNA expression of ATP receptor P2RX4, and phosphorylation of p38. Blocking of either intracellular calcium by BAPTA-AM, P2RX4 expression by antagonist 5-BDBD, and phospho-p38 by SB203580, abrogated the apoptotic activity of calcimycin. GENERAL SIGNIFICANCE: Taken together, these results show that calcimycin induces apoptosis in P2RX4 and ATP mediated intracellular Ca2+ and p38 MAPK mediated pathway in both the cancer cell lines. This study explored a new mode of action for calcimycin in cancer that could be potentially employed in future studies for cancer therapeutic research. This study disentangles that the calcimycin-induced apoptotic cell death is P2RX4 and ATP involved, intracellular Ca2+ and p38 MAPK mediated pathway.


Asunto(s)
Apoptosis , Calcimicina , Calcio , Receptores Purinérgicos P2X4 , Células MCF-7 , Línea Celular Tumoral , Humanos , Calcimicina/farmacología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Espacio Intracelular/metabolismo , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Life Sci ; 334: 122234, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931744

RESUMEN

Intestinal ischemia-reperfusion (IIR) injury is associated with inflammation and oxidative stress, yet its precise mechanisms remain not fully understood. IIR injury is closely linked to the gut microbiota and its metabolites. The anti-inflammatory and antioxidant effects of Lactiplantibacillus plantarum are specific to IIR. In our study, we conducted a 30-day pre-treatment of SD rats with both a standard strain of Lactiplantibacillus plantarum and Lactiplantibacillus plantarum GL001. After a 7-day cessation of treatment, we induced an IIR injury model to investigate the mechanisms by which Lactiplantibacillus plantarum alleviates IIR damage. The results demonstrate that Lactiplantibacillus plantarum effectively mitigates the inflammatory and oxidative stress damage induced by IIR. Lactiplantibacillus plantarum GL001 can improve the gut microbiota by reducing the abundance of harmful bacteria and increasing the abundance of beneficial bacteria. In IIR intestinal tissue, the levels of secondary bile acids are elevated. The content of the bacterial metabolite Calcimycin increases. Annotations of metabolic pathways suggest that Lactiplantibacillus plantarum GL001 can alleviate IIR damage by modulating calcium-phosphorus homeostasis through the regulation of parathyroid hormone synthesis, secretion, and action. Microbiota-metabolite correlation analysis reveals a significant negative correlation between calcimycin and Lactonacillus and a significant positive correlation between calcimycin and Shigella. There is also a significant positive correlation between calcimycin and secondary bile acids. Lactiplantibacillus plantarum GL001 can alleviate oxidative damage induced by IIR through improvements in gut microbiota and intestinal tissue metabolism.


Asunto(s)
Estrés Oxidativo , Daño por Reperfusión , Ratas , Animales , Calcimicina/farmacología , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Bacterias , Ácidos y Sales Biliares
7.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569729

RESUMEN

Before NETs are released, the neutrophil undergoes structural changes. First, it flattens, accompanied by a change in cell shape and rearrangement of the cytoskeleton. Then, nuclear swelling begins, which ends with the ejection of NETs into the extracellular space. We used widefield and confocal fluorescence microscopy to register morphological and structural changes in neutrophils during activation and NETosis. Different types of activators were used, such as NOX-dependent PMA and calcium ionophore A23187. The measurements were performed in a series of sequential stages. In the first stage (30 s after addition of activators and immediately after stimulation of neutrophils), the response of neutrophils to A23187 and PMA exposure was studied. Subsequently, the characteristics of neutrophils in different phases of activation were examined over a longer period of time (30, 60, 120, 180, and 240 min). The specific features of NETosis development were analyzed separately. During the first 30 s, neutrophils appeared to be heterogeneous in shape and structure of the actin cytoskeleton. Characteristic cell shapes included 30″ type 1 cells, similar in shape to the control, with F-actin concentrated in the center of the cytoplasm, and 30″ type 2 cells, which had flattened (spread) shapes with increased frontal dimensions and F-actin distributed throughout the cell. Later, the development of nuclear swelling, the corresponding changes in neutrophil membranes, and NET release into the extracellular space were evaluated. The conditions determining the initiation of chromatin ejection and two characteristic types of decondensed chromatin ejection were revealed. The results obtained contribute to a better understanding of the biophysical mechanisms of neutrophil activation and NETosis development.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Neutrófilos/metabolismo , Calcimicina/farmacología , Actinas/metabolismo , Trampas Extracelulares/metabolismo , Cromatina/metabolismo
8.
Biol Pharm Bull ; 46(7): 874-882, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37394638

