Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.476
Filtrar
1.
Commun Biol ; 7(1): 567, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745046

RESUMEN

Lymph node metastasis, primarily caused by the migration of oral squamous cell carcinoma (OSCC) cells, stands as a crucial prognostic marker. We have previously demonstrated that EP4, a subtype of the prostaglandin E2 (PGE2) receptor, orchestrates OSCC cell migration via Ca2+ signaling. The exact mechanisms by which EP4 influences cell migration through Ca2+ signaling, however, is unclear. Our study aims to clarify how EP4 controls OSCC cell migration through this pathway. We find that activating EP4 with an agonist (ONO-AE1-473) increased intracellular Ca2+ levels and the migration of human oral cancer cells (HSC-3), but not human gingival fibroblasts (HGnF). Further RNA sequencing linked EP4 to calmodulin-like protein 6 (CALML6), whose role remains undefined in OSCC. Through protein-protein interaction network analysis, a strong connection is identified between CALML6 and calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), with EP4 activation also boosting mitochondrial function. Overexpressing EP4 in HSC-3 cells increases experimental lung metastasis in mice, whereas inhibiting CaMKK2 with STO-609 markedly lowers these metastases. This positions CaMKK2 as a potential new target for treating OSCC metastasis. Our findings highlight CALML6 as a pivotal regulator in EP4-driven mitochondrial respiration, affecting cell migration and metastasis via the CaMKK2 pathway.


Asunto(s)
Carcinoma de Células Escamosas , Movimiento Celular , Mitocondrias , Neoplasias de la Boca , Subtipo EP4 de Receptores de Prostaglandina E , Humanos , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Mitocondrias/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/genética , Animales , Ratones , Línea Celular Tumoral , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Calmodulina/metabolismo , Calmodulina/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
2.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673845

RESUMEN

Ca2+ binding to the ubiquitous Ca2+ sensing protein calmodulin (CaM) activates the intermediate conductance Ca2+-activated SK4 channel. Potential hydrophilic pockets for CaM binding have been identified at the intracellular HA and HB helices in the C-terminal of SK4 from the three published cryo-EM structures of SK4. Single charge reversal substitutions at either site, significantly weakened the pull-down of SK4 by CaM wild-type (CaM), and decreased the TRAM-34 sensitive outward K+ current densities in native HEK293T cells when compared with SK4 WT measured under the same conditions. Only the doubly substituted SK4 R352D/R355D (HB helix) obliterated the CaM-mediated pull-down and thwarted outward K+ currents. However, overexpression of CaM E84K/E87K, which had been predicted to face the arginine doublet, restored the CaM-mediated pull-down of SK4 R352D/R355D and normalized its whole-cell current density. Virtual analysis of the putative salt bridges supports a unique role for the positively charged arginine doublet at the HB helix into anchoring the interaction with the negatively charged CaM glutamate 84 and 87 CaM. Our findings underscore the unique contribution of electrostatic interactions in carrying CaM binding onto SK4 and support the role of the C-terminal HB helix to the Ca2+-dependent gating process.


Asunto(s)
Calcio , Calmodulina , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Unión Proteica , Electricidad Estática , Calmodulina/metabolismo , Calmodulina/química , Humanos , Calcio/metabolismo , Células HEK293 , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/química , Activación del Canal Iónico , Modelos Moleculares , Sitios de Unión
3.
Plant Physiol Biochem ; 210: 108642, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643538

RESUMEN

Calmodulin-like proteins (CMLs) are unique Ca2+ sensors and play crucial roles in response to abiotic stress in plants. A salt-repressed PvCML9 from halophyte seashore paspalum (Paspalum vaginatum O. Swartz) was identified. PvCML9 was localized in the cytoplasm and nucleus and highly expressed in roots and stems. Overexpression of PvCML9 led to reduced salt tolerance in rice and seashore paspalum, whereas downregulating expression of PvCML9 showed increased salt tolerance in seashore paspalum as compared with the wild type (WT), indicating that PvCML9 regulated salt tolerance negatively. Na+ and K+ homeostasis was altered by PvCML9 expression. Lower level of Na+/K+ ratio in roots and shoots was maintained in PvCML9-RNAi lines compared with WT under salt stress, but higher level in overexpression lines. Moreover, higher levels of SOD and CAT activities and proline accumulation were observed in PvCML9-RNAi lines compared with WT under salt stress, but lower levels in overexpression lines, which altered ROS homeostasis. Based on the above data, mutation of its homolog gene OsCML9 in rice by CRISPR/Cas9 was performed. The mutant had enhanced salt tolerance without affecting rice growth and development, suggesting that OsCML9 gene is an ideal target gene to generate salt tolerant cultivars by genome editing in the future.


