Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gene ; 927: 148699, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880185

RESUMEN

Aeonium arboreum 'Halloween', a popular indoor ornamental succulent in China, changes its leaf colour to red on light exposure. However, the underlying molecular mechanisms is still vague. Comparative analysis of transcriptome data from 'Halloween' leaves treated under dark and light conditions revealed two R2R3-MYB transcription factors, AaMYB113 and AaMYB114, that may mediate anthocyanin accumulation. In this study, we cloned the AaMYB113 and AaMYB114 genes, encoding proteins of 279 and 248 amino acids, respectively. Transcriptional activity analysis revealed that AaMYB113 exhibits strong transcriptional activity, in contrast to AaMYB114, which demonstrates minimal activity. Transient expression studies in tobacco leaves demonstrated that AaMYB113 induced red pigmentation, whereas AaMYB114 did not. Subsequent stable overexpression in Arabidopsis thaliana confirmed that AaMYB113, but not AaMYB114, could similarly turn Arabidopsis leaves red. Further stable transformation of AaMYB113 in tobacco affected multiple floral components, including leaves, petals, calyx, flower tubes, and filaments, turning them red. Quantitative real-time PCR (qRT-PCR) assay in leaves of AaMYB113 stably transformed tobacco and Arabidopsis revealed upregulation of anthocyanin biosynthesis-related structural genes and TT8-like transcription factors. Moreover, the dual luciferase analysis confirmed that AaMYB113 can activate the promoters of 'Halloween' anthocyanin synthesis structural genes, AaCHS, AaCHI, AaF3H, AaDFR and AaANS. The above results indicate that AaMYB113 can promote anthocyanin synthesis, while AaMYB114 does not have this function. This study contributes significantly to the limited body of research on the molecular mechanisms of anthocyanin synthesis in succulents, advancing our understanding of how these pathways are regulated in 'Halloween' succulents and potentially other species.


Asunto(s)
Antocianinas , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Nicotiana , Hojas de la Planta , Proteínas de Plantas , Factores de Transcripción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antocianinas/biosíntesis , Antocianinas/metabolismo , Antocianinas/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Pigmentación/genética , Calycanthaceae/genética , Calycanthaceae/metabolismo
2.
J Ethnopharmacol ; 333: 118470, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38909829

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Initial investigative research indicated that the essential oil from Chimonanthus nitens Oliv. Leaves (CLO) significantly reduces lung tissues inflammation and effectively repairs Acute lung injury (ALI) mice model. However, the mechanism underlying is not clear, and the impacts of CLO on oxidative stress require further investigation. AIM OF THE STUDY: The purpose of the experiment was to validate the influence of CLO in ALI model mice, as well as its potential mechanisms. MATERIALS AND METHODS: Lipopolysaccharide-induced establishment of the A549 cell inflammation model, and ALI mice model was established by intrathecal administration of LPS. RESULTS: CLO significantly reduced the release of inflammatory cytokines in A549 cells, lowered MDA and ROS levels, and enhanced SOD activity. Animal experiment results showed that CLO dramatically decreased white blood cell count, the expression of inflammatory cytokines, and the destruction of alveolar structures. CLO enhances the activity of antioxidant enzymes. Western Blot and q-PCR analyses have revealed that the mechanism of CLO is correlation with the NF-κB and Nrf2 signaling pathways in cellular and animal models. Pathway inhibitor experiments indicated that there might be functional crosstalk between these two pathways. CONCLUSIONS: CLO may regulate inflammation and oxidative stress in LPS-induced ALI through NF-κB and Nrf2 signaling pathways. This finding could be novel in the pharmacological treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Aceites Volátiles , Estrés Oxidativo , Hojas de la Planta , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Células A549 , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Calycanthaceae/química , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Aceites Volátiles/farmacología , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/química , Transducción de Señal/efectos de los fármacos
3.
J Asian Nat Prod Res ; 26(8): 930-944, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38598409

RESUMEN

A sensitive UPLC-HRMS method was developed and validated for simultaneous quantification of four active flavonoids from Chimonanthus nitens Leaf Granules (CNLG) in biological matrix. The method was utilized in pharmacokinetic study of the four flavonoids in rats as well as other evaluation assays in vitro. It was revealed that rutin, nicotiflorin, and astragalin had poor oral bioavailability in rats possibly due to low intestinal permeability and metabolism in intestinal flora. Kaempferol underwent rapid glucuronidation and sulphation in rat plasma with medium permeability coefficient. The results provided valuable data for future research and development of CNLG flavonoids.


