Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicology ; 505: 153830, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754619

RESUMEN

The use of tyrosine kinase inhibitors (TKIs) has resulted in significant occurrence of arrhythmias. However, the precise mechanism of the proarrhythmic effect is not fully understood. In this study, we found that nilotinib (NIL), vandetanib (VAN), and mobocertinib (MOB) induced the development of "cellrhythmia" (arrhythmia-like events) in a concentration-dependent manner in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Continuous administration of NIL, VAN, or MOB in animals significantly prolonged the action potential durations (APD) and increased susceptibility to arrhythmias. Using phosphoproteomic analysis, we identified proteins with altered phosphorylation levels after treatment with 3 µM NIL, VAN, and MOB for 1.5 h. Using these identified proteins as substrates, we performed kinase-substrate enrichment analysis to identify the kinases driving the changes in phosphorylation levels of these proteins. MAPK and WNK were both inhibited by NIL, VAN, and MOB. A selective inhibitor of WNK1, WNK-IN-11, induced concentration- and time-dependent cellrhythmias and prolonged field potential duration (FPD) in hiPSC-CMs in vitro; furthermore, administration in guinea pigs confirmed that WNK-IN-11 prolonged ventricular repolarization and increased susceptibility to arrhythmias. Fingding indicated that WNK1 inhibition had an in vivo and in vitro arrhythmogenic phenotype similar to TKIs. Additionally,three of TKIs reduced hERG and KCNQ1 expression at protein level, not at transcription level. Similarly, the knockdown of WNK1 decreased hERG and KCNQ1 protein expression in hiPSC-CMs. Collectively, our data suggest that the proarrhythmic effects of NIL, VAN, and MOB occur through a kinase inhibition mechanism. NIL, VAN, and MOB inhibit WNK1 kinase, leading to a decrease in hERG and KCNQ1 protein expression, thereby prolonging action potential repolarization and consequently cause arrhythmias.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas , Miocitos Cardíacos , Piperidinas , Proteómica , Pirimidinas , Quinazolinas , Humanos , Arritmias Cardíacas/inducido químicamente , Animales , Proteómica/métodos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Piperidinas/farmacología , Piperidinas/toxicidad , Pirimidinas/toxicidad , Pirimidinas/farmacología , Quinazolinas/toxicidad , Quinazolinas/farmacología , Potenciales de Acción/efectos de los fármacos , Inhibidores de Proteínas Quinasas/toxicidad , Inhibidores de Proteínas Quinasas/farmacología , Fosforilación , Canal de Potasio ERG1/metabolismo , Canal de Potasio ERG1/antagonistas & inhibidores , Canal de Potasio ERG1/genética , Cobayas , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Canal de Potasio KCNQ1/metabolismo , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/efectos de los fármacos , Fosfoproteínas/metabolismo , Relación Dosis-Respuesta a Droga
2.
Eur J Pharmacol ; 886: 173542, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32910945

RESUMEN

Cannabidiol (CBD) is a non-psychoactive component of Cannabis which has recently received regulatory consideration for the treatment of intractable forms of epilepsy such as the Dravet and the Lennox-Gastaut syndromes. The mechanisms of the antiepileptic effects of CBD are unclear, but several pre-clinical studies suggest the involvement of ion channels. Therefore, we have evaluated the effects of CBD on seven major cardiac currents shaping the human ventricular action potential and on Purkinje fibers isolated from rabbit hearts to assess the in vitro cardiac safety profile of CBD. We found that CBD inhibits with comparable micromolar potencies the peak and late components of the NaV1.5 sodium current, the CaV1.2 mediated L-type calcium current, as well as all the repolarizing potassium currents examined except Kir2.1. The most sensitive channels were KV7.1 and the least sensitive were KV11.1 (hERG), which underly the slow (IKs) and rapid (IKr) components, respectively, of the cardiac delayed-rectifier current. In the Purkinje fibers, CBD decreased the action potential (AP) duration more potently at half-maximal than at near complete repolarization, and slightly decreased the AP amplitude and its maximal upstroke velocity. CBD had no significant effects on the membrane resting potential except at the highest concentration tested under fast pacing rate. These data show that CBD impacts cardiac electrophysiology and suggest that caution should be exercised when prescribing CBD to carriers of cardiac channelopathies or in conjunction with other drugs known to affect heart rhythm or contractility.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Cannabidiol/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Corazón/efectos de los fármacos , Canales Iónicos/efectos de los fármacos , Animales , Cannabidiol/toxicidad , Canalopatías/complicaciones , Humanos , Técnicas In Vitro , Canal de Potasio KCNQ1/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Técnicas de Placa-Clamp , Ramos Subendocárdicos/efectos de los fármacos , Conejos
3.
Elife ; 92020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32207683

RESUMEN

The cardiac ventricular action potential depends on several voltage-gated ion channels, including NaV, CaV, and KV channels. Mutations in these channels can cause Long QT Syndrome (LQTS) which increases the risk for ventricular fibrillation and sudden cardiac death. Polyunsaturated fatty acids (PUFAs) have emerged as potential therapeutics for LQTS because they are modulators of voltage-gated ion channels. Here we demonstrate that PUFA analogues vary in their selectivity for human voltage-gated ion channels involved in the ventricular action potential. The effects of specific PUFA analogues range from selective for a specific ion channel to broadly modulating cardiac ion channels from all three families (NaV, CaV, and KV). In addition, a PUFA analogue selective for the cardiac IKs channel (Kv7.1/KCNE1) is effective in shortening the cardiac action potential in human-induced pluripotent stem cell-derived cardiomyocytes. Our data suggest that PUFA analogues could potentially be developed as therapeutics for LQTS and cardiac arrhythmia.