Asunto(s)
Calmodulina , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Tolerancia a la Sal , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Oryza/genética , Oryza/metabolismo , Calmodulina/metabolismo , Calmodulina/genética , Potasio/metabolismo , Plantas Modificadas Genéticamente , Sodio/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Homeostasis
4.
Insect Biochem Mol Biol ; 169: 104126, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663758

RESUMEN

Insect wax accumulates on the surface of insect cuticle, which acts as an important protective barrier against rain, ultraviolet light radiation, pathogens, etc. The waxing behavior, wax composition and molecular mechanism underling wax biosynthesis are unclear in dustywings. Herein, the current study determined the vital developmental stage for waxing behavior in dustywings, examined the components of waxy secretions, and identified key regulatory genes for wax biosynthesis. The wax glands were mainly located on the thorax and abdomen of dustywing adults. The adults spread the waxy secretions over their entire body surface. The metabolomics analysis identified 32 lipids and lipid-like molecules, 15 organic acids and derivatives, 7 benzenoids, etc. as the main components of waxy secretions. The fatty acids represented the largest proportion of the category of lipid and lipid-like molecules. The conjoint analysis of metabolomics and transcriptomics identified two crucial genes fatty acyl-CoA reductase (CsFAR) and calmodulin (CsCaM) for wax biosynthesis. The down-regulation of these genes via nanocarrier-mediated RNA interference technology significantly reduced the amount of wax particles. Notably, the RNAi of CsCaM apparently suppressed the expression of most genes in fatty acid biosynthesis pathway, indicating the CsCaM might act as a main upstream regulator of fatty acid biosynthesis pathway.


Asunto(s)
Calmodulina , Ácidos Grasos , Ceras , Animales , Calmodulina/metabolismo , Calmodulina/genética , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Ceras/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Vías Biosintéticas
5.
Biomed Pharmacother ; 174: 116602, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636396

RESUMEN

The development of new molecules for the treatment of calmodulin related cardiovascular or neurodegenerative diseases is an interesting goal. In this work, we introduce a novel strategy with four main steps: (1) chemical synthesis of target molecules, (2) Förster Resonance Energy Transfer (FRET) biosensor development and in vitro biological assay of new derivatives, (3) Cheminformatics models development and in vivo activity prediction, and (4) Docking studies. This strategy is illustrated with a case study. Firstly, a series of 4-substituted Riluzole derivatives 1-3 were synthetized through a strategy that involves the construction of the 4-bromoriluzole framework and its further functionalization via palladium catalysis or organolithium chemistry. Next, a FRET biosensor for monitoring Ca2+-dependent CaM-ligands interactions has been developed and used for the in vitro assay of Riluzole derivatives. In particular, the best inhibition (80%) was observed for 4-methoxyphenylriluzole 2b. Besides, we trained and validated a new Networks Invariant, Information Fusion, Perturbation Theory, and Machine Learning (NIFPTML) model for predicting probability profiles of in vivo biological activity parameters in different regions of the brain. Next, we used this model to predict the in vivo activity of the compounds experimentally studied in vitro. Last, docking study conducted on Riluzole and its derivatives has provided valuable insights into their binding conformations with the target protein, involving calmodulin and the SK4 channel. This new combined strategy may be useful to reduce assay costs (animals, materials, time, and human resources) in the drug discovery process of calmodulin inhibitors.