RESUMEN

Hypercholesterolemia is a major complication of arteriosclerosis. Mast cells in arteriosclerosis plaques induce inflammatory reactions and promote arterial sclerosis. In this study, we evaluated the pharmacological effects of simvastatin (SV)-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors on the degranulation of rat basophilic leukemia (RBL)-2H3 cells, which are commonly used as mast cell models. SV significantly decreased the degranulation induced by three types of stimulation: antigen antibody reaction (Ag-Ab), thapsigargin (Tg) serosal endoplasmic reticulum calcium ATPase (SERCA) inhibitor, and A23187 calcium ionophore. SV had a stronger inhibitory effect on degranulation induced by Ag-Ab stimulation than the other two stimulations. However, SV did not inhibit increase of intracellular Ca2+ concentrations. Mevalonate or geranylgeraniol co-treatment with SV completely prevented the inhibitory effect of SV on the degranulation induced by these stimulations. Immunoblotting results showed that SV inhibited protein kinase C (PKC) delta translocation induced by Ag-Ab but not by Tg or A23187. SV induced a reduction in active Rac1, and actin filament rearrangement. In conclusion, SV inhibits RBL-2H3 cell degranulation by inhibiting downstream signaling pathways, including the sequential degranulation pathway. These inhibitory effects were completely reversed by the addition of geranylgeraniol and might be induced by changes in the translocation of the small guanosine 5'-triphosphatase (GTPase) families Rab and Rho, which are related to vesicular transport PKC delta translocation and actin filament formation, respectively. These changes are caused by the inhibition of HMG-CoA reductase by SV following the synthesis of geranylgeranyl pyrophosphates, which play important roles in the activation of small GTPases, Rab.


Asunto(s)
Degranulación de la Célula , Simvastatina , Animales , Ratas , Degranulación de la Célula/fisiología , Calcimicina/farmacología , Simvastatina/farmacología , Transducción de Señal , Mastocitos , Calcio/metabolismo
9.
Theriogenology ; 210: 169-181, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37517302