Asunto(s)
Flavonoides , Quempferoles , Hojas de la Planta , Animales , Flavonoides/farmacocinética , Flavonoides/química , Hojas de la Planta/química , Ratas , Quempferoles/farmacocinética , Quempferoles/química , Estructura Molecular , Masculino , Rutina/farmacocinética , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacocinética , Ratas Sprague-Dawley , Calycanthaceae/química , Cromatografía Liquida/métodos , Disponibilidad Biológica , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Líquida con Espectrometría de Masas
4.
PeerJ ; 12: e17238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650650

RESUMEN

Floral color and scent profiles vary across species, geographical locations, and developmental stages. The exclusive floral color and fragrance of Chimonanthus praecox is contributed by a range of endogenous chemicals that distinguish it from other flowers and present amazing ornamental value. This comprehensive review explores the intricate interplay of environmental factors, chemicals and genes shaping the flower color and fragrance of Chimonanthus praecox. Genetic and physiological factors control morpho-anatomical attributes as well as pigment synthesis, while environmental factors such as temperature, light intensity, and soil composition influence flower characteristics. Specific genes control pigment synthesis, and environmental factors such as temperature, light intensity, and soil composition influence flower characteristics. Physiological processes including plant hormone contribute to flower color and fragrance. Hormones, notably ethylene, exert a profound influence on varioustraits. Pigment investigations have spotlighted specific flavonoids, including kaempferol 3-O-rutinoside, quercetin, and rutin. Red tepals exhibit unique composition with cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside being distinctive components. Elucidating the molecular basis of tepal color variation, particularly in red and yellow varieties, involves the identification of crucial regulatory genes. In conclusion, this review unravels the mysteries of Chimonanthus praecox, providing a holistic understanding of its flower color and fragrance for landscape applications. This comprehensive review uniquely explores the genetic intricacies, chemical and environmental influences that govern the mesmerizing flower color and fragrance of Chimonanthus praecox, providing valuable insights for its landscape applications. This review article is designed for a diverse audience, including plant geneticists, horticulturists, environmental scientists, urban planners, and students, offering understandings into the genetic intricacies, ecological significance, and practical applications of Chimonanthus praecox across various disciplines. Its appeal extends to professionals and enthusiasts interested in plant biology, conservation, and industries dependent on unique floral characteristics.


Asunto(s)
Calycanthaceae , Flores , Odorantes , Flores/genética , Calycanthaceae/genética , Calycanthaceae/metabolismo , Calycanthaceae/química , Odorantes/análisis , Pigmentación/genética , Color , Regulación de la Expresión Génica de las Plantas
5.
J Ethnopharmacol ; 321: 117540, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056534