Asunto(s)
Técnicas Biosensibles , Calmodulina , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores , Riluzol , Calmodulina/antagonistas & inhibidores , Calmodulina/metabolismo , Técnicas Biosensibles/métodos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Riluzol/farmacología , Riluzol/síntesis química , Riluzol/química , Transferencia Resonante de Energía de Fluorescencia , Animales , Humanos , Aprendizaje Automático
6.
J Biol Inorg Chem ; 29(2): 243-250, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38580821

RESUMEN

Calmodulin (CaM) binds to a linker between the oxygenase and reductase domains of nitric oxide synthase (NOS) to regulate the functional conformational dynamics. Specific residues on the interdomain interface guide the domain-domain docking to facilitate the electron transfer in NOS. Notably, the docking interface between CaM and the heme-containing oxygenase domain of NOS is isoform specific, which is only beginning to be investigated. Toward advancing understanding of the distinct CaM-NOS docking interactions by infrared spectroscopy, we introduced a cyano-group as frequency-resolved vibrational probe into CaM individually and when associated with full-length and a bi-domain oxygenase/FMN construct of the inducible NOS isoform (iNOS). Site-specific, selective labeling with p-cyano-L-phenylalanine (CNF) by amber suppression of CaM bound to the iNOS has been accomplished by protein coexpression due to the instability of recombinant iNOS protein alone. We introduced CNF at residue 108, which is at the putative CaM-heme (NOS) docking interface. CNF was also introduced at residue 29, which is distant from the docking interface. FT IR data show that the 108 site is sensitive to CaM-NOS complex formation, while insensitivity to its association with the iNOS protein or peptide was observed for the 29 site. Moreover, narrowing of the IR bands at residue 108 suggests the C≡N probe experiences a more limited distribution of environments, indicating side chain restriction apparent for the complex with iNOS. This initial work sets the stage for residue-specific characterizations of structural dynamics of the docked states of NOS proteins.


Asunto(s)
Calmodulina , Espectrofotometría Infrarroja , Calmodulina/química , Calmodulina/metabolismo , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico Sintasa de Tipo II/metabolismo , Unión Proteica , Simulación del Acoplamiento Molecular
7.
Biophys J ; 123(7): 867-884, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38433447

RESUMEN

The activities of the transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable nonselective cation channel, are controlled by its surrounding membrane lipids (e.g., cholesterol, phosphoinositides). The transmembrane region of TRPV4 contains a cholesterol recognition amino acid consensus (CRAC) motif and its inverted (CARC) motif located in the plasmalemmal cytosolic leaflet. TRPV4 localizes in caveolae, a bulb-shaped cholesterol-rich domain at the plasma membrane. Here, we visualized the spatiotemporal interactions between TRPV4 and cholesterol at the plasma membrane in living cells by dual-color single-molecule imaging using total internal reflection fluorescence microscopy. To this aim, we labeled cholesterol at the cytosolic leaflets of the plasma membrane using a cholesterol biosensor, D4H. Our single-molecule tracking analysis showed that the TRPV4 molecules colocalize with D4H-accessible cholesterol molecules mainly in the low fluidity membrane domains in which both molecules are highly clustered. Colocalization of TRPV4 and D4H-accessible cholesterol was observed both inside and outside of caveolae. Agonist-evoked TRPV4 activation remarkably decreased colocalization probability and association rate between TRPV4 and D4H-accessible cholesterol molecules. Interestingly, upon TRPV4 activation, the particle density of D4H-accessible cholesterol molecules was decreased and the D4H-accessible cholesterol molecules in the fast-diffusing state were increased at the plasma membrane. The introduction of skeletal dysplasia-associated R616Q mutation into the CRAC/CARC motif of TRPV4, which reduced the interaction with cholesterol clusters, could not alter the D4H-accessible cholesterol dynamics. Mechanistically, TRPV4-mediated Ca2+ influx and the C-terminal calmodulin-binding site of TRPV4 are essential for modulating the plasmalemmal D4H-accessible cholesterol dynamics. We propose that TRPV4 remodels its surrounding plasmalemmal environment by manipulating cholesterol dynamics through Ca2+ influx.


Asunto(s)
Señalización del Calcio , Canales Catiónicos TRPV , Canales Catiónicos TRPV/metabolismo , Membrana Celular/metabolismo , Calmodulina/metabolismo , Colesterol/metabolismo
8.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542418