Asunto(s)
Canales de Calcio Tipo L/efectos de los fármacos , Ácidos Grasos Insaturados/farmacología , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Proteínas de Xenopus/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Antiarrítmicos/farmacología , Canales de Calcio Tipo L/fisiología , Células Madre Pluripotentes Inducidas/citología , Canal de Potasio KCNQ1/fisiología , Síndrome de QT Prolongado/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis
4.
Thyroid ; 29(7): 934-945, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31084419

RESUMEN

Background: Hypothyroidism, the most common endocrine disease, induces cardiac electrical remodeling that creates a substrate for ventricular arrhythmias. Recent studies report that high thyrotropin (TSH) levels are related to cardiac electrical abnormalities and increased mortality rates. The aim of the present work was to investigate the direct effects of TSH on the heart and its possible causative role in the increased incidence of arrhythmia in hypothyroidism. Methods: A new rat model of central hypothyroidism (low TSH levels) was created and characterized together with the classical propylthiouracil-induced primary hypothyroidism model (high TSH levels). Electrocardiograms were recorded in vivo, and ionic currents were recorded from isolated ventricular myocytes in vitro by the patch-clamp technique. Protein and mRNA were measured by Western blot and quantitative reverse transcription polymerase chain reaction in rat and human cardiac myocytes. Adult human action potentials were simulated in silico to incorporate the experimentally observed changes. Results: Both primary and central hypothyroidism models increased the L-type Ca2+ current (ICa-L) and decreased the ultra-rapid delayed rectifier K+ current (IKur) densities. However, only primary but not central hypothyroidism showed electrocardiographic repolarization abnormalities and increased ventricular arrhythmia incidence during caffeine/dobutamine challenge. These changes were paralleled by a decrease in the density of the transient outward K+ current (Ito) in cardiomyocytes from animals with primary but not central hypothyroidism. In vitro treatment with TSH for 24 hours enhanced isoproterenol-induced spontaneous activity in control ventricular cells and diminished Ito density in cardiomyocytes from control and central but not primary hypothyroidism animals. In human myocytes, TSH decreased the expression of KCND3 and KCNQ1, Ito, and the delayed rectifier K+ current (IKs) encoding proteins in a protein kinase A-dependent way. Transposing the changes produced by hypothyroidism and TSH to a computer model of human ventricular action potential resulted in enhanced occurrence of early afterdepolarizations and arrhythmia mostly in primary hypothyroidism, especially under ß-adrenergic stimulation. Conclusions: The results suggest that suppression of repolarizing K+ currents by TSH underlies most of the electrical remodeling observed in hypothyroidism. This work demonstrates that the activation of the TSH-receptor/protein kinase A pathway in the heart is responsible for the cardiac electrical remodeling and arrhythmia generation seen in hypothyroidism.


Asunto(s)
Arritmias Cardíacas/metabolismo , Remodelación Atrial/fisiología , Hipotiroidismo/metabolismo , Miocitos Cardíacos/metabolismo , Tirotropina/metabolismo , Potenciales de Acción , Animales , Antitiroideos/toxicidad , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Bexaroteno/toxicidad , Calcio/metabolismo , Simulación por Computador , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Electrocardiografía , Humanos , Hipotiroidismo/complicaciones , Hipotiroidismo/fisiopatología , Isoproterenol/farmacología , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Propiltiouracilo/toxicidad , ARN Mensajero/metabolismo , Ratas , Canales de Potasio Shal/efectos de los fármacos , Canales de Potasio Shal/genética , Tirotropina/farmacología
5.
Naunyn Schmiedebergs Arch Pharmacol ; 389(10): 1133-7, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27530870

RESUMEN

Loperamide is a µ-opioid receptor agonist commonly used to treat diarrhea and often available as an over-the-counter medication. Recently, numerous reports of QRS widening accompanied by dramatic QT interval prolongation, torsades de pointe arrhythmia, and death have been reported in opioid abusers consuming large amounts of the drug to produce euphoria or prevent opiate withdrawal. The present study was undertaken to determine the mechanisms of this cardiotoxicity. Using whole-cell patch clamp electrophysiology, we tested loperamide on the cloned human cardiac sodium channel (Nav1.5) and the two main repolarizing cardiac K(+) channels cloned from the human heart: KvLQT1/minK and the human ether-a-go-go-related gene (hERG) channel. Loperamide inhibited Nav1.5 with IC50 values of 297 and 239 nM at holding potentials of -90 and -70 mV, respectively. Loperamide was weakly active on KvLQT1/minK producing 17 and 65 % inhibition at concentrations of 1 and 10 µM, respectively. Conversely, loperamide was found to be a very high affinity inhibitor of the hERG channel with an IC50 value of 89 nM at room temperature and 33 nM when measured at physiological temperature. The QRS and QT interval prolongation and the attending arrhythmias, produced by loperamide, derive from high affinity inhibition of Nav1.5 and especially hERG. Since the drug has been widely available and safely used as directed for many years, we believe that the potent inhibition loperamide possesses for cardiac ion channels has only been uncovered because of the excessive misuse of the drug as a consequence of the recent opioid abuse epidemic.