RESUMEN

Evaluation of acrosome function in stallion sperm is mostly based on the use of inducers of acrosomal exocytosis (AE), such as the calcium ionophore A23187 or progesterone. Recently, it has been reported that incubation of stallion sperm under presumed capacitating conditions (i.e., medium formulated with calcium, bicarbonate, and bovine serum albumin) using a lactate-only containing medium (Lac-MW) results in a high rate of spontaneous AE in viable sperm (AE/Viable). In the current study, we developed an alternative assay of acrosome function for stallion sperm following the incubation of sperm in a medium formulated only with lactate as an energy substrate (Lac-MW). In Experiment 1, freshly ejaculated stallion sperm was incubated with 10 µM A23187, Lac-MW, or Control, for up to 6 h under capacitating conditions. The percentages of motile sperm, viable sperm, total AE (Total AE), and AE in viable sperm (AE/Viable) were compared among treatment groups. Incubation in Lac-MW, but not with Control or A23187, resulted in a time-dependent increase in the percentage of AE/Viable, as determined by flow cytometry, particularly at 4 and 6 h of incubation (P < 0.05). In Experiment 2, freshly ejaculated sperm was incubated in Lac-MW for up to 6 h, and the occurrence of protein tyrosine phosphorylation and AE/Viable were determined. At 4h and 6h of incubation in Lac-MW, ∼40% of the sperm displayed a protein tyrosine phosphorylation immunofluorescence pattern that coincides with that recently associated with stallion sperm capacitation (i.e., immunofluorescence signal at the acrosome and midpiece). In Experiment 3, the rate of AE/Viable sperm was compared among freshly ejaculated, cool-stored, and frozen/thawed stallion sperm. Except at 2h incubation in Lac-MW, differences in mean AE/Viable among fresh, cool-stored, and frozen/thawed sperm were not observed (P > 0.05). In Experiment 4, the relationship between Total AE (A23187), or AE/Viable (Lac-MW), and in vivo fertility of 5 stallions was determined. A linear relationship was observed between mean AE/Viable and the per-cycle (r = 0.93; P < 0.05) and seasonal (r = 0.66; P < 0.05) pregnancy rates of five stallions used for artificial insemination with cool-stored semen. In Experiment 5, frozen/thawed sperm from subfertile Thoroughbred (TB) stallions, known to carry the susceptibility genotype for Impaired Acrosomal Exocytosis (IAE; FKBP6 A/A-A/A) was evaluated following incubation in Lac-MW. Sperm from subfertile TB stallions with IAE had lower mean AE/Viable, at both 4h and 6h incubation in Lac-MW, when compared to that of fertile control stallions (P < 0.05). Overall, the Lac-MW model validated in the current study may be a useful complementary assay to evaluate the ability of stallion sperm to physiologically undergo AE and to study stallion fertility potential. This acrosome function assay can be used to evaluate fresh, cool-stored, or frozen/thawed stallion sperm, and describes a strong linear relationship with in vivo-fertility of stallions used in artificial insemination programs.


Asunto(s)
Acrosoma , Semen , Embarazo , Femenino , Masculino , Caballos , Animales , Ácido Láctico , Calcimicina/farmacología , Espermatozoides/fisiología , Exocitosis , Tirosina , Motilidad Espermática
10.
J Assist Reprod Genet ; 40(7): 1661-1668, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37247099

RESUMEN

PURPOSE: Despite the success of ICSI in treating severe male factor infertile patients, total fertilization failure (FF) still occurs in around 1-3% of ICSI cycles. To overcome FF, the use of calcium ionophores has been proposed to induce oocyte activation and restore fertilization rates. However, assisted oocyte activation (AOA) protocols and ionophores vary between laboratories, and the morphokinetic development underlying AOA remains understudied. METHODS: A prospective single-center cohort study involving 81 in vitro matured metaphase-II oocytes from 66 oocyte donation cycles artificially activated by A23187 (GM508 CultActive, Gynemed) (n=42) or ionomycin (n=39). Parthenogenesis was induced, and morphokinetic parameters (tPNa, tPNf, t2-t8, tSB, and tB) were compared between the 2 study groups and a control group comprising 39 2PN-zygotes from standard ICSI cycles. RESULTS: Ionomycin treatment resulted in higher activation rates compared to A23187 (38.5% vs 23.8%, p=0.15). Importantly, none of the A23187-activated parthenotes formed blastocysts. When evaluating the morphokinetic dynamics between the two ionophores, we found that tPNa and tPNf were significantly delayed in the group treated by A23187 (11.84 vs 5.31, p=0.002 and 50.15 vs 29.69, p=0.005, respectively). t2 was significantly delayed in A23187-activated parthenotes when compared to the double heterologous control embryo group. In contrast, the morphokinetic development of ionomycin-activated parthenotes was comparable to control embryos (p>0.05). CONCLUSION: Our results suggest that A23187 leads to lower oocyte activation rates and profoundly affects morphokinetic timings and preimplantation development in parthenotes. Despite our limited sample size and low parthenote competence, standardization and further optimization of AOA protocols may allow wider use and improved outcomes for FF cycles.