RESUMEN

Inherited retinal degenerative diseases (IRDs) are a group of rare diseases that lead to a progressive loss of photoreceptor cells and, ultimately, blindness. The overactivation of cGMP-dependent protein kinase G (PKG), one of the key effectors of cGMP-signaling, was previously found to be involved in photoreceptor cell death and was studied in murine IRD models to elucidate the pathophysiology of retinal degeneration. However, PKG is a serine/threonine kinase (STK) with several hundred potential phosphorylation targets and, so far, little is known about the specificity of the target interaction and downstream effects of PKG activation. Here, we carried out both the kinome activity and phosphoproteomic profiling of organotypic retinal explant cultures derived from the rd10 mouse model for IRD. After treating the explants with the PKG inhibitor CN03, an overall decrease in peptide phosphorylation was observed, with the most significant decrease occurring in seven peptides, including those from the known PKG substrate cyclic-AMP-response-element-binding CREB, but also Ca2+/calmodulin-dependent kinase (CaMK) peptides and TOP2A. The phosphoproteomic data, in turn, revealed proteins with decreased phosphorylation, as well as proteins with increased phosphorylation. The integration of both datasets identified common biological networks altered by PKG inhibition, which included kinases predominantly from the so-called AGC and CaMK families of kinases (e.g., PKG1, PKG2, PKA, CaMKs, RSKs, and AKTs). A pathway analysis confirmed the role of CREB, Calmodulin, mitogen-activated protein kinase (MAPK) and CREB modulation. Among the peptides and pathways that showed reduced phosphorylation activity, the substrates CREB, CaMK2, and CaMK4 were validated for their retinal localization and activity, using immunostaining and immunoblotting in the rd10 retina. In summary, the integrative analysis of the kinome activity and phosphoproteomic data revealed both known and novel PKG substrates in a murine IRD model. This data establishes a basis for an improved understanding of the biological pathways involved in cGMP-mediated photoreceptor degeneration. Moreover, validated PKG targets like CREB and CaMKs merit exploration as novel (surrogate) biomarkers to determine the effects of a clinical PKG-targeted treatment for IRDs.


Asunto(s)
Degeneración Retiniana , Animales , Ratones , Fosforilación , Degeneración Retiniana/metabolismo , Calmodulina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Retina/metabolismo , GMP Cíclico/metabolismo
9.
Clin Immunol ; 262: 110177, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460894

RESUMEN

Calcium/calmodulin-dependent protein kinase IV (CaMK4) serves as a pivotal mediator in the regulation of gene expression, influencing the activity of transcription factors within a variety of immune cells, including T cells. Altered CaMK4 signaling is implicated in autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and psoriasis, which are characterized by dysregulated immune responses and clinical complexity. These conditions share common disturbances in immune cell functionality, cytokine production, and autoantibody generation, all of which are associated with disrupted calcium-calmodulin signaling. This review underscores the consequences of dysregulated CaMK4 signaling across these diseases, with an emphasis on its impact on Th17 differentiation and T cell metabolism-processes central to maintaining immune homeostasis. A comprehensive understanding of roles of CaMK4 in gene regulation across various autoimmune disorders holds promise for the development of targeted therapies, particularly for diseases driven by Th17 cell dysregulation.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Humanos , Calmodulina/metabolismo , Calmodulina/uso terapéutico , Calcio/metabolismo , Calcio/uso terapéutico , Diferenciación Celular , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Células Th17
10.
Plant Physiol Biochem ; 208: 108522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38493663

RESUMEN

In staple crops, such as rice (Oryza sativa L.), pollen plays a crucial role in seed production. However, the molecular mechanisms underlying rice pollen germination and tube growth remain underexplored. Notably, we recently uncovered the redundant expression and mutual interaction of two rice genes encoding cyclic nucleotide-gated channels (CNGCs), OsCNGC4 and OsCNGC5, in mature pollen. Building on these findings, the current study focused on clarifying the functional roles of these two genes in pollen germination and tube growth. To overcome functional redundancy, we produced gene-edited rice plants with mutations in both genes using the CRISPR-Cas9 system. The resulting homozygous OsCNGC4 and OsCNGC5 gene-edited mutants (oscngc4/5) exhibited significantly lower pollen germination rates than the wild type (WT), along with severely reduced fertility. Transcriptome analysis of the double oscngc4/5 mutant revealed downregulation of genes related to receptor kinases, transporters, and cell wall metabolism. To identify the direct regulators of OsCNGC4, which form a heterodimer with OsCNGC5, we screened a yeast two-hybrid library containing rice cDNAs from mature anthers. Subsequently, we identified two calmodulin isoforms (CaM1-1 and CaM1-2), NETWORKED 2 A (NET2A), and proline-rich extension-like receptor kinase 13 (PERK13) proteins as interactors of OsCNGC4, suggesting its roles in regulating Ca2+ channel activity and F-actin organization. Overall, our results suggest that OsCNGC4 and OsCNGC5 may play critical roles in pollen germination and elongation by regulating the Ca2+ gradient in growing pollen tubes.


