Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 322(2): F197-F207, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35001664

RESUMEN

KV7 channels, the voltage-gated K+ channels encoded by KCNQ genes, mediate heterogeneous vascular responses in rodents. Postnatal changes in the functional expression of KV7 channels have been reported in rodent saphenous arteries, but their physiological function in the neonatal renal vascular bed is unclear. Here, we report that, unlike adult pigs, only KCNQ1 (KV7.1) out of the five members of KCNQ genes was detected in neonatal pig renal microvessels. KCNQ1 is present in fetal pig kidneys as early as day 50 of gestation, and the level of expression remains the same up to postnatal day 21. Activation of renal vascular smooth muscle cell (SMC) KV7.1 stimulated whole cell currents, inhibited by HMR1556 (HMR), a selective KV7.1 blocker. HMR did not change the steady-state diameter of isolated renal microvessels. Similarly, intrarenal artery infusion of HMR did not alter mean arterial pressure, renal blood flow, and renal vascular resistance in the pigs. An ∼20 mmHg reduction in mean arterial pressure evoked effective autoregulation of renal blood flow, which HMR inhibited. We conclude that 1) the expression of KCNQ isoforms in porcine renal microvessels is dependent on kidney maturation, 2) KV7.1 is functionally expressed in neonatal pig renal vascular SMCs, 3) a decrease in arterial pressure up to 20 mmHg induces renal autoregulation in neonatal pigs, and 4) SMC KV7.1 does not control basal renal vascular tone but contributes to neonatal renal autoregulation triggered by a step decrease in arterial pressure.NEW & NOTEWORTHY KV7.1 is present in fetal pig kidneys as early as day 50 of gestation, and the level of expression remains the same up to postnatal day 21. KV7.1 is functionally expressed in neonatal pig renal vascular smooth muscle cells (SMCs). A decrease in arterial pressure up to 20 mmHg induces renal autoregulation in neonatal pigs. Although SMC KV7.1 does not control basal renal vascular resistance, its inhibition blunts neonatal renal autoregulation engendered by a step decrease in arterial pressure.


Asunto(s)
Presión Arterial/efectos de los fármacos , Cromanos/farmacología , Canal de Potasio KCNQ1/antagonistas & inhibidores , Riñón/irrigación sanguínea , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Circulación Renal/efectos de los fármacos , Sulfonamidas/farmacología , Vasodilatación/efectos de los fármacos , Animales , Animales Recién Nacidos , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Homeostasis , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Sus scrofa
2.
Eur J Pharmacol ; 913: 174632, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34785211

RESUMEN

Chloroquine and hydroxychloroquine have been proposed recently as therapy for SARS-CoV-2-infected patients, but during 3 months of extensive use concerns were raised related to their clinical effectiveness and arrhythmogenic risk. Therefore, we estimated for these compounds several proarrhythmogenic risk predictors according to the Comprehensive in vitro Proarrhythmia Assay (CiPA) paradigm. Experiments were performed with either CytoPatch™2 automated or manual patch-clamp setups on HEK293T cells stably or transiently transfected with hERG1, hNav1.5, hKir2.1, hKv7.1+hMinK, and on Pluricyte® cardiomyocytes (Ncardia), using physiological solutions. Dose-response plots of hERG1 inhibition fitted with Hill functions yielded IC50 values in the low micromolar range for both compounds. We found hyperpolarizing shifts of tens of mV, larger for chloroquine, in the voltage-dependent activation but not inactivation, as well as a voltage-dependent block of hERG current, larger at positive potentials. We also found inhibitory effects on peak and late INa and on IK1, with IC50 of tens of µM and larger for chloroquine. The two compounds, tested on Pluricyte® cardiomyocytes using the ß-escin-perforated method, inhibited IKr, ICaL, INa peak, but had no effect on If. In current-clamp they caused action potential prolongation. Our data and those from literature for Ito were used to compute proarrhythmogenic risk predictors Bnet (Mistry HB, 2018) and Qnet (Dutta S et al., 2017), with hERG1 blocking/unblocking rates estimated from time constants of fractional block. Although the two antimalarials are successfully used in autoimmune diseases, and chloroquine may be effective in atrial fibrillation, assays place these drugs in the intermediate proarrhythmogenic risk group.