Asunto(s)
Oocitos , Inyecciones de Esperma Intracitoplasmáticas , Masculino , Animales , Ionomicina/farmacología , Ionóforos/farmacología , Calcimicina/farmacología , Estudios de Cohortes , Inyecciones de Esperma Intracitoplasmáticas/métodos
11.
Platelets ; 34(1): 2206916, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37143347

RESUMEN

Cryopreservation significantly alters the phenotype of platelets; generating distinct subpopulations, which may influence the formation of platelet leukocyte aggregates (PLA). PLAs are immunomodulatory and have been associated with transfusion-associated adverse events. As such, the aim of this study was to examine the effect of cryopreservation on the ability of platelets to form PLAs, using a monocyte-like cell line (THP-1). Platelets were tested pre-freeze, post-thaw and following stimulation with TRAP-6 or A23187, both alone and following co-culture with THP-1 cells for 1 and 24 hours (n = 6). Platelet subpopulations and platelet-THP-1 cell aggregates were analyzed using multi-color imaging flow cytometry using Apotracker Green (ApoT), CD42b, CD62P, CD61, and CD45. Cryopreservation resulted in the generation of activated (ApoT-/CD42b+/CD62P+), procoagulant (ApoT+/CD42b+/CD62P+) and a novel (ApoT+/CD42b+/CD62P-) platelet subpopulation. Co-incubation of cryopreserved platelets with THP-1 cells increased PLA formation compared to pre-freeze but not TRAP-6 or A23187 stimulated platelets. P-selectin on the surface membrane was correlated with increased PLA formation. Our findings demonstrate that cryopreservation increases the interaction between platelets and THP-1 cells, largely due to an increase in procoagulant platelets. Further investigation is required to determine the immunological consequences of this interaction.


What do we know? Cryopreserved platelets are an alternative to overcome issues with the short shelf-life of room-temperature stored plateletsAfter thawing, cryopreserved platelets exhibit changes in cell structure and receptor abundanceActivated platelets can attach to leukocytes, forming platelet-leukocyte aggregates and altering their immune functionPlatelet-leukocyte aggregates can increase inflammation, which is associated with adverse events after transfusion, which can negatively affect patient outcomesWhat did we discover? Cryopreservation results in a heterogenous mix of platelet subpopulationsCryopreserved platelets display increased adherence to a monocyte-like cell line (THP-1 cells). Platelet-THP-1 aggregate formation was linked to expression of CD62P on the surface of the plateletsThe increase in cryopreserved platelet-THP-1 cell aggregates was largely due to an increase in procoagulant plateletsWhat is the impact? Our data demonstrate that cryopreservation increases platelet interaction with a monocyte-like cell lineThis may mediate immune responses and/or circulation time of transfused platelets.


Asunto(s)
Plaquetas , Monocitos , Calcimicina/metabolismo , Calcimicina/farmacología , Plaquetas/metabolismo , Monocitos/metabolismo , Fenotipo , Criopreservación/métodos , Poliésteres/metabolismo , Selectina-P/metabolismo , Activación Plaquetaria
12.
Platelets ; 34(1): 2139365, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36325627

RESUMEN

Activated platelets possess procoagulant activity expressing on their surface phosphatidylserine (PS), a substrate for assembling coagulation complexes. We examined the effects of platelets activated by different agonists on fibrin formation and thrombin generation and compared these effects with each other and with PS expression. Modified plasma recalcification assay was developed to assess platelet effects on fibrin formation. Washed human platelets were left intact or activated by A23187 ionophore, collagen, arachidonic acid, ADP or TRAP (Thrombin Receptor Activating Peptide) and spun down in 96-well plates. Plasma was then added, recalcified, and fibrin formation was monitored by light absorbance. Platelets prepared in the same way were tested for their effect on thrombin generation. PS expression was evaluated by flow cytometry using annexin V staining. Platelets significantly accelerated fibrin formation and thrombin generation. They shortened lag phase and increased maximum rate of plasma clotting, and increased peak and maximum rate of thrombin generation. In both tests platelets were presumably activated by endogenous thrombin formed in plasma after triggering coagulation reactions. However, pretreatment with exogenous agonists additionally increased platelet procoagulant activity. It reached the maximum after incubation with A23187, being lower with collagen and arachidonic acid and minimum with ADP and TRAP (the latter might be ineffective due to competition with endogenous thrombin). The effects of platelets activated by different agonists on fibrin formation and thrombin generation correlate with each other and correspond to PS expression on their surface.


Why was the study done? Platelets and blood coagulation system interact with each other in hemostasis and intravascular thrombosis.Direct platelet effects on fibrin formation (plasma clotting), the final stage of blood coagulation cascade, have been insufficiently studied.The work is aimed at developing a method for studying platelet participation in fibrin formation in blood plasma and investigating the influence of platelet agonists on this reaction.What is new? Platelets significantly accelerate fibrin formation and their activation with various agonists (thrombin, collagen, arachidonic acid) enhances these effects.Effects of platelets on fibrin formation correlated with their ability to stimulate thrombin generation in blood plasmaEffects of platelets on fibrin formation and thrombin generation correlated with the level of phosphatidylserine exposure on their surfaceWhat is the impact? This study provides further evidence that platelet procоagulant effects on fibrin formation should be considered in investigations of platelet involvement in hemostatic and thrombotic reactions and in the evaluation of the efficacy of antiplatelet drugs.


Asunto(s)
Plaquetas , Trombina , Humanos , Trombina/farmacología , Trombina/metabolismo , Plaquetas/metabolismo , Fibrina/metabolismo , Calcimicina/metabolismo , Calcimicina/farmacología , Ácido Araquidónico/farmacología , Ácido Araquidónico/metabolismo , Fosfatidilserinas/metabolismo , Colágeno/farmacología , Colágeno/metabolismo , Adenosina Difosfato/farmacología , Adenosina Difosfato/metabolismo
13.
Allergol Int ; 72(3): 466-476, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36586745

RESUMEN

BACKGROUND: Platelets play a modulatory role in inflammatory response by secreting a vast array of granules and disintegrating into membrane-bound microparticles upon activation. The interplay between eosinophils and platelets is postulated to be implicated in the pathology of allergic airway inflammation. In this study, we investigated whether activated platelets can induce eosinophil extracellular trap (EET) formation, a cellular process by which activated eosinophils release net-like DNA fibers. METHODS: Platelets were stimulated with the calcium ionophore, A23187, and the platelet agonists, thrombin and adenosine diphosphate (ADP). Platelet cultures were fractionated into conditioned medium (CM) and pellet, which were then overlaid on eosinophils to examine EET formation. RESULTS: The CM and pellet from A23187-activated platelets stimulated eosinophils to generate EET, whereas those from thrombin- or ADP-activated platelets failed to induce such generation. The EET-inducing activity of the A23187-activated platelet culture was linearly proportional to the number of activated platelets. Interestingly, while EET formation induced by the direct stimulation of eosinophils with A23187 was NADPH oxidase (NOX)-dependent, EET formation induced by A23187-activated platelets was NOX-independent and significantly inhibited by necroptosis pathway inhibitors. CONCLUSIONS: Activated platelets and their products may induce EET formation, thereby potentiating their role in eosinophilic airway inflammation.


Asunto(s)
Plaquetas , Trampas Extracelulares , Humanos , Plaquetas/metabolismo , Trombina/farmacología , Trombina/metabolismo , Ionóforos de Calcio/metabolismo , Calcimicina/farmacología , Calcimicina/metabolismo , Trampas Extracelulares/metabolismo , Inflamación/metabolismo , Adenosina Difosfato/metabolismo , Calcio/metabolismo
14.
BMC Pregnancy Childbirth ; 22(1): 894, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460987