Asunto(s)
Oryza , Oryza/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Germinación/genética , Polen/metabolismo , Tubo Polínico/genética , Calmodulina/genética , Calmodulina/metabolismo , Fosfotransferasas , Nucleótidos Cíclicos/metabolismo
11.
Sci Rep ; 14(1): 6464, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499633

RESUMEN

The amino acids tryptophan, tyrosine, and phenylalanine have been extensively used for different label-free protein studies, based on the intensity, lifetime, wavelength and/or polarization of their emitted fluorescence. Similar to most fluorescent organic molecules, these amino acids can undergo transitions into dark meta-stable states, such as triplet and photo-radical states. On the one hand, these transitions limit the fluorescence signal, but they are also highly environment-sensitive and can offer an additional set of parameters, reflecting interactions, folding states, and immediate environments around the proteins. In this work, by analyzing the average intensity of tyrosine emission under different excitation modulations with the transient state monitoring (TRAST) technique, we explored the photo physics of tyrosine as a basis for such environment-sensitive readouts. From how the dark state transitions of tyrosine varied with excitation intensity and solvent conditions we first established a photophysical model for tyrosine. Next, we studied Calmodulin (containing two tyrosines), and how its conformation is changed upon calcium binding. From these TRAST experiments, performed with 280 nm time-modulated excitation, we show that tyrosine dark state transitions clearly change with the calmodulin conformation, and may thus represent a useful source of information for (label-free) analyses of protein conformations and interactions.


Asunto(s)
Calmodulina , Tirosina , Tirosina/química , Calmodulina/metabolismo , Espectrometría de Fluorescencia/métodos , Conformación Proteica , Triptófano/química , Colorantes
12.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474165

RESUMEN

Cisplatin (CDDP) stands out as an effective chemotherapeutic agent; however, its application is linked to the development of significant adverse effects, notably nephro- and ototoxicity. The human organic cation transporter 2 (hOCT2), found in abundance in the basolateral membrane domain of renal proximal tubules and the Corti organ, plays a crucial role in the initiation of nephro- and ototoxicity associated with CDDP by facilitating its uptake in kidney and ear cells. Given its limited presence in cancer cells, hOCT2 emerges as a potential druggable target for mitigating unwanted toxicities associated with CDDP. Potential strategies for mitigating CDDP toxicities include competing with the uptake of CDDP by hOCT2 or inhibiting hOCT2 activity through rapid regulation mediated by specific signaling pathways. This study investigated the interaction between the already approved cationic drugs disopyramide, imipramine, and orphenadrine with hOCT2 that is stably expressed in human embryonic kidney cells. Regarding disopyramide, its influence on CDDP cellular transport by hOCT2 was further characterized through inductively coupled plasma isotope dilution mass spectrometry. Additionally, its potential protective effects against cellular toxicity induced by CDDP were assessed using a cytotoxicity test. Given that hOCT2 is typically expressed in the basolateral membrane of polarized cells, with specific regulatory mechanisms, this work studied the regulation of hOCT2 that is stably expressed in Madin-Darby Canine Kidney (MDCK) cells. These cells were cultured in a matrix to induce the formation of cysts, exposing hOCT2 in the basolateral plasma membrane domain, which was freely accessible to experimental solutions. The study specifically tested the regulation of ASP+ uptake by hOCT2 in MDCK cysts through the inhibition of casein kinase II (CKII), calmodulin, or p56lck tyrosine kinase. Furthermore, the impact of this manipulation on the cellular toxicity induced by CDDP was examined using a cytotoxicity test. All three drugs-disopyramide, imipramine, and orphenadrine-demonstrated inhibition of ASP+ uptake, with IC50 values in the micromolar (µM) range. Notably, disopyramide produced a significant reduction in the CDDP cellular toxicity and platinum cellular accumulation when co-incubated with CDDP. The activity of hOCT2 in MDCK cysts experienced a significant down-regulation under inhibition of CKII, calmodulin, or p56lck tyrosine kinase. Interestingly, only the inhibition of p56lck tyrosine kinase demonstrated the capability to protect the cells against CDDP toxicity. In conclusion, certain interventions targeting hOCT2 have demonstrated the ability to reduce CDDP cytotoxicity, at least in vitro. Further investigations in in vivo systems are warranted to ascertain their potential applicability as co-treatments for mitigating undesired toxicities associated with CDDP in patients.