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chimonanthus nitens Oliv. Leaf Granule (COG) is a commonly used clinical preparation of traditional Chinese medicine for the treatment of cold, but there are folk reports that it can treat diarrhea and other gastrointestinal diseases. Therefore, the mechanism of COG in the treatment of ulcerative colitis with diarrhea as the main symptom needs to be studied. AIM OF THE STUDY: Combined network pharmacology and experimental validation to explore the mechanism of COG in the treatment of ulcerative colitis. MATERIALS AND METHODS: First, the main components of COG were characterized by liquid chromatography-mass spectrometry (LC-MS); subsequently, a network pharmacology approach was used to screen the effective chemical components and action targets of COG to construct a target network of COG for the treatment of ulcerative colitis (UC). The protein-protein interaction network (PPI) and literature reports were combined to identify the potential targets of COG for the treatment of UC. Finally, the predicted results of network pharmacology were validated by animal and cellular experiments. RESULTS: 19 components of COG were characterized by LC-MS, among which 10 bioactive components could act on 377 potential targets of UC. Key therapeutic targets were collected, including SRC, HSP90AA1, PIK3RI, MAPK1 and ESR1. KEGG results are enriched in pathways related to oxidative stress. Molecular docking analysis showed good binding activity of main components and target genes. Animal experiments showed that COG significantly relieved the colitis symptoms in mice, regulated the Treg/Th17 balance, and promoted the secretion of IL-10 and IL-4, along with the inhibition of IL-1ß and TNF-α. Additionally, COG reduced the apoptosis of colon epithelial cells, and significantly improved the levels of SOD, MAO, GSH-px, and inhibited MDA, iNOS, eNOS in colon. Also, it increased the expression of tight junction proteins such as ZO-1, Claudin1, Occludin and E-cadherin. In vitro experiments, COG inhibited the oxidative stress and inflammatory injury of HCT116 cells induced by LPS. CONCLUSIONS: Combining network pharmacology and in vitro and in vivo experiments, COG was verified to have a good protective effect in UC, which may be related to enhancing antioxidation in colon tissues.


Asunto(s)
Calycanthaceae , Colitis Ulcerosa , Colitis , Medicamentos Herbarios Chinos , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Diarrea , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Sulfato de Dextran
6.
J Vet Intern Med ; 37(6): 2478-2481, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37855228

RESUMEN

Two sheep presented with acute tonic-clonic seizures, opisthotonos, absent pupillary light reflexes and abnormal vital signs within 18 hours after observed consumption of leaves from an ornamental shrub later identified as wintersweet (Chimonanthus praecox). Despite symptomatic treatment, both sheep died. Three other sheep that consumed the plant died after displaying similar clinical signs, resulting in 2 deaths the prior evening and 1 recovery the next morning. Gross necropsy and histologic findings were diagnostically inconclusive. Rumen contents tested positive for the alkaloid calycanthine, a centrally-acting convulsant known to be present in wintersweet. Case reports of calycanthine toxicity in ruminants are limited, with no detailed reports published in the United States. Calycanthine has been isolated from the seeds, flowers, and leaves of the plant. Wintersweet is part of the family Calycanthaceae that including 3 species native to North America, all of which pose a neurologic risk to ruminants if consumed.


Asunto(s)
Calycanthaceae , Ovinos , Animales , Flores , Hojas de la Planta , Rumiantes , América del Norte
7.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686265

RESUMEN

Wintersweet (Chimonanthus praecox (L.) Link, Calycanthaceae) is an esteemed ornamental flowering shrub known for its distinct blooming period in winter, vibrant color petals, and captivating floral fragrance. Basic helix-loop-helix (bHLH) transcription factors (TFs) play pivotal roles as key regulators in secondary metabolites biosynthesis, growth, and development in plants. However, the systematic analysis of the bHLH family members and their role in the regulation of floral traits in Wintersweet remains insufficiently understood. To bridge this knowledge gap, we conducted a comprehensive genome-wide analysis of the C. praecox bHLH (CpbHLH) gene family, identifying a total of 131 CpbHLH genes across 11 chromosomes. Phylogenetic analysis classified these CpbHLH genes into 23 subfamilies, wherein most members within the same subfamily exhibited analogous intron/exon patterns and motif composition. Moreover, the expansion of the CpbHLH gene family was primarily driven by segmental duplication, with duplicated gene pairs experiencing purifying selection during evolution. Transcriptomic analysis revealed diverse expression patterns of CpbHLH genes in various tissues and distinct stages of Wintersweet flower development, thereby suggesting their involvement in a diverse array of physiological processes. Furthermore, yeast 2-hybrid assay demonstrated interaction between CpbHLH25 and CpbHLH59 (regulators of floral scent and color) as well as with CpbHLH112 and CpMYB2, suggesting potential coordinately regulation of secondary metabolites biosynthesis in Wintersweet flowers. Collectively, our comprehensive analysis provides valuable insights into the structural attributes, evolutionary dynamics, and expression profiles of the CpbHLH gene family, laying a solid foundation for further explorations of the multifaceted physiological and molecular roles of bHLH TFs in Wintersweet.


Asunto(s)
Calycanthaceae , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Exones , Filogenia
8.
Mol Biol Rep ; 50(11): 9107-9119, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749345

RESUMEN

BACKGROUND: Chimonanthus praecox and Chimonanthus salicifolius are closely related species that diverged approximately six million years ago. While both C. praecox and C. salicifolius could withstand brief periods of low temperatures of - 15 °C. Their flowering times are different, C. praecox blooms in early spring, whereas C. salicifolius blooms in autumn. The SBP-box (SQUAMOSA promoter-binding protein) is a plant-specific gene family that plays a crucial vital role in regulating plant flowering. Although extensively studied in various plants, the SBP gene family remains uncharacterized in Calycanthaceae. METHODS AND RESULTS: We conducted genome-wide identification of SBP genes in both C. praecox and C. salicifolius and comprehensively characterized the chromosomal localization, gene structure, conserved motifs, and domains of the identified SBP genes. In total, 15 and 18 SBP genes were identified in C. praecox and C. salicifolius, respectively. According to phylogenetic analysis, the SBP genes from Arabidopsis, C. praecox, and C. salicifolius were clustered into eight groups. Analysis of the gene structure and conserved protein motifs showed that SBP proteins of the same subfamily have similar motif structures. The expression patterns of SBP genes were analyzed using transcriptome data. The results revealed that more than half of the genes exhibited lower expression levels in leaves than in flowers, suggesting their potential involvement in the flower development process and may be linked to the winter and autumn flowering of C. praecox and C. salicifolius. CONCLUSION: Thirty-three SBPs were identified in C. praecox and C. salicifolius. The evolutionary characteristics and expression patterns were examined in this study. These results provide valuable information to elucidate the evolutionary relationships of the SBP family and help determine the functional characteristics of the SBP genes in subsequent studies.


Asunto(s)
Arabidopsis , Calycanthaceae , Calycanthaceae/genética , Calycanthaceae/química , Calycanthaceae/metabolismo , Filogenia , Flores/metabolismo , Hojas de la Planta/metabolismo , Genes de Plantas , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismo
9.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629126

RESUMEN

CCR4-associated factor I (CAF1) is a deadenylase that plays a critical role in the initial step of mRNA degradation in most eukaryotic cells, and in plant growth and development. Knowledge of CAF1 proteins in woody plants remains limited. Wintersweet (Chimonanthus praecox) is a highly ornamental woody plant. In this study, CpCAF1 was isolated from wintersweet. CpCAF1 belongs to the DEDDh (Asp-Glu-Asp-Asp-His) subfamily of the DEDD (Asp-Glu-Asp-Asp) nuclease family. The amino acid sequence showed highest similarity to the homologous gene of Arabidopsis thaliana. In transgenic Arabidopsis overexpressing CpCAF1, the timing of bolting, formation of the first rosette, and other growth stages were earlier than those of the wild-type plants. Root, lateral branch, rosette leaf, and silique growth were positively correlated with CpCAF1 expression. FLOWERING LOCUS T (FT) and SUPPRESSOROF OVEREXPRESSION OF CO 1 (SOC1) gene expression was higher while EARLY FLOWERING3 (ELF3) and FLOWERING LOCUS C (FLC) gene expression of transgenic Arabidopsis was lower than the wild type grown for 4 weeks. Plant growth and flowering occurrences were earlier in transgenic Arabidopsis overexpressing CpCAF1 than in the wild-type plants. The abundance of the CpCAF1 transcript grew steadily, and significantly exceeded the initial level under 4 °C in wintersweet after initially decreasing. After low-temperature exposure, transgenic Arabidopsis had higher proline content and stronger superoxide dismutase activity than the wild type, and the malondialdehyde level in transgenic Arabidopsis was decreased significantly by 12 h and then increased in low temperature, whereas it was directly increased in the wild type. A higher potassium ion flux in the root was detected in transgenic plants than in the wild type with potassium deficiency. The CpCAF1 promoter was a constitutive promoter that contained multiple cis-acting regulatory elements. The DRE, LTR, and MYB elements, which play important roles in response to low temperature, were identified in the CpCAF1 promoter. These findings indicate that CpCAF1 is involved in flowering and low-temperature tolerance in wintersweet, and provide a basis for future genetic and breeding research on wintersweet.


Asunto(s)
Arabidopsis , Calycanthaceae , Temperatura , Arabidopsis/genética , Fitomejoramiento , Frío , Secuencia de Aminoácidos , Fibrinógeno
10.
J Asian Nat Prod Res ; 25(1): 53-60, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35446749

RESUMEN

Two new sesquiterpenoids (1 and 3), one new natural product (2), and two known compounds (4 and 5) were isolated from the leaves of Chimonanthus nitens. Their structures were elucidated by spectroscopic analysis, and the absolute configuration of compound 3 was determined by the X-ray single-crystal diffraction analysis. The cytotoxicity of compounds 1-5 was evaluated at three concentrations on two human breast cancer cell lines (MDA-MB-468 and MDA-MB-231) by MTT assay. As a result, we found that the cytotoxicity was weak even with a concentration of these compounds up to 100 µM.


Asunto(s)
Calycanthaceae , Medicamentos Herbarios Chinos , Sesquiterpenos , Humanos , Hojas de la Planta/química , Medicamentos Herbarios Chinos/química , Calycanthaceae/química , Sesquiterpenos/farmacología , Estructura Molecular
11.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36430449

RESUMEN

Plant senescence is a complex process that is controlled by developmental regulation and genetic programs. A senescence-related gene CpSRG1, which belongs to the 2OG-Fe(II) dioxygenase superfamily, was characterized from wintersweet, and the phylogenetic relationship of CpSRG1 with homologs from other species was investigated. The expression analysis by qRT-PCR (quantitative real-time PCR) indicated that CpSRG1 is abundant in flower organs, especially in petals and stamens, and the highest expression of CpSRG1 was detected in stage 6 (withering period). The expression patterns of the CpSRG1 gene were further confirmed in CpSRG1pro::GUS (ß-glucuronidase) plants, and the activity of the CpSRG1 promoter was enhanced by exogenous Eth (ethylene), SA (salicylic acid), and GA3 (gibberellin). Heterologous overexpression of CpSRG1 in Arabidopsis promoted growth and flowering, and delayed senescence. Moreover, the survival rates were significantly higher and the root lengths were significantly longer in the transgenic lines than in the wild-type plants, both under low nitrogen stress and GA3 treatment. This indicated that the CpSRG1 gene may promote the synthesis of assimilates in plants through the GA pathway, thereby improving growth and flowering, and delaying senescence in transgenic Arabidopsis. Our study has laid a satisfactory foundation for further analysis of senescence-related genes in wintersweet and wood plants. It also enriched our knowledge of the 2OG-Fe(II) dioxygenase superfamily, which plays a variety of important roles in plants.


Asunto(s)
Arabidopsis , Calycanthaceae , Dioxigenasas , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Calycanthaceae/genética , Dioxigenasas/genética , Compuestos Ferrosos/metabolismo
12.
Molecules ; 27(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36080337

RESUMEN

To search for efficient agricultural antifungal lead compounds, 39 Chimonanthus praecox derivatives were designed, synthesized, and evaluated for their antifungal activities. The structures of target compounds were fully characterized by 1H NMR, 13C NMR, and MS spectra. The preliminary bioassays revealed that some compounds exhibited excellent antifungal activities in vitro. For example, the minimum inhibitory concentration (MIC) of compound b15 against Phytophthora infestans was 1.95 µg mL-1, and the minimum inhibitory concentration (MIC) of compound b17 against Sclerotinia sclerotiorum was 1.95 µg mL-1. Therefore, compounds b15 and b17 were identified as the most promising candidates for further study.


Asunto(s)
Calycanthaceae , Phytophthora infestans , Antifúngicos/química , Calycanthaceae/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
13.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36142797

RESUMEN

Strigolactones (SLs) are a class of important hormones in the regulation of plant branching. In the model plant Arabidopsis, AtMAX1 encodes a cytochrome P450 protein and is a crucial gene in the strigolactone synthesis pathway. Yet, the regulatory mechanism of MAX1 in the shoot branching of wintersweet (Chimonanthus praecox) remains unclear. Here we identified and isolated three MAX1 homologous genes, namely CpMAX1a, CpMAX1b, and CpMAX1c. Quantitative real-time PCR (qRT-PCR) revealed the expression of CpMAX1a in all tissues, being highest in leaves, whereas CpMAX1b was only expressed in stems, while CpMAX1c was expressed in both roots and stem tips. However, CpMAX1a's expression decreased significantly after decapitation; hence, we verified its gene function. CpMAX1a was located in Arabidopsis chloroplasts. Overexpressing CpMAX1a restored the phenotype of the branching mutant max1−3, and reduced the rosette branch number, but resulted in no significant phenotypic differences from the wild type. Additionally, expression of AtBRC1 was significantly upregulated in transgenic lines, indicating that the CpMAX1a gene has a function similar to the homologous gene of Arabidopsis. In conclusion, our study shows that CpMAX1a plays a conserved role in regulating the branch development of wintersweet. This work provides a molecular and theoretical basis for better understanding the branch development of wintersweet.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Calycanthaceae , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Hormonas/metabolismo , Lactonas/metabolismo , Brotes de la Planta/metabolismo
14.
Food Funct ; 13(11): 6293-6305, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35611700

RESUMEN

Chimonanthus salicifolius (CS), the leaves of Chimonanthus salicifolius S. Y. Hu., is an effective tea to prevent and treat hypertension in China. This study aimed to explore the effect and mechanism of CS in the protection against vascular remodeling in hypertension. Spontaneously hypertensive rats (SHRs) were orally administered with aqueous extracts of CS for 6 months. The blood pressure and morphological changes of the aorta were measured. Their mechanisms were studied by combining chemical identification, network pharmacology analysis and validation in vivo. Hypertensive rats showed an impaired vascular structure and dyslipidemia as illustrated by the increase of the vascular media thickness and collagen deposition in the aorta. CS treatment exhibited significant beneficial effects on blood pressure control and aortal morphology. A total of 21 compounds from CS were identified, which were linked to 106 corresponding targeted genes for vascular remodeling. The network pharmacology predicted that CS prevented vascular remodeling through the endoplasmic reticulum stress pathway. The in vivo experiments further showed that CS treatment upregulated Glucose-Regulated Protein 78 and downregulated CCAAT-enhancer-binding protein homologous protein at both mRNA and protein levels, paralleling reduced apoptotic cells in the arterial wall. Additionally, CS diminished the low-density lipoprotein cholesterol levels, total cholesterol contents and triglyceride/high-density lipoprotein cholesterol ratios in the sera of SHRs, which might also contribute to its protection of vessels. Collectively, CS protects against vascular modeling by suppressing endoplasmic reticulum stress-related apoptosis in hypertension, and it could be a potential agent for the prevention and treatment of vascular modeling.


Asunto(s)
Calycanthaceae , Hipertensión , Animales , Presión Sanguínea , Colesterol/farmacología , Estrés del Retículo Endoplásmico , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Ratas , Ratas Endogámicas SHR , Remodelación Vascular
15.
Food Chem ; 385: 132698, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35303649

RESUMEN

The leaves and branches of Chimonanthus salicifolius and Chimonanthus zhejiangensis are the base ingredients of Shiliang tea. In this study, proteomics and metabolomics were performed to understand the molecular mechanisms underlying antioxidant activity (AA) in the leaves and branches of the two species. Stress and redox related proteins are differentially expressed among organs. The abundance of isoprenoid pathway-related proteins is higher in leaves while the abundance of phenylpropanoid and flavonoid pathway-related proteins is higher in branches in both species. Metabolomics revealed the flavonoid composition and demonstrated that procyanidins are more abundant in branches. Superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and AA are stronger in branches than leaves. Overall, branches might contribute to redox homeostasis through SOD/GSH-PX and flavonoids. Furthermore, the high level of AA of branches might be largely due to their increased accumulation of procyanidins.


Asunto(s)
Calycanthaceae , Proantocianidinas , Antioxidantes , Calycanthaceae/metabolismo , Flavonoides/metabolismo , Glutatión Peroxidasa/metabolismo , Metabolómica , Hojas de la Planta/metabolismo , Proteómica , Superóxido Dismutasa/metabolismo ,
16.
Plant J ; 108(6): 1662-1678, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34624152

RESUMEN

Wintersweet (Chimonanthus praecox) is one of the most important ornamental plants. Its color is mainly determined by the middle tepals. However, the molecular mechanisms underlying the intriguing flower color development among different wintersweet groups are still largely unknown. In addition, wintersweet belongs to magnoliids, and the phylogenetic position of magnoliids remains to be determined conclusively. Here, the whole genome of red flower wintersweet, a new wintersweet type, was sequenced and assembled with high quality. The genome comprised 11 super-scaffolds (chromosomes) with a total size of 737.03 Mb. Based on the analyses of the long branch attraction, incomplete lineage sorting, sparse taxon sampling, and other factors, we suggest that a bifurcating tree may not fully represent the complex early diversification of the angiosperms and that magnoliids are most likely sister to the eudicots. The wintersweet genome appears to have undergone two whole-genome duplication (WGD) events: a recent WGD event representing an independent event specific to the Calycanthaceae and an ancient WGD event shared by Laurales. By integrating genomic, transcriptomic, and metabolomic data, CpANS1 and the transcription factor CpMYB1 were found to play key roles in regulating tepal color development, whereas CpMYB1 needs to form a complex with bHLH and WD40 to fully perform its regulatory function. The present study not only provides novel insights into the evolution of magnoliids and the molecular mechanism for flower color development, but also lays the foundation for subsequent functional genomics study and molecular breeding of wintersweet.


Asunto(s)
Calycanthaceae/fisiología , Flores/fisiología , Pigmentación/fisiología , Proteínas de Plantas/genética , Factores de Transcripción/genética , Antocianinas/genética , Antocianinas/metabolismo , Calycanthaceae/genética , Flores/genética , Mutación del Sistema de Lectura , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Laurales/genética , Laurales/fisiología , Anotación de Secuencia Molecular , Filogenia , Pigmentación/genética , Secuenciación Completa del Genoma
17.
Genes (Basel) ; 12(9)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34573437

RESUMEN

Zinc-finger proteins are important transcription factors in plants, responding to adversity and regulating the growth and development of plants. However, the roles of the BBX gene family of zinc-finger proteins in wintersweet (Chimonanthus praecox) have yet to be elucidated. In this study, a group IV subfamily BBX gene, CpBBX19, was identified and isolated from wintersweet. Quantitative real-time PCR (qRT-PCR) analyses revealed that CpBBX19 was expressed in all tissues and that expression was highest in cotyledons and inner petals. CpBBX19 was also expressed in all flower development stages, with the highest expression detected in early initiating bloom, followed by late initiating bloom and bloom. In addition, the expression of CpBBX19 was induced by different abiotic stress (cold, heat, NaCl, and drought) and hormone (ABA and MeJA) treatments. Heterologous expression of CpBBX19 in Arabidopsis thaliana (Arabidopsis) enhanced the tolerance of this plant to salt and drought stress as electrolyte leakage and malondialdehyde (MDA) concentrations in transgenic Arabidopsis after stress treatments were significantly lower than those in wild-type (WT) plants. In conclusion, this research demonstrated that CpBBX19 plays a role in the abiotic stress tolerance of wintersweet. These findings lay a foundation for future studies on the BBX gene family of wintersweet and enrich understanding of the molecular mechanism of stress resistance in wintersweet.


Asunto(s)
Arabidopsis/fisiología , Calycanthaceae/genética , Plantas Modificadas Genéticamente/fisiología , Factores de Transcripción/genética , Arabidopsis/genética , Calycanthaceae/efectos de los fármacos , Cotiledón/genética , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Estrés Fisiológico/genética
18.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34445457

RESUMEN

Strigolactones (SLs) regulate plant shoot development by inhibiting axillary bud growth and branching. However, the role of SLs in wintersweet (Chimonanthus praecox) shoot branching remains unknown. Here, we identified and isolated two wintersweet genes, CCD7 and CCD8, involved in the SL biosynthetic pathway. Quantitative real-time PCR revealed that CpCCD7 and CpCCD8 were down-regulated in wintersweet during branching. When new shoots were formed, expression levels of CpCCD7 and CpCCD8 were almost the same as the control (un-decapitation). CpCCD7 was expressed in all tissues, with the highest expression in shoot tips and roots, while CpCCD8 showed the highest expression in roots. Both CpCCD7 and CpCCD8 localized to chloroplasts in Arabidopsis. CpCCD7 and CpCCD8 overexpression restored the phenotypes of branching mutant max3-9 and max4-1, respectively. CpCCD7 overexpression reduced the rosette branch number, whereas CpCCD8 overexpression lines showed no phenotypic differences compared with wild-type plants. Additionally, the expression of AtBRC1 was significantly up-regulated in transgenic lines, indicating that two CpCCD genes functioned similarly to the homologous genes of the Arabidopsis. Overall, our study demonstrates that CpCCD7 and CpCCD8 exhibit conserved functions in the CCD pathway, which controls shoot development in wintersweet. This research provides a molecular and theoretical basis for further understanding branch development in wintersweet.


Asunto(s)
Arabidopsis , Calycanthaceae/genética , Dioxigenasas , Genes de Plantas , Proteínas de Plantas , Raíces de Plantas , Plantas Modificadas Genéticamente , Arabidopsis/enzimología , Arabidopsis/genética , Calycanthaceae/enzimología , Dioxigenasas/biosíntesis , Dioxigenasas/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética
19.
Fitoterapia ; 154: 105019, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34403777

RESUMEN

Six new cadinane-type sesquiterpenoids, named Chimnitensin A-F (1-6) were isolated from the leaves of Chimonanthus nitens Oliv. Their structures were elucidated by comprehensive spectroscopic analyses and comparison with structurally related known analogues. In vitro MTT assay showed that all six compounds had cytotoxicity against two selected human breast cancer cell lines (MDA-MB-468 and MDA-MB-231), which indicate their potential of developing into anticancer drugs.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Calycanthaceae/química , Sesquiterpenos Policíclicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , China , Humanos , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Hojas de la Planta/química , Sesquiterpenos Policíclicos/aislamiento & purificación
20.
Plant Physiol Biochem ; 166: 477-484, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34166974

RESUMEN

Sinocalycanthus chinensis, a diploid (2n = 22) deciduous shrub, belongs to the Calycanthaceae family of magnoliids and is rich secondary metabolites, such as terpenoids. However, the regulation of terpenoid biosynthesis in S. chinensis is largely unknown. In this study, comparative transcriptome analyses were performed in the bark, branches, leaves, and flowers. KEGG enrichment analysis revealed that the terpenoid biosynthesis and cytochrome P450 pathways were significantly enriched in the four tissues. Twelve terpenoid backbone biosynthesis-related genes were identified, and eight terpene synthases (TPSs) were reassembled based on independent transcriptomes from the four tissues. Phylogenetic analysis of the TPSs showed high sequence similarity between S. chinensis and Arabidopsis, and these TPSs were classified into three subfamilies. Moreover, 39 phytohormone response-related genes, including 5 abscisic acid (ABA) receptors, 25 auxin response factors, 3 gibberellin (GA) response genes, 5 ethylene response genes, and 1 jasmonic acid (JA) response gene were analyzed. Most phytohormone pathway-related genes were upregulated in the flowers and downregulated in the leaves. The endogenous indole acetic acid (IAA) content was higher in the flowers than in the other comparisons. Our results provide an opportunity to reveal the regulation of terpenoid biosynthesis in S. chinensis.


Asunto(s)
Calycanthaceae , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Terpenos , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...