Asunto(s)
Antidiarreicos/toxicidad , Síndrome de QT Prolongado/inducido químicamente , Loperamida/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Trastornos Relacionados con Opioides/complicaciones , Torsades de Pointes/etiología , Bloqueadores del Canal de Sodio Activado por Voltaje/toxicidad , Potenciales de Acción , Cardiotoxicidad , Relación Dosis-Respuesta a Droga , Canal de Potasio ERG1/efectos de los fármacos , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Células HEK293 , Humanos , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Trastornos Relacionados con Opioides/fisiopatología , Técnicas de Placa-Clamp , Factores de Riesgo , Factores de Tiempo , Torsades de Pointes/metabolismo , Torsades de Pointes/fisiopatología , Transfección
6.
Cardiovasc Res ; 106(1): 98-108, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25616413

RESUMEN

AIMS: Voltage-gated potassium channels encoded by KCNQ genes (Kv7 channels) are emerging as important regulators of vascular tone. In this study, we analysed the contribution of Kv7 channels to the vasodilation induced by hypoxia and the cyclic AMP pathway in the coronary circulation. We also assessed their regional distribution and possible impairment by diabetes. METHODS AND RESULTS: We examined the effects of Kv7 channel modulators on K+ currents and vascular reactivity in rat left and right coronary arteries (LCAs and RCAs, respectively). Currents from LCA were more sensitive to Kv7 channel inhibitors (XE991, linopirdine) and activators (flupirtine, retigabine) than those from RCA. Accordingly, LCAs were more sensitive than RCAs to the relaxation induced by Kv7 channel enhancers. Likewise, relaxation induced by the adenylyl cyclase activator forskolin and hypoxia, which were mediated through Kv7 channel activation, were greater in LCA than in RCA. KCNQ1 and KCNQ5 expression was markedly higher in LCA than in RCA. After incubation with high glucose (HG, 30 mmol/L), myocytes from LCA, but not from RCA, were more depolarized and showed reduced Kv7 currents. In HG-incubated LCA, the effects of Kv7 channel modulators and forskolin were diminished, and the expression of KCNQ1 and KCNQ5 was reduced. Finally, vascular responses induced by Kv7 channel modulators were impaired in LCA, but not in RCA, from type 1 diabetic rats. CONCLUSION: Our results reveal that the high expression and function of Kv7 channels in the LCA and their down-regulation by diabetes critically determine the sensitivity to key regulators of coronary tone.


Asunto(s)
Circulación Coronaria/fisiología , Vasos Coronarios/fisiología , Diabetes Mellitus Experimental/fisiopatología , Regulación hacia Abajo/fisiología , Hiperglucemia/fisiopatología , Canales de Potasio KCNQ/fisiología , Canal de Potasio KCNQ1/fisiología , Animales , Vasos Coronarios/efectos de los fármacos , AMP Cíclico/fisiología , Diabetes Mellitus Experimental/inducido químicamente , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glucosa/farmacología , Hipoxia/fisiopatología , Canales de Potasio KCNQ/efectos de los fármacos , Canal de Potasio KCNQ1/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Estreptozocina/efectos adversos , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología
7.
Islets ; 6(4): e962386, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25437377

RESUMEN

Glucose-stimulated insulin secretion (GSIS) is a highly regulated process involving complex interaction of multiple factors. Potassium voltage-gated channel subfamily KQT member 1 (KCNQ1) is a susceptibility gene for type 2 diabetes (T2D) and the risk alleles of the KCNQ1 gene appear to be associated with impaired insulin secretion. The role of KCNQ1 channel in insulin secretion has been explored by previous work in clonal pancreatic ß-cells but has yet to be investigated in the context of primary islets as well as intact animals. Genetic studies suggest that altered incretin glucagon-like peptide-1 (GLP-1) secretion might be a potential link between KCNQ1 variants and impaired insulin secretion, but this hypothesis has not been verified so far. In the current study, we examined KCNQ1 expression in pancreas and intestine from normal mice and then investigated the effects of chromanol 293B, a KCNQ1 channel inhibitor, on insulin secretion in vitro and in vivo. By double-immunofluorescence staining, KCNQ1 was detected in insulin-positive ß-cells and GLP-1-positive L-cells. Administration of chromanol 293B enhanced GSIS in cultured islets and intact animals. Along with the potentiated insulin secretion during oral glucose tolerance tests (OGTT), plasma GLP-1 level after gastric glucose load was increased in 293B treated mice. These data not only provided new evidence for the participation of KCNQ1 in GSIS at the level of pancreatic islet and intact animal but also indicated the potential linking role of GLP-1 between KCNQ1 and insulin secretion.