Asunto(s)
Quistes , Ototoxicidad , Humanos , Animales , Perros , Transportador 2 de Cátion Orgánico , Proteínas de Transporte de Catión Orgánico/metabolismo , Cisplatino/metabolismo , Disopiramida , Calmodulina/metabolismo , Imipramina , Orfenadrina , Células de Riñón Canino Madin Darby , Proteínas Tirosina Quinasas/metabolismo
13.
Biophys J ; 123(7): 824-838, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38414237

RESUMEN

The binding of calcium/calmodulin (CAM) to calcium/calmodulin-dependent protein kinase II (CaMKII) initiates an ATP-driven cascade that triggers CaMKII autophosphorylation. The autophosphorylation in turn increases the CaMKII affinity for CAM. Here, we studied the ATP dependence of CAM association with the actin-binding CaMKIIß isoform using single-molecule total internal reflection fluorescence microscopy. Rhodamine-CAM associations/dissociations to surface-immobilized Venus-CaMKIIß were resolved with 0.5 s resolution from video records, batch-processed with a custom algorithm. CAM occupancy was determined simultaneously with spot-photobleaching measurement of CaMKII holoenzyme stoichiometry. We show the ATP-dependent increase of the CAM association requires dimer formation for both the α and ß isoforms. The study of mutant ß holoenzymes revealed that the ATP-dependent increase in CAM affinity results in two distinct states. The phosphorylation-defective (T287.306-307A) holoenzyme resides only in the low-affinity state. CAM association is further reduced in the T287A holoenzyme relative to T287.306-307A. In the absence of ATP, the affinity of CAM for the T287.306-307A mutant and the wild-type monomer are comparable. The affinity of the ATP-binding impaired (K43R) mutant is even weaker. In ATP, the K43R holoenzyme resides in the low-affinity state. The phosphomimetic mutant (T287D) resides only in a 1000-fold higher-affinity state, with mean CAM occupancy of more than half of the 14-mer holoenzyme stoichiometry in picomolar CAM. ATP promotes T287D holoenzyme disassembly but does not elevate CAM occupancy. Single Poisson distributions characterized the ATP-dependent CAM occupancy of mutant holoenzymes. In contrast, the CAM occupancy of the wild-type population had a two-state distribution with both low- and high-affinity states represented. The low-affinity state was the dominant state, a result different from published in vitro assays. Differences in assay conditions can alter the balance between activating and inhibitory autophosphorylation. Bound ATP could be sufficient for CaMKII structural function, while antagonistic autophosphorylations may tune CaMKII kinase-regulated action-potential frequency decoding in vivo.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Calmodulina , Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Calcio/metabolismo , Imagen Individual de Molécula , Adenosina Trifosfato/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Fosforilación
14.
Plant Cell Environ ; 47(5): 1732-1746, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311858

RESUMEN

The root-knot nematode Meloidogyne graminicola secretes effectors into rice tissues to modulate host immunity. Here, we characterised MgCRT1, a calreticulin protein of M. graminicola, and identified its target in the plant. In situ hybridisation showed MgCRT1 mRNA accumulating in the subventral oesophageal gland in J2 nematodes. Immunolocalization indicated MgCRT1 localises in the giant cells during parasitism. Host-induced gene silencing of MgCRT1 reduced the infection ability of M. graminicola, while over-expressing MgCRT1 enhanced rice susceptibility to M. graminicola. A yeast two-hybrid approach identified the calmodulin-like protein OsCML31 as an interactor of MgCRT1. OsCML31 interacts with the high mobility group protein OsHMGB1 which is a conserved DNA binding protein. Knockout of OsCML31 or overexpression of OsHMGB1 in rice results in enhanced susceptibility to M. graminicola. In contrast, overexpression of OsCML31 or knockout of OsHMGB1 in rice decreases susceptibility to M. graminicola. The GST-pulldown and luciferase complementation imaging assay showed that MgCRT1 decreases the interaction of OsCML31 and OsHMGB1 in a competitive manner. In conclusion, when M. graminicola infects rice and secretes MgCRT1 into rice, MgCRT1 interacts with OsCML31 and decreases the association of OsCML31 with OsHMGB1, resulting in the release of OsHMGB1 to enhance rice susceptibility.