RESUMEN

BACKGROUND: Calcium (Ca2+) ionophores are now mainly considered as efficient treatments for fertilization failure. Recently, its application for rescuing poor embryo development was proposed but still non-routine. This study aimed to explore whether Ca2+ ionophore improves embryo development and pregnancy outcomes in patients with poor embryo development in previous intracytoplasmic sperm injection (ICSI) cycles. METHODS: This study included 97 patients undergoing assisted oocyte activation (AOA) with Ca2+ ionophore (calcimycin, A23187) treatment. Preimplantation embryonic development and clinical outcomes were compared between ICSI-AOA cycles (AOA group) and previous ICSI cycles of the same patients in which poor embryo developmental potential was present (non-AOA group). Subgroups stratified by maternal age (< 35, 35-40, ≥ 40 years, respectively) were analyzed separately. RESULTS: A total of 642 MII oocytes were collected in AOA group, and 689 in non-AOA group. Significantly higher day 3 good quality embryo rate (P = 0.034), good quality blastocyst formation rate (P <  0.001), and utilization rate (P <  0.001) were seen in AOA group. Similar results were seen in each subgroup. For pregnancy outcomes, there were significant differences in clinical pregnancy rate (P = 0.039) and live birth rate (P = 0.045) in total group. In subgroup aged < 35 years, biochemical (P = 0.038), clinical (P = 0.041), and ongoing pregnancy rate (P = 0.037) in AOA group were significantly higher than that in non-AOA group. No significant improvement for clinical outcomes for subgroups aged 35-40 and aged ≥40. CONCLUSION: The study suggests that calcimycin could improve preimplantation development and pregnancy outcomes in patients aged < 35 years with embryo developmental problems in previous ICSI cycles.


Asunto(s)
Resultado del Embarazo , Inyecciones de Esperma Intracitoplasmáticas , Masculino , Humanos , Femenino , Embarazo , Ionóforos de Calcio/farmacología , Ionóforos de Calcio/uso terapéutico , Calcimicina/farmacología , Calcimicina/uso terapéutico , Semen , Desarrollo Embrionario , Ionóforos
15.
Biosensors (Basel) ; 12(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36140064

RESUMEN

Microfluidics and lab-on-chip technologies have been used in a wide range of biomedical applications. They are known as versatile, rapid, and low-cost alternatives for expensive equipment and time-intensive processing. The veterinary industry and human fertility clinics could greatly benefit from label-free and standardized methods for semen analysis. We developed a tool to determine the acrosome integrity of spermatozoa using microfluidic impedance cytometry. Spermatozoa from boars were treated with the calcium ionophore A23187 to induce acrosome reaction. The magnitude, phase and opacity of individual treated and non-treated (control) spermatozoa were analyzed and compared to conventional staining for acrosome integrity. The results show that the opacity at 19 MHz over 0.5 MHz is associated with acrosome integrity with a cut-off threshold at 0.86 (sensitivity 98%, specificity 97%). In short, we have demonstrated that acrosome integrity can be determined using opacity, illustrating that microfluidic impedance cytometers have the potential to become a versatile and efficient alternative in semen analysis and for fertility treatments in the veterinary industry and human fertility clinics.


Asunto(s)
Acrosoma , Microfluídica , Animales , Calcimicina/farmacología , Ionóforos de Calcio , Impedancia Eléctrica , Humanos , Masculino , Espermatozoides , Porcinos
16.
Front Immunol ; 13: 949451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967325

RESUMEN

In response to several types of bacteria, as well as pharmacological agents, neutrophils produce extracellular vesicles (EVs) and release DNA in the form of neutrophil extracellular traps (NETs). However, it is unknown whether these two neutrophil products cooperate to modulate inflammation. Consistent with vital NETosis, neutrophils challenged with S. aureus, as well as those treated with A23187, released significantly more DNA relative to untreated or fMLF-treated neutrophils, with no lysis occurring for any condition. To test the hypothesis that EVs generated during NETosis caused macrophage inflammation, we isolated and characterized EVs from A23187-treated neutrophils (A23187-EVs). A23187-EVs associated with neutrophil granule proteins, histone H3, transcription factor A, mitochondrial (TFAM), and nuclear and mitochondrial DNA (mtDNA). We showed that DNA from A23187-EVs, when transfected into macrophages, led to production of IL-6 and IFN-α2, and this response was blunted by pre-treatment with the STING inhibitor H151. Next, we confirmed that A23187-EVs were engulfed by macrophages, and showed that they induced cGAS-STING-dependent IL-6 production. In contrast, neither EVs from untreated or fMLF-treated cells exhibited pro-inflammatory activity. Although detergent-mediated lysis of A23187-EVs diminished IL-6 production, removal of surface-associated DNA with DNase I treatment had no effect, and A23187-EVs did not induce IFN-α2 production. Given these unexpected results, we investigated whether macrophage mtDNA activated the cGAS-STING signaling axis. Consistent with mitochondrial outer membrane permeabilization (MOMP), a defined mechanism of mtDNA release, we observed macrophage mitochondrial membrane depolarization, a decrease in cytosolic Bax, and a decrease in mitochondrial cytochrome c, suggesting that macrophage mtDNA may initiate this EV-dependent signaling cascade. All together, these data demonstrate that A23187-EVs behave differently than transfected NET- or EV-DNA, and that neutrophil-derived EVs could be used as a model to study NF-κB-dependent STING activation.


Asunto(s)
Vesículas Extracelulares , Neutrófilos , Calcimicina/metabolismo , Calcimicina/farmacología , Cromogranina A , ADN Mitocondrial/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Neutrófilos/metabolismo , Nucleotidiltransferasas/metabolismo , Staphylococcus aureus/metabolismo
17.
Reprod Biomed Online ; 45(5): 878-883, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36038485

RESUMEN

RESEARCH QUESTION: Can 1-day old human unfertilized oocytes activate and blastulate after exposure to calcium ionophore (Ca.I) A23187? DESIGN: Prospective randomized trial analysis of sibling oocytes. Seventy unfertilized sibling oocytes from 24 couples were randomly split into two groups. In the treatment group, 35 oocytes were cultured with 5-µM Ca.I A23187 for 10 min, washed and cultured until day 6 of development (D+6). The remaining 35 oocytes (control group) were similarly cultured until D+6. Activation, cleavage and blastulation rates were compared between the two groups. RESULTS: Comparable activation rates were observed in the oocytes incubated with Ca.I A23187 and in the control group (11.4% versus 17.1%; P = 0.49). The cleavage rate observed was 45.7% in both groups. None of the embryos reached blastocyst stage. CONCLUSIONS: Activation and cleavage can occur in unfertilized oocytes after the diagnosis of failure to fertilize. Unfortunately, the prevalence of activation is not affected by exposure to Ca.I A23187. Additionally, these embryos have no tangible reproductive potential as they arrest before reaching the blastocyst stage.


Asunto(s)
Oocitos , Inyecciones de Esperma Intracitoplasmáticas , Humanos , Ionóforos de Calcio/farmacología , Calcimicina/farmacología , Estudios Prospectivos , Oocitos/fisiología
18.
ACS Infect Dis ; 8(9): 1851-1868, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-35948057

RESUMEN

Drug resistance is a significant concern in the treatment of diseases, including cryptococcosis caused by Cryptococcus neoformans (Cne) and Cryptococcus gattii (Cga). Alternative drug targets are necessary to overcome drug resistance before it attains a critical stage. Splicing of inteins from pro-protein precursors is crucial for activities of essential proteins hosting intein elements in many organisms, including human pathogens such as Cne and Cga. Through a high-throughput screening, we identified calcimycin (CMN) as a potent Prp8 intein splicing inhibitor with a minimum inhibitory concentration (MIC) of 1.5 µg/mL against the wild-type Cne-H99 (Cne-WT or Cne). In contrast, CMN inhibited the intein-less mutant strain (Cne-Mut) with a 16-fold higher MIC. Interestingly, Aspergillus fumigatus and a few Candida species were resistant to CMN. Further studies indicated that CMN reduced virulence factors such as urease activity, melanin production, and biofilm formation in Cne. CMN also inhibited Cne intracellular infection in macrophages. In a target-specific split nanoluciferase assay, the IC50 of CMN was 4.6 µg/mL. Binding of CMN to recombinant Prp8 intein was demonstrated by thermal shift assay and microscale thermophoresis. Treating Cne cells with CMN reduced intein splicing. CMN was fungistatic and showed a synergistic effect with the known antifungal drug amphotericin B. Finally, CMN treatment at 20 mg/kg body weight led to 60% reduction in lung fungal load in a cryptococcal pulmonary infection mouse model. Overall, CMN represents a potent antifungal with a novel mechanism of action to treat Cne and possibly Cga infections.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Animales , Antifúngicos/metabolismo , Antifúngicos/farmacología , Calcimicina/metabolismo , Calcimicina/farmacología , Criptococosis/tratamiento farmacológico , Proteínas Fúngicas/química , Humanos , Inteínas , Ratones , Alineación de Secuencia
19.
Sci Rep ; 12(1): 13082, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906274

RESUMEN

The scarce research about the worldwide used glyphosate-based herbicide Roundup is controversial in human reproduction, especially spermatozoa. This study investigates the in vitro effect in human spermatozoa of Roundup Ultra Plus (RUP), its active ingredient glyphosate and its non-active, surfactant. Human spermatozoa were incubated (1 h, 37 °C) in presence/absence of RUP 0.01%, glyphosate, or equivalent surfactant concentration. Motility and sperm parameters were analyzed by C.A.S.A and flow cytometry, respectively. RUP significantly increases sperm plasma membrane lipid disorganization in a concentration-dependent manner while it decreases plasma membrane integrity. RUP significantly increases the death spermatozoa population after A23187-induced acrosome reaction, without affecting sperm viability, mitochondrial membrane potential, ROS content, acrosome membrane damage, phosphatidylserine exposure, A23187-induced acrosome reaction or GSK3 phosphorylation. RUP also significantly decreases motile and the a + b sperm populations. Interestingly, all sperm effects caused by RUP 0.01% are mimicked by its surfactant POEA at equivalent concentration. However, glyphosate does not affect any sperm parameter, even using 10-times higher concentration than the RUP 0.01% equivalent. RUP disturbs lipid organization and integrity of human sperm plasma membrane and reduces motility, without affecting viability or functional parameters. Importantly, RUP adverse effects in human spermatozoa are caused by the surfactant and no by glyphosate.


Asunto(s)
Herbicidas , Motilidad Espermática , Calcimicina/farmacología , Membrana Celular , Glucógeno Sintasa Quinasa 3/metabolismo , Herbicidas/metabolismo , Herbicidas/toxicidad , Humanos , Lípidos/farmacología , Masculino , Semen , Espermatozoides/metabolismo , Tensoactivos/metabolismo , Tensoactivos/toxicidad
20.
Andrologia ; 54(8): e14470, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35679508

RESUMEN

NOX5 is introduced as a new therapeutic target for infertility treatment. This study aimed to compare the basal and stimulated reactive oxygen species (ROS) production and sperm function in human teratozoospermic (n = 15) and normozoospermic (n = 17) semen samples following calcium overload and NOX5 activation. Washed spermatozoa incubated for 1 h under five various conditions: control group, adding a calcium ionophore A23187, phorbol myristate acetate (PMA), A23187 + PMA, and diphenylene iodonium (DPI) + A23187 + PMA. ROS generation was measured immediately after treatment for 30 min. Motility, viability, acrosome reaction, and apoptosis were evaluated after 1-h incubation. ROS production significantly increased when A23187 or PMA was added to the sperm medium. DPI had suppressive effects on ROS generation. Progressive and total motility significantly decreased following calcium elevation and NOX5 activation, which was somewhat returned by DPI. Necrotic and live cells in teratozoospermia was, respectively, higher and lower than normozoospermia samples. Incubation with A23187 significantly increased the percentage of early and late apoptosis. Teratozoosperm are more vulnerable than normal spermatozoa, and produce more basal and stimulated ROS. It seems that calcium overload induces apoptosis in spermatozoa and loss of viability through MPT pore opening and increased intracellular ROS.


Asunto(s)
Calcio , NADPH Oxidasa 5 , Especies Reactivas de Oxígeno , Espermatozoides , Calcimicina/farmacología , Calcio/metabolismo , Humanos , Masculino , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semen/efectos de los fármacos , Semen/metabolismo , Motilidad Espermática/efectos de los fármacos , Motilidad Espermática/genética , Motilidad Espermática/fisiología , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...