Asunto(s)
Cromanos/farmacología , Péptido 1 Similar al Glucagón/sangre , Glucosa/farmacología , Insulina/metabolismo , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Potasio KCNQ1/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Técnica del Anticuerpo Fluorescente , Prueba de Tolerancia a la Glucosa , Técnicas In Vitro , Resistencia a la Insulina/fisiología , Secreción de Insulina , Intestinos/química , Islotes Pancreáticos/metabolismo , Canal de Potasio KCNQ1/análisis , Ratones , Páncreas/química
8.
Cardiovasc Res ; 104(1): 216-25, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25139741

RESUMEN

AIMS: Mutations in KCNQ1, encoding for Kv7.1, the α-subunit of the IKs channel, cause long-QT syndrome type 1, potentially predisposing patients to ventricular tachyarrhythmias and sudden cardiac death, in particular, during elevated sympathetic tone. Here, we aim at characterizing the p.Lys557Glu (K557E) Kv7.1 mutation, identified in a Dutch kindred, at baseline and during (mimicked) increased adrenergic tone. METHODS AND RESULTS: K557E carriers had moderate QTc prolongation that augmented significantly during exercise. IKs characteristics were determined after co-expressing Kv7.1-wild-type (WT) and/or K557E with minK and Yotiao in Chinese hamster ovary cells. K557E caused IKs loss of function with slowing of the activation kinetics, acceleration of deactivation kinetics, and a rightward shift of voltage-dependent activation. Together, these contributed to a dominant-negative reduction in IKs density. Confocal microscopy and western blot indicated that trafficking of K557E channels was not impaired. Stimulation of WT IKs by 3'-5'-cyclic adenosine monophosphate (cAMP) generated strong current up-regulation that was preserved for K557E in both hetero- and homozygosis. Accumulation of IKs at fast rates occurred both in WT and in K557E, but was blunted in the latter. In a computational model, K557E showed a loss of action potential shortening during ß-adrenergic stimulation, in accordance with the lack of QT shortening during exercise in patients. CONCLUSION: K557E causes IKs loss of function with reduced fast rate-dependent current accumulation. cAMP-dependent stimulation of mutant IKs is preserved, but incapable of fully compensating for the baseline current reduction, explaining the long QT intervals at baseline and the abnormal QT accommodation during exercise in affected patients.


Asunto(s)
AMP Cíclico/metabolismo , Activación del Canal Iónico , Canal de Potasio KCNQ1/genética , Mutación , Síndrome de Romano-Ward/genética , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Potenciales de Acción , Adolescente , Agonistas Adrenérgicos beta/farmacología , Adulto , Animales , Células CHO , Estudios de Casos y Controles , Simulación por Computador , Cricetulus , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Perros , Electrocardiografía , Femenino , Predisposición Genética a la Enfermedad , Herencia , Humanos , Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/metabolismo , Cinética , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Mutagénesis Sitio-Dirigida , Fenotipo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Síndrome de Romano-Ward/diagnóstico , Síndrome de Romano-Ward/metabolismo , Síndrome de Romano-Ward/fisiopatología , Sistemas de Mensajero Secundario , Transfección , Regulación hacia Arriba , Adulto Joven
9.
Arterioscler Thromb Vasc Biol ; 34(7): 1522-30, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24855057

RESUMEN

OBJECTIVE: Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. APPROACH AND RESULTS: Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. CONCLUSIONS: Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension.


Asunto(s)
Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ1/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Potasio/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Canales de Potasio KCNQ/química , Canales de Potasio KCNQ/efectos de los fármacos , Canales de Potasio KCNQ/genética , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/genética , Microdominios de Membrana/metabolismo , Potenciales de la Membrana , Músculo Liso Vascular/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Estructura Cuaternaria de Proteína , Ratas , Transfección , Xenopus
10.
Psychopharmacology (Berl) ; 231(17): 3493-501, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24553581

RESUMEN

RATIONALE: Neurosteroids and likely other lipid modulators access transmembrane sites on the GABAA receptor (GABAAR) by partitioning into and diffusing through the plasma membrane. Therefore, specific components of the plasma membrane may affect the potency or efficacy of neurosteroid-like modulators. Here, we tested a possible role for phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid that governs activity of many channels and transporters, in modulation or function of GABAARs. OBJECTIVES: In these studies, we sought to deplete plasma-membrane PIP2 and probe for a change in the strength of potentiation by submaximal concentrations of the neurosteroid allopregnanolone (3α5αP) and other anesthetics, including propofol, pentobarbital, and ethanol. We also tested for a change in the behavior of negative allosteric modulators pregnenolone sulfate and dipicrylamine. METHODS: We used Xenopus oocytes expressing the ascidian voltage-sensitive phosphatase (Ci-VSP) to deplete PIP2. Voltage pulses to positive membrane potentials were used to deplete PIP2 in Ci-VSP-expressing cells. GABAARs composed of α1ß2γ2L and α4ß2δ subunits were challenged with GABA and 3α5αP or other modulators before and after PIP2 depletion. KV7.1 channels and NMDA receptors (NMDARs) were used as positive controls to verify PIP2 depletion. RESULTS: We found no evidence that PIP2 depletion affected modulation of GABAARs by positive or negative allosteric modulators. By contrast, Ci-VSP-induced PIP2 depletion depressed KV7.1 activation and NMDAR activity. CONCLUSIONS: We conclude that despite a role for PIP2 in modulation of a wide variety of ion channels, PIP2 does not affect modulation of GABAARs by neurosteroids or related compounds.


Asunto(s)
Neurotransmisores/farmacología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Receptores de GABA-A/efectos de los fármacos , Animales , Femenino , Canal de Potasio KCNQ1/efectos de los fármacos , Oocitos , Técnicas de Placa-Clamp , Fosfatidilinositol 4,5-Difosfato/deficiencia , Picratos/farmacología , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Pregnenolona/farmacología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Xenopus , Proteínas de Xenopus/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología
11.
J Appl Toxicol ; 33(8): 723-39, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22334483

RESUMEN

The excitable cell membranes contain ion channels that allow the ions passage through the specific pores via a passive process. Assessment of the inhibition of the IKr (hERG) current is considered to be the main target during the drug development process, although there are other ionic currents for which drug-triggered modification can either potentiate or mask hERG channel blockade. Information describing the results of in vitro studies investigating the chemical-IKs current interactions has been developed in the current study. Based on the publicly available data sources, 145 records were collected. The final list of publications consists of 64 positions and refers to 106 different molecules connected with IKs current inhibition, with at least one IC50 value measured. Ultimately, 98 of the IC50 values expressed as absolute values were gathered. For 36 records the IC50 was expressed as a relative value. For the 11 remaining records, the inhibition was not clearly expressed. Based on the collected data the predictive models for the IC50 estimation were developed with the use of various algorithms. The extended Quantitative Structure-Activity Relationships (QSAR) methodology was applied and the in vitro research settings were included as independent variables, apart from the physico-chemical descriptors calculated with the use of the Marvin Calculator Plugins. The root mean squared error and normalized root mean squared error values for the best model (an expert system based on two independent artificial neural networks) were 0.86 and 14.04%, respectively. The model was further built into the ToxComp system, the ToxIVIVE tool specialized for cardiotoxicity assessment of drugs.


Asunto(s)
Canal de Potasio KCNQ1/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Potasio/metabolismo , Animales , Línea Celular , Cricetinae , Células HEK293 , Humanos , Concentración 50 Inhibidora , Canal de Potasio KCNQ1/metabolismo , Modelos Biológicos , Relación Estructura-Actividad Cuantitativa , Xenopus
12.
Br J Pharmacol ; 168(1): 19-27, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22880633

RESUMEN

Retigabine is a first in class anticonvulsant that has recently undergone clinical trials to test its efficacy in epileptic patients. Retigabine's novel mechanism of action - activating Kv7 channels - suppresses neuronal activity to prevent seizure generation by hyperpolarizing the membrane potential and suppressing depolarizing surges. However, Kv7 channels are not expressed exclusively in neurones and data generated over the last decade have shown that Kv7 channels play a key role in various smooth muscle systems of the body. This review discusses the potential of targeting Kv7 channels in the smooth muscle to treat diseases such as hypertension, bladder instability, constipation and preterm labour.


Asunto(s)
Carbamatos/farmacología , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/metabolismo , Músculo Liso/efectos de los fármacos , Enfermedades Musculares/tratamiento farmacológico , Fenilendiaminas/farmacología , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Anticonvulsivantes/farmacología , Estreñimiento/tratamiento farmacológico , Femenino , Humanos , Hipertensión/tratamiento farmacológico , Potenciales de la Membrana/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Tono Muscular/efectos de los fármacos , Músculo Liso/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Enfermedades Musculares/metabolismo , Neuronas/efectos de los fármacos , Trabajo de Parto Prematuro/tratamiento farmacológico , Embarazo , Enfermedades de la Vejiga Urinaria/tratamiento farmacológico
13.
Am J Physiol Gastrointest Liver Physiol ; 304(2): G157-66, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23154976

RESUMEN

Gastric acid secretion by the H(+)-K(+)-ATPase at the apical surface of activated parietal cells requires luminal K(+) provided by the KCNQ1/KCNE2 K(+) channel. However, little is known about the trafficking and relative spatial distribution of KCNQ1 and H(+)-K(+)-ATPase in resting and activated parietal cells and the capacity of KCNQ1 to control acid secretion. Here we show that inhibition of KCNQ1 activity quickly curtails gastric acid secretion in vivo, even when the H(+)-K(+)-ATPase is permanently anchored in the apical membrane, demonstrating a key role of the K(+) channel in controlling acid secretion. Three-dimensional imaging analysis of isolated mouse gastric units revealed that the majority of KCNQ1 resides in an intracytoplasmic, Rab11-positive compartment in resting parietal cells, distinct from H(+)-K(+)-ATPase-enriched tubulovesicles. Upon activation, there was a significant redistribution of H(+)-K(+)-ATPase and KCNQ1 from intracytoplasmic compartments to the apical secretory canaliculi. Significantly, high Förster resonance energy transfer was detected between H(+)-K(+)-ATPase and KCNQ1 in activated, but not resting, parietal cells. These findings demonstrate that H(+)-K(+)-ATPase and KCNQ1 reside in independent intracytoplasmic membrane compartments, or membrane domains, and upon activation of parietal cells, both membrane proteins are transported, possibly via Rab11-positive recycling endosomes, to apical membranes, where the two molecules are closely physically opposed. In addition, these studies indicate that acid secretion is regulated by independent trafficking of KCNQ1 and H(+)-K(+)-ATPase.


Asunto(s)
Ácido Gástrico/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Canal de Potasio KCNQ1/metabolismo , Células Parietales Gástricas/enzimología , Animales , Membrana Celular/enzimología , Cromanos/farmacología , Citoplasma/enzimología , Endosomas/enzimología , Transferencia Resonante de Energía de Fluorescencia , Histamina/metabolismo , Canal de Potasio KCNQ1/efectos de los fármacos , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Células Parietales Gástricas/efectos de los fármacos , Células Parietales Gástricas/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Transporte de Proteínas , Sulfonamidas/farmacología , Factores de Tiempo , Proteínas de Unión al GTP rab/metabolismo
14.
Circ Res ; 110(2): 211-9, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22095730

RESUMEN

RATIONALE: The mutation A341V in the S6 transmembrane segment of KCNQ1, the α-subunit of the slowly activating delayed-rectifier K(+) (I(Ks)) channel, predisposes to a severe long-QT1 syndrome with sympathetic-triggered ventricular tachyarrhythmias and sudden cardiac death. OBJECTIVE: Several genetic risk modifiers have been identified in A341V patients, but the molecular mechanisms underlying the pronounced repolarization phenotype, particularly during ß-adrenergic receptor stimulation, remain unclear. We aimed to elucidate these mechanisms and provide new insights into control of cAMP-dependent modulation of I(Ks). METHODS AND RESULTS: We characterized the effects of A341V on the I(Ks) macromolecular channel complex in transfected Chinese hamster ovary cells and found a dominant-negative suppression of cAMP-dependent Yotiao-mediated I(Ks) upregulation on top of a dominant-negative reduction in basal current. Phosphomimetic substitution of the N-terminal position S27 with aspartic acid rescued this loss of upregulation. Western blot analysis showed reduced phosphorylation of KCNQ1 at S27, even for heterozygous A341V, suggesting that phosphorylation defects in some (mutant) KCNQ1 subunits can completely suppress I(Ks) upregulation. Functional analyses of heterozygous KCNQ1 WT:G589D and heterozygous KCNQ1 WT:S27A, a phosphorylation-inert substitution, also showed such suppression. Immunoprecipitation of Yotiao with KCNQ1-A341V (in the presence of KCNE1) was not different from wild-type. CONCLUSIONS: Our results indicate the involvement of the KCNQ1-S6 region at/or around A341 in cAMP-dependent stimulation of I(Ks), a process that is under strong dominant-negative control, suggesting that tetrameric KCNQ1 phosphorylation is required. Specific long-QT1 mutations, including heterozygous A341V, disable this regulation.


Asunto(s)
AMP Cíclico/metabolismo , Genes Dominantes , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Síndrome de Romano-Ward/genética , Síndrome de Romano-Ward/metabolismo , Agonistas Adrenérgicos beta/farmacología , Alanina , Animales , Ácido Aspártico , Western Blotting , Células CHO , Simulación por Computador , Cricetinae , Cricetulus , Perros , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Inmunoprecipitación , Canal de Potasio KCNQ1/efectos de los fármacos , Potenciales de la Membrana , Modelos Cardiovasculares , Mutagénesis Sitio-Dirigida , Miocitos Cardíacos/efectos de los fármacos , Fenotipo , Fosforilación , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Procesamiento Proteico-Postraduccional , Síndrome de Romano-Ward/fisiopatología , Factores de Tiempo , Transfección
15.
Am J Physiol Renal Physiol ; 299(6): F1308-19, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20861072

RESUMEN

The KCNQ1 K(+) channel plays a key role in the regulation of several physiological functions, including cardiac excitability, cardiovascular tone, and body electrolyte homeostasis. The metabolic sensor AMP-activated protein kinase (AMPK) has been shown to regulate a growing number of ion transport proteins. To determine whether AMPK regulates KCNQ1, we studied the effects of AMPK activation on KCNQ1 currents in Xenopus laevis oocytes and collecting duct epithelial cells. AMPK activation decreased KCNQ1 currents and channel surface expression in X. laevis oocytes, but AMPK did not phosphorylate KCNQ1 in vitro, suggesting an indirect regulatory mechanism. As it has been recently shown that the ubiquitin-protein ligase Nedd4-2 inhibits KCNQ1 plasma membrane expression and that AMPK regulates epithelial Na(+) channels via Nedd4-2, we examined the role of Nedd4-2 in the AMPK-dependent regulation of KCNQ1. Channel inhibition by AMPK was blocked in oocytes coexpressing either a dominant-negative or constitutively active Nedd4-2 mutant, or a Nedd4-2 interaction-deficient KCNQ1 mutant, suggesting that Nedd4-2 participates in the regulation of KCNQ1 by AMPK. KCNQ1 is expressed at the basolateral membrane in mouse polarized kidney cortical collecting duct (mpkCCD(c14)) cells and in rat kidney. Treatment with the AMPK activators AICAR (2 mM) or metformin (1 mM) reduced basolateral KCNQ1 currents in apically permeabilized polarized mpkCCD(c14) cells. Moreover, AICAR treatment of rat kidney slices ex vivo induced AMPK activation and intracellular redistribution of KCNQ1 from the basolateral membrane in collecting duct principal cells. AICAR treatment also induced increased ubiquitination of KCNQ1 immunoprecipitated from kidney slice homogenates. These results indicate that AMPK inhibits KCNQ1 activity by promoting Nedd4-2-dependent channel ubiquitination and retrieval from the plasma membrane.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas Activadas por AMP , Aminoimidazol Carboxamida/análogos & derivados , Animales , Células Epiteliales/efectos de los fármacos , Células HEK293 , Humanos , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/metabolismo , Ratones , Ubiquitina-Proteína Ligasas Nedd4 , Ratas , Ribonucleótidos , Proteínas de Xenopus , Xenopus laevis
16.
J Gen Physiol ; 135(6): 595-606, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20479111

RESUMEN

The voltage-sensing domain of voltage-gated channels is comprised of four transmembrane helices (S1-S4), with conserved positively charged residues in S4 moving across the membrane in response to changes in transmembrane voltage. Although it has been shown that positive charges in S4 interact with negative countercharges in S2 and S3 to facilitate protein maturation, how these electrostatic interactions participate in channel gating remains unclear. We studied a mutation in Kv7.1 (also known as KCNQ1 or KvLQT1) channels associated with long QT syndrome (E1K in S2) and found that reversal of the charge at E1 eliminates macroscopic current without inhibiting protein trafficking to the membrane. Pairing E1R with individual charge reversal mutations of arginines in S4 (R1-R4) can restore current, demonstrating that R1-R4 interact with E1. After mutating E1 to cysteine, we probed E1C with charged methanethiosulfonate (MTS) reagents. MTS reagents could not modify E1C in the absence of KCNE1. With KCNE1, (2-sulfonatoethyl) MTS (MTSES)(-) could modify E1C, but [2-(trimethylammonium)ethyl] MTS (MTSET)(+) could not, confirming the presence of a positively charged environment around E1C that allows approach by MTSES(-) but repels MTSET(+). We could change the local electrostatic environment of E1C by making charge reversal and/or neutralization mutations of R1 and R4, such that MTSET(+) modified these constructs depending on activation states of the voltage sensor. Our results confirm the interaction between E1 and the fourth arginine in S4 (R4) predicted from open-state crystal structures of Kv channels and reveal an E1-R1 interaction in the resting state. Thus, E1 engages in electrostatic interactions with arginines in S4 sequentially during the gating movement of S4. These electrostatic interactions contribute energetically to voltage-dependent gating and are important in setting the limits for S4 movement.


Asunto(s)
Activación del Canal Iónico , Canal de Potasio KCNQ1/metabolismo , Síndrome de QT Prolongado/metabolismo , Secuencia de Aminoácidos , Animales , Arginina , Membrana Celular/metabolismo , Cisteína , Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/genética , Potenciales de la Membrana , Mesilatos/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Reactivos de Sulfhidrilo/farmacología , Propiedades de Superficie , Factores de Tiempo , Xenopus
17.
Basic Clin Pharmacol Toxicol ; 107(1): 614-8, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20406211

RESUMEN

Lapatinib is one of several tyrosine kinase inhibitors used against solid tumour cancers such as breast and lung cancer. Although lapatinib is associated with a risk of QT prolongation, the effects of the drug on cellular cardiac electrical properties and on action potential duration (APD) have not been studied. To evaluate the potential effects of lapatinib on cardiac repolarization, we investigated its electrophysiological effects using a whole-cell patch-clamp technique in transiently transfected HEK293 cells expressing human ether-à-go-go (hERG; to examine the rapidly activating delayed rectifier K(+) current, I(Kr)), KCNQ1/KCNE1 (to examine the slowly activating delayed rectifier K(+) current, I(Ks)), KCNJ2 (to examine the inwardly rectifying K(+) current, I(K1)), or SCN5A (to examine the inward Na(+) current, I(Na)) and in rat cardiac myocytes (to examine the inward Ca(2+) current, I(Ca)). We also examined its effects on the APD at 90% (APD(90)) in isolated rabbit Purkinje fibres. In ion channel studies, lapatinib inhibited the hERG current in a concentration-dependent manner, with a half-maximum inhibition concentration (IC(50)) of 0.8 +/- 0.09 microm. In contrast, at concentrations up to 3 microm, lapatinib did not significantly reduce the I(Na), I(K1) or I(Ca) amplitudes; at 3 microm, it did slightly inhibit the I(Ks) amplitude (by 19.4 +/- 4.7%; p < 0.05). At 5 microm, lapatinib induced prolongation of APD(90) by 16.1% (p < 0.05). These results suggest that the APD(90)-prolonging effect of lapatinib on rabbit Purkinje fibres is primarily a result of inhibition of the hERG current and I(Ks), but not I(Na), I(K1) or I(Ca).


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Antineoplásicos/farmacología , Sistema de Conducción Cardíaco/efectos de los fármacos , Canales Iónicos/efectos de los fármacos , Ramos Subendocárdicos/efectos de los fármacos , Quinazolinas/farmacología , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Canales de Potasio Éter-A-Go-Go/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Canales Iónicos/metabolismo , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/metabolismo , Riñón/citología , Riñón/embriología , Riñón/metabolismo , Lapatinib , Proteínas Musculares/efectos de los fármacos , Proteínas Musculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/metabolismo , Ramos Subendocárdicos/fisiopatología , Conejos , Canales de Sodio/efectos de los fármacos , Canales de Sodio/metabolismo , Transfección
18.
Channels (Austin) ; 4(2): 108-14, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20139709

RESUMEN

Voltage-gated potassium channels are often assembled with accessory proteins that increase their functional diversity. KCNE proteins are small accessory proteins that modulate voltage-gated potassium (K(V)) channels. Although the functional effects of various KCNE proteins have been described, many questions remain regarding their assembly with the pore-forming subunits. For example, while previous experiments with some K(V) channels suggest that the association of the pore-subunit with the accessory subunits occurs co-translationally in the endoplasmic reticulum, it is not known whether KCNQ1 assembly with KCNE1 occurs in a similar manner to generate the medically important cardiac slow delayed rectifier current (I(Ks)). In this study we used a novel approach to demonstrate that purified recombinant human KCNE1 protein (prKCNE1) modulates KCNQ1 channels heterologously expressed in Xenopus oocytes resulting in generation of I(Ks). Incubation of KCNQ1-expressing oocytes with cycloheximide did not prevent I(Ks) expression following prKCNE1 injection. By contrast, incubation with brefeldin A prevented KCNQ1 modulation by prKCNE1. Moreover, injection of the trafficking-deficient KCNE1-L51H reduced KCNQ1 currents. Together, these observations indicate that while assembly of KCNE1 with KCNQ1 does not require co-translation, functional KCNQ1-prKCNE1 channels assemble early in the secretory pathway and reach the plasma membrane via vesicular trafficking.


Asunto(s)
Activación del Canal Iónico , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Potasio/metabolismo , Animales , Brefeldino A/farmacología , Membrana Celular/metabolismo , Cicloheximida/farmacología , Retículo Endoplásmico , Humanos , Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio KCNQ1/biosíntesis , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/genética , Cinética , Potenciales de la Membrana , Canales de Potasio con Entrada de Voltaje/biosíntesis , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/genética , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Xenopus laevis
19.
J Urol ; 182(1): 330-6, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19450820

RESUMEN

PURPOSE: The presence of novel KCNQ currents was investigated in guinea pig bladder interstitial cells of Cajal and their contribution to the maintenance of the resting membrane potential was assessed. MATERIALS AND METHODS: Enzymatically dispersed interstitial cells of Cajal were patch clamped with K(+) filled pipettes in voltage clamp and current clamp modes. Pharmacological modulators of KCNQ channels were tested on membrane currents and the resting membrane potential. RESULTS: Cells were stepped from -60 to 40 mV to evoke voltage dependent currents using a modified K(+) pipette solution containing ethylene glycol tetraacetic acid (5 mM) and adenosine triphosphate (3 mM) to eliminate large conductance Ca activated K channel and K(adenosine triphosphate) currents. Application of the KCNQ blockers XE991, linopirdine (Tocris Bioscience, Ellisville, Missouri) and chromanol 293B (Sigma) decreased the outward current in concentration dependent fashion. The current-voltage relationship of XE991 sensitive current revealed a voltage dependent, outwardly rectifying current that activated positive to -60 mV and showed little inactivation. The KCNQ openers flupirtine and meclofenamic acid (Sigma) increased outward currents across the voltage range. In current clamp mode XE991 or chromanol 293B decreased interstitial cell of Cajal resting membrane potential and elicited the firing of spontaneous transient depolarizations in otherwise quiescent cells. Flupirtine or meclofenamic acid hyperpolarized interstitial cells of Cajal and inhibited any spontaneous electrical activity. CONCLUSIONS: This study provides electrophysiological evidence that bladder interstitial cells of Cajal have KCNQ currents with a role in the regulation of interstitial cell of Cajal resting membrane potential and excitability. These novel findings provide key information on the ion channels present in bladder interstitial cells of Cajal and they may indicate relevant targets for the development of new therapies for bladder instability.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Canal de Potasio KCNQ1/metabolismo , Músculo Liso/fisiología , Miocitos del Músculo Liso/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Vejiga Urinaria/citología , Vejiga Urinaria/fisiología , Animales , Células Cultivadas , Electrofisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Cobayas , Canal de Potasio KCNQ1/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Modelos Animales , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Miocitos del Músculo Liso/efectos de los fármacos , Probabilidad , Distribución Aleatoria , Sensibilidad y Especificidad
20.
Pflugers Arch ; 457(5): 1111-20, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18709386

RESUMEN

This study represents an extensive characterisation of the expression and functional impact of KCNQ and KCNE accessory subunits in a murine uterus using a combination of quantitative reverse transcription polymerase chain reaction, Western blot analysis, patch clamp electrophysiology and isometric tension recording. The use of uterine tissue throughout the oestrous cycle provided a physiological model with which to assess hormonal regulation of these genes. Messenger ribonucleic acid for all KCNQ genes were detected throughout the oestrous cycle with the KCNQ1 message predominant. KCNE isoforms were detected at each stage of the cycle. KCNE4 was the most abundant (p < 0.0001), and KCNQ1, KCNQ5 and KCNE1 were up-regulated in metestrous (p < 0.0001). The K(v)7 channel inhibitor XE991 reduced outward K(+) currents and significantly increased spontaneous myometrial contractions (p < 0.05), whereas retigabine (K(v)7 activator) significantly relaxed uterine tissues (p < 0.001). These data are the first to characterise KCNQ and KCNE gene expression in a cell type outside of neurons and the cardiovascular system.


Asunto(s)
Ciclo Estral/fisiología , Canal de Potasio KCNQ1/fisiología , Miometrio/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Animales , Antracenos/farmacología , Carbamatos/farmacología , Cromanos/farmacología , Femenino , Canal de Potasio KCNQ1/biosíntesis , Canal de Potasio KCNQ1/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Fenilendiaminas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/biosíntesis , Sulfonamidas/farmacología , Contracción Uterina/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...