Asunto(s)
Oryza , Tylenchoidea , Animales , Enfermedades de las Plantas , Calmodulina/metabolismo , Oryza/metabolismo , Calreticulina/genética
15.
J Mol Biol ; 436(8): 168502, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417672

RESUMEN

Regulation of neurotransmitter release during presynaptic plasticity underlies varied forms of information processing in the brain. Munc13s play essential roles in release via their conserved C-terminal region, which contains a MUN domain involved in SNARE complex assembly, and controls multiple presynaptic plasticity processes. Munc13s also have a variable N-terminal region, which in Munc13-1 includes a calmodulin binding (CaMb) domain involved in short-term plasticity and a C2A domain that forms an inhibitory homodimer. The C2A domain is activated by forming a heterodimer with the zinc-finger domain of αRIMs, providing a link to αRIM-dependent short- and long-term plasticity. However, it is unknown how the functions of the N- and C-terminal regions are integrated, in part because of the difficulty of purifying Munc13-1 fragments containing both regions. We describe for the first time the purification of a Munc13-1 fragment spanning its entire sequence except for a flexible region between the C2A and CaMb domains. We show that this fragment is much less active than the Munc13-1 C-terminal region in liposome fusion assays and that its activity is strongly enhanced by the RIM2α zinc-finger domain together with calmodulin. NMR experiments show that the C2A and CaMb domains bind to the MUN domain and that these interactions are relieved by the RIM2α ZF domain and calmodulin, respectively. These results suggest a model whereby Munc13-1 activity in promoting SNARE complex assembly and neurotransmitter release are inhibited by interactions of the C2A and CaMb domains with the MUN domain that are relieved by αRIMs and calmodulin.


Asunto(s)
Calmodulina , Proteínas del Tejido Nervioso , Calmodulina/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores , Proteínas SNARE/metabolismo , Zinc/metabolismo , Humanos
16.
Biochemistry ; 63(5): 610-624, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38357882

RESUMEN

In Drosophila testis, myosin VI plays a special role, distinct from its motor function, by anchoring components to the unusual actin-based structures (cones) that are required for spermatid individualization. For this, the two calmodulin (CaM) light-chain molecules of myosin VI are replaced by androcam (ACaM), a related protein with 67% identity to CaM. Although ACaM has a similar bi-lobed structure to CaM, with two EF hand-type Ca2+ binding sites per lobe, only one functional Ca2+ binding site operates in the amino-terminus. To understand this light chain substitution, we used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to examine dynamic changes in ACaM and CaM upon Ca2+ binding and interaction with the two CaM binding motifs of myosin VI (insert2 and IQ motif). HDX-MS reveals that binding of Ca2+ to ACaM destabilizes its N-lobe but stabilizes the entire C-lobe, whereas for CaM, Ca2+ binding induces a pattern of alternating stabilization/destabilization throughout. The conformation of this stable holo-C-lobe of ACaM seems to be a "prefigured" version of the conformation adopted by the holo-C-lobe of CaM for binding to insert2 and the IQ motif of myosin VI. Strikingly, the interaction of holo-ACaM with either peptide converts the holo-N-lobe to its Ca2+-free, more stable, form. Thus, ACaM in vivo should bind the myosin VI light chain sites in an apo-N-lobe/holo-C-lobe state that cannot fulfill the Ca2+-related functions of holo-CaM required for myosin VI motor assembly and activity. These findings indicate that inhibition of myosin VI motor activity is a precondition for transition to an anchoring function.