Asunto(s)
Antivirales/efectos adversos , Arritmias Cardíacas/inducido químicamente , Cloroquina/farmacología , Hidroxicloroquina/efectos adversos , Potenciales de Acción/efectos de los fármacos , Bioensayo , Simulación por Computador , Correlación de Datos , Relación Dosis-Respuesta a Droga , Canal de Potasio ERG1/agonistas , Canal de Potasio ERG1/antagonistas & inhibidores , Canal de Potasio ERG1/metabolismo , Células HEK293 , Humanos , Concentración 50 Inhibidora , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Potasio KCNQ1/metabolismo , Cinética , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Medición de Riesgo , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
3.
Cell Physiol Biochem ; 55(S3): 46-64, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33667331

RESUMEN

BACKGROUND/AIMS: Tea, produced from the evergreen Camellia sinensis, has reported therapeutic properties against multiple pathologies, including hypertension. Although some studies validate the health benefits of tea, few have investigated the molecular mechanisms of action. The KCNQ5 voltage-gated potassium channel contributes to vascular smooth muscle tone and neuronal M-current regulation. METHODS: We applied electrophysiology, myography, mass spectrometry and in silico docking to determine effects and their underlying molecular mechanisms of tea and its components on KCNQ channels and arterial tone. RESULTS: A 1% green tea extract (GTE) hyperpolarized cells by augmenting KCNQ5 activity >20-fold at resting potential; similar effects of black tea were inhibited by milk. In contrast, GTE had lesser effects on KCNQ2/Q3 and inhibited KCNQ1/E1. Tea polyphenols epicatechin gallate (ECG) and epigallocatechin-3-gallate (EGCG), but not epicatechin or epigallocatechin, isoform-selectively hyperpolarized KCNQ5 activation voltage dependence. In silico docking and mutagenesis revealed that activation by ECG requires KCNQ5-R212, at the voltage sensor foot. Strikingly, ECG and EGCG but not epicatechin KCNQ-dependently relaxed rat mesenteric arteries. CONCLUSION: KCNQ5 activation contributes to vasodilation by tea; ECG and EGCG are candidates for future anti-hypertensive drug development.


Asunto(s)
Catequina/análogos & derivados , Canales de Potasio KCNQ/química , Canal de Potasio KCNQ1/química , Arterias Mesentéricas/efectos de los fármacos , Extractos Vegetales/farmacología , Té/química , Animales , Sitios de Unión , Catequina/química , Catequina/farmacología , Canales de Potasio KCNQ/agonistas , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Arterias Mesentéricas/fisiología , Leche/química , Simulación del Acoplamiento Molecular , Miografía , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Extractos Vegetales/química , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Wistar , Técnicas de Cultivo de Tejidos , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Xenopus laevis
4.
Neuron ; 108(4): 676-690.e8, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32891188

RESUMEN

Amyloid precursor protein (APP) is associated with both familial and sporadic forms of Alzheimer's disease. Despite its importance, the role of APP family in neuronal function and survival remains unclear because of perinatal lethality exhibited by knockout mice lacking all three APP family members. Here we report that selective inactivation of APP family members in excitatory neurons of the postnatal forebrain results in neither cortical neurodegeneration nor increases in apoptosis and gliosis up to ∼2 years of age. However, hippocampal synaptic plasticity, learning, and memory are impaired in these mutant mice. Furthermore, hippocampal neurons lacking APP family exhibit hyperexcitability, as evidenced by increased neuronal spiking in response to depolarizing current injections, whereas blockade of Kv7 channels mimics and largely occludes the effects of APP family inactivation. These findings demonstrate that APP family is not required for neuronal survival and suggest that APP family may regulate neuronal excitability through Kv7 channels.


Asunto(s)
Envejecimiento/fisiología , Precursor de Proteína beta-Amiloide/fisiología , Corteza Cerebral/fisiología , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Antracenos/farmacología , Apoptosis/fisiología , Conducta Animal/fisiología , Supervivencia Celular , Potenciales Postsinápticos Excitadores/fisiología , Canal de Potasio KCNQ1/antagonistas & inhibidores , Ratones , Ratones Noqueados
5.
Drug Des Devel Ther ; 14: 2549-2560, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32669836

RESUMEN

PURPOSE: The mechanism of cardioprotection by Kv7.1-5 (KCNQ1-5) channels inhibition by XE991 is unclear. We examined the impact of administration time on the cardioprotective efficacy of XE991, the involvement of key pro-survival kinases, and the importance of the Kv7 subchannels. METHODS: Isolated perfused rat hearts were divided into five groups: 1) vehicle, 2) pre-, 3) post- or 4) pre- and post-ischemic administration of XE991 or 5) chromanol 293B (Kv7.1 inhibitor) followed by infarct size quantification. HL-1 cells undergoing simulated ischemia/reperfusion were exposed to either a) vehicle, b) pre-, c) per-, d) post-ischemic administration of XE991 or pre-, per- and post-ischemic administration of e) XE991, f) Chromanol 293B or g) HMR1556 (Kv7.1 inhibitor). HL-1 cell injury was evaluated by propidium iodide/Hoechst staining. Pro-survival kinase activation of Akt, Erk and STAT3 in XE991-mediated HL-1 cell protection was evaluated using phosphokinase inhibitors. Kv7 subtype expression was examined by RT-PCR and qPCR. RESULTS: XE991, but not Chromanol 293B, reduced infarct size and improved hemodynamic recovery in all isolated heart groups. XE991 protected HL-1 cells when administered during simulated ischemia. Minor activation of the survival kinases was observed in cells exposed to XE991 but pharmacological inhibition of kinase activation did not reduce XE991-mediated protection. Kv7 subchannels 1-5 were all present in rat hearts but predominately Kv7.1 and Kv7.4 were present in HL-1 cells and selective Kv7.1 did not reduce ischemia/reperfusion injury. CONCLUSION: The cardioprotective efficacy of XE991 seems to depend on its presence during ischemia and early reperfusion and do not rely on RISK (p-Akt and p-Erk) and SAFE (p-STAT3) pathway activation. The protective effect of XE991 seems mainly mediated through the Kv7.4 subchannel.


Asunto(s)
Cromanos/farmacología , Canal de Potasio KCNQ1/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Sustancias Protectoras/farmacología , Sulfonamidas/farmacología , Animales , Cromanos/administración & dosificación , Masculino , Bloqueadores de los Canales de Potasio/administración & dosificación , Sustancias Protectoras/administración & dosificación , Ratas , Ratas Wistar , Sulfonamidas/administración & dosificación , Factores de Tiempo
7.
Steroids ; 151: 108459, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31330137

RESUMEN

Basolateral membrane K+ channels play a key role in basal and agonist stimulated Cl- transport across airway epithelial cells by generating a favourable electrical driving force for Cl- efflux. The K+ channel sub-types and molecular mechanisms of regulation by hormones and secretagoues are still poorly understood. Here we have identified the type of K+ channels involved in cAMP and Ca2+ stimulated Cl- secretion and uncovered a novel anti-secretory effect of dexamethasone mediated by inhibition of basolateral membrane K+ channels in a human airway cell model of 16HBE14o- cells commonly used for ion transport studies. Dexamethasone produced a rapid inhibition of transepithelial chloride ion secretion under steady state conditions and after stimulation with cAMP agonist (forskolin) or a Ca2+ mobilizing agonist (ATP). Our results show three different types of K+ channels are targeted by dexamethasone to reduce airway secretion, namely Ca2+-activated secretion via KCNN4 (KCa3.1) channels and cAMP-activated secretion via KCNQ1 (Kv7.1) and KATP (Kir6.1,6.2) channels. The down-regulation of KCNN4 and KCNQ1 channel activities by dexamethasone involves rapid non-genomic activation of PKCα and PKA signalling pathways, respectively. Dexamethasone signal transduction for PKC and PKA activation was demonstrated to occur through a rapid non-genomic pathway that did not implicate the classical nuclear receptors for glucocorticoids or mineralocorticoids but occurred via a novel signalling cascade involving sequentially a Gi-protein coupled receptor, PKC, adenylyl cyclase Type IV, cAMP, PKA and ERK1/2 activation. The rapid, non-genomic, effects of dexamethasone on airway epithelial ion transport and cell signalling introduces a new paradigm for glucocorticoid actions in lung epithelia which may serve to augment the anti-inflammatory activity of the steroid and enhance its therapeutic potential in treating airway hypersecretion in asthma and COPD.


Asunto(s)
Cloruros/metabolismo , Dexametasona/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales KATP/antagonistas & inhibidores , Canal de Potasio KCNQ1/antagonistas & inhibidores , Bronquios/citología , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Colforsina/farmacología , AMP Cíclico/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Canales KATP/metabolismo , Canal de Potasio KCNQ1/metabolismo , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Factores de Tiempo
8.
Pharm Res ; 36(9): 137, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332533

RESUMEN

PURPOSE: Pitt Hopkins Syndrome (PTHS) is a rare genetic disorder caused by mutations of a specific gene, transcription factor 4 (TCF4), located on chromosome 18. PTHS results in individuals that have moderate to severe intellectual disability, with most exhibiting psychomotor delay. PTHS also exhibits features of autistic spectrum disorders, which are characterized by the impaired ability to communicate and socialize. PTHS is comorbid with a higher prevalence of epileptic seizures which can be present from birth or which commonly develop in childhood. Attenuated or absent TCF4 expression results in increased translation of peripheral ion channels Kv7.1 and Nav1.8 which triggers an increase in after-hyperpolarization and altered firing properties. METHODS: We now describe a high throughput screen (HTS) of 1280 approved drugs and machine learning models developed from this data. The ion channels were expressed in either CHO (KV7.1) or HEK293 (Nav1.8) cells and the HTS used either 86Rb+ efflux (KV7.1) or a FLIPR assay (Nav1.8). RESULTS: The HTS delivered 55 inhibitors of Kv7.1 (4.2% hit rate) and 93 inhibitors of Nav1.8 (7.2% hit rate) at a screening concentration of 10 µM. These datasets also enabled us to generate and validate Bayesian machine learning models for these ion channels. We also describe a structure activity relationship for several dihydropyridine compounds as inhibitors of Nav1.8. CONCLUSIONS: This work could lead to the potential repurposing of nicardipine or other dihydropyridine calcium channel antagonists as potential treatments for PTHS acting via Nav1.8, as there are currently no approved treatments for this rare disorder.


Asunto(s)
Dihidropiridinas/farmacología , Reposicionamiento de Medicamentos/métodos , Hiperventilación/tratamiento farmacológico , Discapacidad Intelectual/tratamiento farmacológico , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Animales , Teorema de Bayes , Células CHO , Cricetulus , Dihidropiridinas/química , Facies , Células HEK293 , Humanos , Canal de Potasio KCNQ1/metabolismo , Aprendizaje Automático , Bloqueadores de los Canales de Potasio/química , Bibliotecas de Moléculas Pequeñas/química , Bloqueadores de los Canales de Sodio/química , Relación Estructura-Actividad , Bloqueadores del Canal de Sodio Activado por Voltaje/química
9.
Phytother Res ; 32(11): 2226-2234, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30069944

RESUMEN

The beneficial effects of isothiocyanate-based compounds, as well as their safety, have been shown in neuropathological disorders, such as neuropathic pain. Aim of the present work was to study the efficacy of the glucosinolate glucoraphanin (GRA) and the derived isothiocyanate sulforaphane (SFN), secondary metabolites occurring exclusively in Brassicales, on chemotherapy-induced neuropathic pain. Mice were repeatedly treated with oxaliplatin (2.4 mg kg-1 ip) for 14 days to induce neuropathic pain. GRA and SFN effects were evaluated after a single administration on Day 15 or after a daily repeated oral and subcutaneous treatment starting from the first day of oxaliplatin injection until the 14th day. Single subcutaneous and oral administrations of GRA (4.43-119.79 µmol kg-1 ) or SFN (1.33-13.31 µmol kg-1 ) reduced neuropathic pain in a dose-dependent manner. The repeated administration of GRA and SFN (respectively 13.31 and 4.43 µmol kg-1 ) prevented the chemotherapy-induced neuropathy. The co-administration of GRA and SFN in mixture with the H2 S binding molecule, haemoglobin, abolished their pain-relieving effect, which was also reverted by pretreating the animals with the selective blocker of Kv7 potassium channels, XE991. GRA and SFN reduce neuropathic pain by releasing H2 S and modulating Kv7 channels and show a protective effect on the chemotherapy-induced neuropathy.


Asunto(s)
Glucosinolatos/farmacología , Sulfuro de Hidrógeno/metabolismo , Imidoésteres/farmacología , Isotiocianatos/farmacología , Canal de Potasio KCNQ1/antagonistas & inhibidores , Neuralgia/tratamiento farmacológico , Compuestos Organoplatinos/efectos adversos , Animales , Antineoplásicos/efectos adversos , Masculino , Ratones , Neuralgia/inducido químicamente , Oxaliplatino , Oximas , Sulfóxidos
10.
Biochem Pharmacol ; 152: 264-271, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29621539

RESUMEN

Amitriptyline (AMIT) is a compound widely prescribed for psychiatric and non-psychiatric conditions including depression, migraine, chronic pain, and anorexia. However, AMIT has been associated with risks of cardiac arrhythmia and sudden death since it can induce prolongation of the QT interval on the surface electrocardiogram and torsade de pointes ventricular arrhythmia. These complications have been attributed to the inhibition of the rapid delayed rectifier potassium current (IKr). The slow delayed rectifier potassium current (IKs) is the main repolarizing cardiac current when IKr is compromised and it has an important role in cardiac repolarization at fast heart rates induced by an elevated sympathetic tone. Therefore, we sought to characterize the effects of AMIT on Kv7.1/KCNE1 and homomeric Kv7.1 channels expressed in HEK-293H cells. Homomeric Kv7.1 and Kv7.1/KCNE1 channels were inhibited by AMIT in a concentration-dependent manner with IC50 values of 8.8 ±â€¯2.1 µM and 2.5 ±â€¯0.8 µM, respectively. This effect was voltage-independent for both homomeric Kv7.1 and Kv7.1/KCNE1 channels. Moreover, mutation of residues located on the P-loop and S6 domain along with molecular docking, suggest that T312, I337 and F340 are the most important molecular determinants for AMIT-Kv7.1 channel interaction. Our experimental findings and modeling suggest that AMIT preferentially blocks the open state of Kv7.1/KCNE1 channels by interacting with specific residues that were previously reported to be important for binding of other compounds, such as chromanol 293B and the benzodiazepine L7.


Asunto(s)
Amitriptilina/farmacología , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Potenciales de Acción , Amitriptilina/química , Antidepresivos Tricíclicos/química , Antidepresivos Tricíclicos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Canal de Potasio KCNQ1/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Canales de Potasio con Entrada de Voltaje/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...