Asunto(s)
Calmodulina , Cadenas Pesadas de Miosina , Testículo , Masculino , Animales , Testículo/metabolismo , Deuterio/metabolismo , Secuencia de Aminoácidos , Calmodulina/metabolismo , Unión Proteica , Drosophila/metabolismo , Espectrometría de Masas , Calcio/metabolismo
17.
Biomolecules ; 14(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38397410

RESUMEN

Calcium dyshomeostasis is an early critical event in neurodegeneration as exemplified by Alzheimer's (AD), Huntington's (HD) and Parkinson's (PD) diseases. Neuronal calcium homeostasis is maintained by a diversity of ion channels, buffers, calcium-binding protein effectors, and intracellular storage in the endoplasmic reticulum, mitochondria, and lysosomes. The function of these components and compartments is impacted by the toxic hallmark proteins of AD (amyloid beta and Tau), HD (huntingtin) and PD (alpha-synuclein) as well as by interactions with downstream calcium-binding proteins, especially calmodulin. Each of the toxic hallmark proteins (amyloid beta, Tau, huntingtin, and alpha-synuclein) binds to calmodulin. Multiple channels and receptors involved in calcium homeostasis and dysregulation also bind to and are regulated by calmodulin. The primary goal of this review is to show the complexity of these interactions and how they can impact research and the search for therapies. A secondary goal is to suggest that therapeutic targets downstream from calcium dyshomeostasis may offer greater opportunities for success.


Asunto(s)
Proteínas de Unión a Calmodulina , Canales Iónicos , Enfermedades Neurodegenerativas , Humanos , alfa-Sinucleína/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Canales Iónicos/metabolismo , Enfermedades Neurodegenerativas/metabolismo
18.
Mol Cell Proteomics ; 23(3): 100738, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364992

RESUMEN

Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Gravitropismo , Biotina/metabolismo , Viento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Ligasas/metabolismo , Calmodulina/metabolismo
19.
J Exp Bot ; 75(8): 2313-2329, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280207

RESUMEN

Myosins are important motor proteins that associate with the actin cytoskeleton. Structurally, myosins function as heteromeric complexes where smaller light chains, such as calmodulin (CaM), bind to isoleucine-glutamine (IQ) domains in the neck region to facilitate mechano-enzymatic activity. We recently identified Arabidopsis CaM-like (CML) proteins CML13 and CML14 as interactors of proteins containing multiple IQ domains, including a myosin VIII. Here, we demonstrate that CaM, CML13, and CML14 bind the neck region of all four Arabidopsis myosin VIII isoforms. Among CMLs tested for binding to myosins VIIIs, CaM, CML13, and CML14 gave the strongest signals using in planta split-luciferase protein interaction assays. In vitro, recombinant CaM, CML13, and CML14 showed specific, high-affinity, calcium-independent binding to the IQ domains of myosin VIIIs. CaM, CML13, and CML14 co-localized to plasma membrane-bound puncta when co-expressed with red fluorescent protein-myosin fusion proteins containing IQ and tail domains of myosin VIIIs. In vitro actin motility assays using recombinant myosin VIIIs demonstrated that CaM, CML13, and CML14 function as light chains. Suppression of CML13 or CML14 expression using RNA silencing resulted in a shortened-hypocotyl phenotype, similar to that observed in a quadruple myosin mutant, myosin viii4KO. Collectively, our data indicate that Arabidopsis CML13 and CML14 are novel myosin VIII light chains.


Asunto(s)
Arabidopsis , Calmodulina , Calmodulina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Unión Proteica
20.
Neuron ; 112(7): 1150-1164.e6, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38295792

RESUMEN

Animals constantly need to judge the valence of an object in their environment: is it potential food or a threat? The brain makes fundamental decisions on the appropriate behavioral strategy by integrating external information from sensory organs and internal signals related to physiological needs. For example, a hungry animal may take more risks than a satiated one when deciding to approach or avoid an object. Using a proteomic profiling approach, we identified the Calmodulin-interacting peptide Pcp4a as a key regulator of foraging-related decisions. Food intake reduced abundance of protein and mRNA of pcp4a via dopamine D2-like receptor-mediated repression of adenylate cyclase. Accordingly, deleting the pcp4a gene made zebrafish larvae more risk averse in a binary decision assay. Strikingly, neurons in the tectum became less responsive to prey-like visual stimuli in pcp4a mutants, thus biasing the behavior toward avoidance. This study pinpoints a molecular mechanism modulating behavioral choice according to internal state.


Asunto(s)
Calmodulina , Pez Cebra , Animales , Pez Cebra/fisiología , Calmodulina/metabolismo , Proteómica , Neuronas/fisiología , Hambre/fisiología , Conducta Alimentaria/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA