RESUMEN
Bone cancer pain (BCP) represents a prevalent symptom among cancer patients with bone metastases, yet its underlying mechanisms remain elusive. This study investigated the transcriptional regulation mechanism of Kv7(KCNQ)/M potassium channels in DRG neurons and its involvement in the development of BCP in rats. We show that HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes, which encode Kv7(KCNQ)/M potassium channels in dorsal root ganglion (DRG), contributes to the sensitization of DRG neurons and the pathogenesis of BCP in rats. Also, HDAC2 requires the formation of a corepressor complex with MeCP2 and Sin3A to execute transcriptional regulation of kcnq2/kcnq3 genes. Moreover, EREG is identified as an upstream signal molecule for HDAC2-mediated kcnq2/kcnq3 genes transcription repression. Activation of EREG/EGFR-ERK-Runx1 signaling, followed by the induction of HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes in DRG neurons, leads to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. Consequently, the activation of EREG/EGFR-ERK-Runx1 signaling, along with the subsequent transcriptional repression of kcnq2/kcnq3 genes by HDAC2 in DRG neurons, underlies the sensitization of DRG neurons and the pathogenesis of BCP in rats. These findings uncover a potentially targetable mechanism contributing to bone metastasis-associated pain in cancer patients.
Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Receptores ErbB , Ganglios Espinales , Histona Desacetilasa 2 , Canal de Potasio KCNQ2 , Animales , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Neoplasias Óseas/patología , Ratas , Dolor en Cáncer/genética , Dolor en Cáncer/metabolismo , Dolor en Cáncer/patología , Receptores ErbB/metabolismo , Receptores ErbB/genética , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Transcripción Genética , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Transducción de Señal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Femenino , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ratas Sprague-Dawley , Sistema de Señalización de MAP Quinasas/genéticaRESUMEN
OBJECTIVE: Pharmacological activation of neuronal Kv7 channels by the antiepileptic drug retigabine (RTG; ezogabine) has been proven effective in treating partial epilepsy. However, RTG was withdrawn from the market due to the toxicity caused by its phenazinium dimer metabolites, leading to peripheral skin discoloration and retinal abnormalities. To address the undesirable metabolic properties of RTG and prevent the formation of phenazinium dimers, we made chemical modifications to RTG, resulting in a new RTG derivative, 1025c, N,N'-{4-[(4-fluorobenzyl) (prop-2-yn-1-yl)amino]-1,2-phenylene}bis(3,3-dimethylbutanamide). METHODS: Whole-cell recordings were used to evaluate Kv7 channel openers. Site-directed mutagenesis and molecular docking were adopted to investigate the molecular mechanism underlying 1025c and Kv7.2 interactions. Mouse seizure models of maximal electroshock (MES), subcutaneous pentylenetetrazol (scPTZ), and PTZ-induced kindling were utilized to test compound antiepileptic activity. RESULTS: The novel compound 1025c selectively activates whole-cell Kv7.2/7.3 currents in a concentration-dependent manner, with half-maximal effective concentration of .91 ± .17 µmol·L-1. The 1025c compound also causes a leftward shift in Kv7.2/7.3 current activation toward a more hyperpolarized membrane potential, with a shift of the half voltage of maximal activation (ΔV1/2) of -18.6 ± 3.0 mV. Intraperitoneal administration of 1025c demonstrates dose-dependent antiseizure activities in assays of MES, scPTZ, and PTZ-induced kindling models. Moreover, through site-directed mutagenesis combined with molecular docking, a key residue Trp236 has been identified as critical for 1025c-mediated activation of Kv7.2 channels. Photostability experiments further reveal that 1025c is more photostable than RTG and is unable to dimerize. SIGNIFICANCE: Our findings demonstrate that 1025c exhibits potent and selective activation of neuronal Kv7 channels without being metabolized to phenazinium dimers, suggesting its developmental potential as an antiseizure agent for therapy.
Asunto(s)
Anticonvulsivantes , Carbamatos , Canal de Potasio KCNQ2 , Fenilendiaminas , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/química , Ratones , Fenilendiaminas/farmacología , Carbamatos/farmacología , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Convulsiones/tratamiento farmacológico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Masculino , Humanos , Simulación del Acoplamiento Molecular , Pentilenotetrazol/toxicidad , Técnicas de Placa-Clamp , Electrochoque , Células HEK293 , Modelos Animales de Enfermedad , Mutagénesis Sitio-Dirigida , Relación Dosis-Respuesta a Droga , Ratones Endogámicos C57BL , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismoRESUMEN
Epilepsy is a chronic neurological disease which has affected â¼ 65 million people worldwide. In this study, peripheral blood mononuclear cells were isolated from a young patient patient bearing a KCNQ2 gene mutation and suffering from Epilepsy verified by clinical and genetic diagnosis. Induced pluripotent stem cells (iPSCs) were established by a non-integrative method, using plasmids carrying OCT4, SOX2, KLF4, BCL-XL and C-MYC. The established iPSCs presented typical pluripotent cells morphology, normal karyotype, and potential to differentiate into three germ layers. Our approach offers a useful model to explore pathogenesis and therapy of Epilepsy.
Asunto(s)
Epilepsia , Células Madre Pluripotentes Inducidas , Canal de Potasio KCNQ2 , Factor 4 Similar a Kruppel , Mutación , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Epilepsia/genética , Epilepsia/patología , Línea Celular , Diferenciación Celular , MasculinoRESUMEN
Fragile X syndrome (FXS), the most frequent monogenic form of intellectual disability, is caused by transcriptional silencing of the FMR1 gene that could render neuronal hyperexcitability. Here we show that pyramidal cells (PCs) in the dorsal CA1 region of the hippocampus elicited a larger action potential (AP) number in response to suprathreshold stimulation in juvenile Fmr1 knockout (KO) than wild-type (WT) mice. Because Kv7/M channels modulate CA1 PC excitability in rats, we investigated if their dysfunction produces neuronal hyperexcitability in Fmr1 KO mice. Immunohistochemical and western blot analyses showed no differences in the expression of Kv7.2 and Kv7.3 channel subunits between genotypes; however, the current mediated by Kv7/M channels was reduced in Fmr1 KO mice. In both genotypes, bath application of XE991 (10 µM), a blocker of Kv7/M channels: produced an increased AP number, produced an increased input resistance, produced a decreased AP voltage threshold and shaped AP medium afterhyperpolarization by increasing mean velocities. Retigabine (10 µM), an opener of Kv7/M channels, produced opposite effects to XE991. Both XE991 and retigabine abolished differences in all these parameters found in control conditions between genotypes. Furthermore, a low concentration of retigabine (2.5 µM) normalized CA1 PC excitability of Fmr1 KO mice. Finally, ex vivo seizure-like events evoked by 4-aminopyiridine (200 µM) in the dorsal CA1 region were more frequent in Fmr1 KO mice, and were abolished by retigabine (5-10 µM). We conclude that CA1 PCs of Fmr1 KO mice exhibit hyperexcitability, caused by Kv7/M channel dysfunction, and increased epileptiform activity, which were abolished by retigabine. KEY POINTS: Dorsal pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice exhibit hyperexcitability. Kv7/M channel activity, but not expression, is reduced in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice. Kv7/M channel dysfunction causes hyperexcitability in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice by increasing input resistance, decreasing AP voltage threshold and shaping medium afterhyperpolarization. A Kv7/M channel opener normalizes neuronal excitability in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice. Ex vivo seizure-like events evoked in the dorsal CA1 region were more frequent in Fmr1 KO mice, and such an epileptiform activity was abolished by a Kv7/M channel opener depending on drug concentration. Kv7/M channels may represent a therapeutic target for treating symptoms associated with hippocampal alterations in fragile X syndrome.
Asunto(s)
Potenciales de Acción , Región CA1 Hipocampal , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Fenilendiaminas , Células Piramidales , Animales , Masculino , Ratones , Antracenos/farmacología , Región CA1 Hipocampal/fisiopatología , Región CA1 Hipocampal/metabolismo , Carbamatos/farmacología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Síndrome del Cromosoma X Frágil/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso , Fenilendiaminas/farmacología , Células Piramidales/fisiología , Células Piramidales/metabolismo , Células Piramidales/efectos de los fármacosRESUMEN
The growing interest in Kv7.2/7.3 agonists originates from the involvement of these channels in several brain hyperexcitability disorders. In particular, Kv7.2/7.3 mutants have been clearly associated with epileptic encephalopathies (DEEs) as well as with a spectrum of focal epilepsy disorders, often associated with developmental plateauing or regression. Nevertheless, there is a lack of available therapeutic options, considering that retigabine, the only molecule used in clinic as a broad-spectrum Kv7 agonist, has been withdrawn from the market in late 2016. This is why several efforts have been made both by both academia and industry in the search for suitable chemotypes acting as Kv7.2/7.3 agonists. In this context, in silico methods have played a major role, since the precise structures of different Kv7 homotetramers have been only recently disclosed. In the present review, the computational methods used for the design of Kv.7.2/7.3 small molecule agonists and the underlying medicinal chemistry are discussed in the context of their biological and structure-function properties.
Asunto(s)
Canal de Potasio KCNQ2 , Canal de Potasio KCNQ3 , Humanos , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ3/metabolismo , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/química , Canal de Potasio KCNQ3/antagonistas & inhibidores , Simulación por Computador , Relación Estructura-Actividad , Descubrimiento de Drogas/métodos , AnimalesRESUMEN
GRT-X, which targets both the mitochondrial translocator protein (TSPO) and the Kv7.2/3 (KCNQ2/3) potassium channels, has been shown to efficiently promote recovery from cervical spine injury. In the present work, we investigate the role of GRT-X and its two targets in the axonal growth of dorsal root ganglion (DRG) neurons. Neurite outgrowth was quantified in DRG explant cultures prepared from wild-type C57BL6/J and TSPO-KO mice. TSPO was pharmacologically targeted with the agonist XBD173 and the Kv7 channels with the activator ICA-27243 and the inhibitor XE991. GRT-X efficiently stimulated DRG axonal growth at 4 and 8 days after its single administration. XBD173 also promoted axonal elongation, but only after 8 days and its repeated administration. In contrast, both ICA27243 and XE991 tended to decrease axonal elongation. In dissociated DRG neuron/Schwann cell co-cultures, GRT-X upregulated the expression of genes associated with axonal growth and myelination. In the TSPO-KO DRG cultures, the stimulatory effect of GRT-X on axonal growth was completely lost. However, GRT-X and XBD173 activated neuronal and Schwann cell gene expression after TSPO knockout, indicating the presence of additional targets warranting further investigation. These findings uncover a key role of the dual mode of action of GRT-X in the axonal elongation of DRG neurons.
Asunto(s)
Axones , Ganglios Espinales , Receptores de GABA , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Ratones , Axones/metabolismo , Receptores de GABA/metabolismo , Receptores de GABA/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ2/genética , Ratones Noqueados , Ratones Endogámicos C57BL , Células Cultivadas , Células de Schwann/metabolismo , Células de Schwann/efectos de los fármacos , Células de Schwann/citología , Técnicas de Cocultivo , Neuronas/metabolismo , Neuronas/efectos de los fármacosRESUMEN
Voltage-gated ion channels are responsible for the electrical excitability of neurons and cardiomyocytes. Thus, they are obvious targets for pharmaceuticals aimed to modulate excitability. Compounds activating voltage-gated potassium (KV) channels are expected to reduce excitability. To search for new KV-channel activators, we performed a high-throughput screen of 10,000 compounds on a specially designed Shaker KV channel. Here, we report on a large family of channel-activating compounds with a carboxyl (COOH) group as the common motif. The most potent COOH activators are lipophilic (4 < LogP <7) and are suggested to bind at the interface between the lipid bilayer and the channel's positively charged voltage sensor. The negatively charged form of the COOH-group compounds is suggested to open the channel by electrostatically pulling the voltage sensor to an activated state. Several of the COOH-group compounds also activate the therapeutically important KV7.2/7.3 channel and can thus potentially be developed into antiseizure drugs. The COOH-group compounds identified in this study are suggested to act via the same site and mechanism of action as previously studied COOH-group compounds, such as polyunsaturated fatty acids and resin acids, but distinct from sites for several other types of potassium channel-activating compounds.
Asunto(s)
Activación del Canal Iónico , Animales , Activación del Canal Iónico/efectos de los fármacos , Canales de Potasio de la Superfamilia Shaker/metabolismo , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ2/agonistas , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Canal de Potasio KCNQ3/metabolismo , Humanos , Xenopus laevisRESUMEN
KCNQs are voltage-gated K+ channels that control neuronal excitability and are mutated in epilepsy and autism spectrum disorder (ASD). KCNQs have been extensively studied in neurons, but their function in glia is unknown. Using voltage, calcium, and GABA imaging, optogenetics, and behavioral assays, we show here for the first time in Caenorhabditis elegans (C. elegans) that glial KCNQ channels control neuronal excitability by mediating GABA release from glia via regulation of the function of L-type voltage-gated Ca2+ channels. Further, we show that human KCNQ channels have the same role when expressed in nematode glia, underscoring conservation of function across species. Finally, we show that pathogenic loss-of-function and gain-of-function human KCNQ2 mutations alter glia-to-neuron GABA signaling in distinct ways and that the KCNQ channel opener retigabine exerts rescuing effects. This work identifies glial KCNQ channels as key regulators of neuronal excitability via control of GABA release from glia.
Asunto(s)
Caenorhabditis elegans , Carbamatos , Canales de Potasio KCNQ , Neuroglía , Ácido gamma-Aminobutírico , Animales , Ácido gamma-Aminobutírico/metabolismo , Neuroglía/metabolismo , Carbamatos/farmacología , Canales de Potasio KCNQ/metabolismo , Humanos , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ2/genética , Neuronas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fenilendiaminas/farmacología , Canales de Calcio Tipo L/metabolismoRESUMEN
KCNQ5 encodes the voltage-gated potassium channel KV7.5, a member of the KV7 channel family, which conducts the M-current. This current is a potent regulator of neuronal excitability by regulating membrane potential in the subthreshold range of action potentials and mediating the medium and slow afterhyperpolarization. Recently, we have identified five loss-of-function variants in KCNQ5 in patients with genetic generalized epilepsy. Using the most severe dominant-negative variant (R359C), we set out to investigate pharmacological therapeutic intervention by KV7 channel openers on channel function and neuronal firing. Retigabine and gabapentin increased R359C-derived M-current amplitudes in HEK cells expressing homomeric or heteromeric mutant KV7.5 channels. Retigabine was most effective in restoring K+ currents. Ten µM retigabine was sufficient to reach the level of WT currents without retigabine, whereas 100 µM of gabapentin showed less than half of this effect and application of 50 µM ZnCl2 only significantly increased M-current amplitude in heteromeric channels. Overexpression of KV7.5-WT potently inhibited neuronal firing by increasing the M-current, whereas R359C overexpression had the opposite effect and additionally decreased the medium afterhyperpolarization current. Both aforementioned drugs and Zn2+ reversed the effect of R359C expression by reducing firing to nearly normal levels at high current injections. Our study shows that a dominant-negative variant with a complete loss-of-function in KV7.5 leads to largely increased neuronal firing which may explain a neuronal hyperexcitability in patients. KV7 channel openers, such as retigabine or gabapentin, could be treatment options for patients currently displaying pharmacoresistant epilepsy and carrying loss-of-function variants in KCNQ5.
Asunto(s)
Epilepsia , Canal de Potasio KCNQ2 , Fenilendiaminas , Humanos , Gabapentina/farmacología , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Carbamatos/farmacología , Carbamatos/uso terapéuticoRESUMEN
Pharmacological activation of voltage-gated ion channels by ligands serves as the basis for therapy and mainly involves a classic gating mechanism that augments the native voltage-dependent open probability. Through structure-based virtual screening, we identified a new scaffold compound, Ebio1, serving as a potent and subtype-selective activator for the voltage-gated potassium channel KCNQ2 and featuring a new activation mechanism. Single-channel patch-clamp, cryogenic-electron microscopy and molecular dynamic simulations, along with chemical derivatives, reveal that Ebio1 engages the KCNQ2 activation by generating an extended channel gate with a larger conductance at the saturating voltage (+50 mV). This mechanism is different from the previously observed activation mechanism of ligands on voltage-gated ion channels. Ebio1 caused S6 helices from residues S303 and F305 to perform a twist-to-open movement, which was sufficient to open the KCNQ2 gate. Overall, our findings provide mechanistic insights into the activation of KCNQ2 channel by Ebio1 and lend support for KCNQ-related drug development.
Asunto(s)
Activación del Canal Iónico , Canal de Potasio KCNQ2 , Simulación de Dinámica Molecular , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ2/química , Humanos , Activación del Canal Iónico/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Animales , Técnicas de Placa-Clamp , Microscopía por Crioelectrón , Células HEK293 , Relación Estructura-ActividadRESUMEN
Loss- and gain-of-function variants in the gene encoding KCNQ2 channels are a common cause of developmental and epileptic encephalopathy, a condition characterized by seizures, developmental delays, breathing problems, and early mortality. To understand how KCNQ2 dysfunction impacts behavior in a mouse model, we focus on the control of breathing by neurons expressing the transcription factor Phox2b which includes respiratory neurons in the ventral parafacial region. We find Phox2b-expressing ventral parafacial neurons express Kcnq2 in the absence of other Kcnq isoforms, thus clarifying why disruption of Kcnq2 but not other channel isoforms results in breathing problems. We also find that Kcnq2 deletion or expression of a recurrent gain-of-function variant R201C in Phox2b-expressing neurons increases baseline breathing or decreases the central chemoreflex, respectively, in mice during the light/inactive state. These results uncover mechanisms underlying breathing abnormalities in KCNQ2 encephalopathy and highlight an unappreciated vulnerability of Phox2b-expressing ventral parafacial neurons to KCNQ2 pathogenic variants.
Asunto(s)
Encefalopatías , Trastornos Respiratorios , Animales , Ratones , Encefalopatías/genética , Mutación con Ganancia de Función , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas/genética , Trastornos Respiratorios/metabolismoRESUMEN
The human voltage-gated potassium channel KCNQ2/KCNQ3 carries the neuronal M-current, which helps to stabilize the membrane potential. KCNQ2 can be activated by analgesics and antiepileptic drugs but their activation mechanisms remain unclear. Here we report cryo-electron microscopy (cryo-EM) structures of human KCNQ2-CaM in complex with three activators, namely the antiepileptic drug cannabidiol (CBD), the lipid phosphatidylinositol 4,5-bisphosphate (PIP2), and HN37 (pynegabine), an antiepileptic drug in the clinical trial, in an either closed or open conformation. The activator-bound structures, along with electrophysiology analyses, reveal the binding modes of two CBD, one PIP2, and two HN37 molecules in each KCNQ2 subunit, and elucidate their activation mechanisms on the KCNQ2 channel. These structures may guide the development of antiepileptic drugs and analgesics that target KCNQ2.
Asunto(s)
Analgésicos , Anticonvulsivantes , Humanos , Anticonvulsivantes/farmacología , Microscopía por Crioelectrón , Ligandos , Potenciales de la Membrana , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismoRESUMEN
Neuronal Kv7 voltage-gated potassium channels generate the M-current and regulate neuronal excitability. Here, we report that dehydroepiandrosterone sulfate (DHEAS) is an endogenous Kv7 channel modulator that attenuates Gq-coupled receptor-induced M-current suppression. DHEAS reduced muscarinic agonist-induced Kv7-current suppression of Kv7.1, Kv7.2, Kv7.4, or Kv7.5 homomeric currents and endogenous M-currents in rat sympathetic ganglion neurons. However, DHEAS per se did not alter the voltage dependence of these Kv7 homomeric channels or the m1 receptor-induced activation of phospholipase C or protein kinase C. DHEAS-treated Kv7.2 homomeric currents became resistant to depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) induced by voltage-activated phosphatase, Ci-VSP or eVSP. Our computational models predicted a novel binding site for DHEAS in the cytoplasmic domain of Kv7 subunits. A single-point mutation of the predicted key histidine into cysteine in the rat Kv7.2 subunit, rKv7.2(H558C), resulted in a loss of effects of DHEAS on muscarinic Kv7 current suppression. Furthermore, in vivo administration of DHEAS in mice of both sexes reduced late phase pain responses in the formalin paw test. However, it did not have effects on early phase responses in the formalin paw test or responses in the hot plate test. Coadministration of a selective Kv7 inhibitor, XE991, and DHEAS eliminated analgesic effects of DHEAS in late phase responses in the formalin paw test. Collectively, these results suggest that DHEAS attenuates M-current suppression by stabilizing PIP2-Kv7 subunit interaction and can mitigate inflammatory pain.SIGNIFICANCE STATEMENT M-current suppression induced by stimulation of Gq-coupled receptors is a form of Kv7 current modulation that can reversibly increase neuronal excitability. This study demonstrates that DHEAS, an endogenous steroid hormone, is a novel Kv7 channel modulator that can attenuate M-current suppression without affecting basal Kv7 channel kinetics. Administration of DHEAS in vivo alleviated inflammatory pain in rodents. These results suggest that the degree of M-current suppression can be dynamically regulated by small molecules. Therefore, this novel form of Kv7 channel regulation holds promising potential as a therapeutic target for sensitized nervous activities, such as inflammatory pain.
Asunto(s)
Canal de Potasio KCNQ2 , Agonistas Muscarínicos , Masculino , Femenino , Ratones , Ratas , Animales , Sulfato de Deshidroepiandrosterona , Canal de Potasio KCNQ2/metabolismo , Agonistas Muscarínicos/farmacología , Dolor/tratamiento farmacológico , Formaldehído , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismoRESUMEN
Autism spectrum disorders (ASD) represent neurodevelopmental disorders characterized by social deficits, repetitive behaviors, and various comorbidities, including epilepsy. ANK2, which encodes a neuronal scaffolding protein, is frequently mutated in ASD, but its in vivo functions and disease-related mechanisms are largely unknown. Here, we report that mice with Ank2 knockout restricted to cortical and hippocampal excitatory neurons (Ank2-cKO mice) show ASD-related behavioral abnormalities and juvenile seizure-related death. Ank2-cKO cortical neurons show abnormally increased excitability and firing rate. These changes accompanied decreases in the total level and function of the Kv7.2/KCNQ2 and Kv7.3/KCNQ3 potassium channels and the density of these channels in the enlengthened axon initial segment. Importantly, the Kv7 agonist, retigabine, rescued neuronal excitability, juvenile seizure-related death, and hyperactivity in Ank2-cKO mice. These results suggest that Ank2 regulates neuronal excitability by regulating the length of and Kv7 density in the AIS and that Kv7 channelopathy is involved in Ank2-related brain dysfunctions.
Asunto(s)
Epilepsia , Canales de Potasio KCNQ , Animales , Ratones , Epilepsia/metabolismo , Canales de Potasio KCNQ/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Neuronas/metabolismo , Convulsiones/genética , Convulsiones/metabolismoRESUMEN
KCNQ2 encodes the potassium-gated voltage channel Kv7.2, responsible for the M-current, which contributes to neuronal resting membrane potential. Pathogenic variants in KCNQ2 cause early onset epilepsies, developmental and epileptic encephalopathies. In this study, we generated three iPSC lines from dermal fibroblasts of a 5 year-old female patient with the KCNQ2 c.638C > T (p.Arg213Gln) pathogenic heterozygous variant and three iPSC lines from a healthy sibling control. These iPSC lines were validated by confirming the targeted mutation, SNP karyotyping, STR analysis, pluripotent gene expression, differentiation capacity into three germ layers, and were free of transgene integration and Mycoplasma.
Asunto(s)
Encefalopatías , Células Madre Pluripotentes Inducidas , Femenino , Humanos , Preescolar , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas , Diferenciación Celular , Encefalopatías/genética , Mutación , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismoRESUMEN
Mutations in the KCNQ2 gene encoding KV7.2 subunit that mediates neuronal M-current cause a severe form of developmental and epileptic encephalopathy (DEE). Electrophysiological evaluation of KCNQ2 mutations has been proved clinically useful in improving outcome prediction and choosing rational anti-seizure medications (ASMs). In this study we described the clinical characteristics, electrophysiological phenotypes and the in vitro response to KCNQ openers of five KCNQ2 pore mutations (V250A, N258Y, H260P, A265T and G290S) from seven patients diagnosed with KCNQ2-DEE. The KCNQ2 variants were transfected into Chinese hamster ovary (CHO) cells alone, in combination with KCNQ3 (1:1) or with wild-type KCNQ2 (KCNQ2-WT) and KCNQ3 in a ratio of 1:1:2, respectively. Their expression and electrophysiological function were assessed. When transfected alone or in combination with KCNQ3, none of these mutations affected the membrane expression of KCNQ2, but most failed to induce a potassium current except A265T, in which trace currents were observed when co-transfected with KCNQ3. When co-expressed with KCNQ2-WT and KCNQ3 (1:1:2), the currents at 0 mV of these mutations were decreased by 30%-70% compared to the KCNQ2/3 channel, which could be significantly rescued by applying KCNQ openers including the approved antiepileptic drug retigabine (RTG, 10 µM), as well as two candidates subjected to clinical trials, pynegabine (HN37, 1 µM) and XEN1101 (1 µM). These newly identified pathologic variants enrich the KCNQ2-DEE mutation hotspots in the pore-forming domain. This electrophysiological study provides a rational basis for personalized therapy with KCNQ openers in DEE patients carrying loss-of-function (LOF) mutations in KCNQ2.
Asunto(s)
Encefalopatías , Canal de Potasio KCNQ2 , Cricetinae , Animales , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Células CHO , Cricetulus , Mutación , Encefalopatías/genéticaRESUMEN
Zinc (Zn) is an essential trace element; it serves as a cofactor for a great number of enzymes, transcription factors, receptors, and other proteins. Zinc is also an important signaling molecule, which can be released from intracellular stores into the cytosol or extracellular space, for example, during synaptic transmission. Amongst cellular effects of zinc is activation of Kv7 (KCNQ, M-type) voltage-gated potassium channels. Here, we investigated relationships between Kv7 channel inhibition by Ca2+/calmodulin (CaM) and zinc-mediated potentiation. We show that Zn2+ ionophore, zinc pyrithione (ZnPy), can prevent or reverse Ca2+/CaM-mediated inhibition of Kv7.2. In the presence of both Ca2+ and Zn2+, the Kv7.2 channels lose most of their voltage dependence and lock in an open state. In addition, we demonstrate that mutations that interfere with CaM binding to Kv7.2 and Kv7.3 reduced channel membrane abundance and activity, but these mutants retained zinc sensitivity. Moreover, the relative efficacy of ZnPy to activate these mutants was generally greater, compared with the WT channels. Finally, we show that zinc sensitivity was retained in Kv7.2 channels assembled with mutant CaM with all four EF hands disabled, suggesting that it is unlikely to be mediated by CaM. Taken together, our findings indicate that zinc is a potent Kv7 stabilizer, which may protect these channels from physiological inhibitory effects of neurotransmitters and neuromodulators, protecting neurons from overactivity.
Asunto(s)
Calcio , Calmodulina , Espacio Intracelular , Canales de Potasio KCNQ , Zinc , Señalización del Calcio , Calmodulina/metabolismo , Canales de Potasio KCNQ/antagonistas & inhibidores , Canales de Potasio KCNQ/química , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Mutación , Unión Proteica/genética , Zinc/farmacología , Zinc/metabolismo , Espacio Intracelular/metabolismo , Calcio/metabolismo , Canal de Potasio KCNQ2/antagonistas & inhibidores , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/antagonistas & inhibidores , Canal de Potasio KCNQ3/química , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismoRESUMEN
Dysfunctional dopamine signaling is implicated in various neuropsychological disorders. Previously, we reported that dopamine increases D1 receptor (D1R)-expressing medium spiny neuron (MSN) excitability and firing rates in the nucleus accumbens (NAc) via the PKA/Rap1/ERK pathway to promote reward behavior. Here, the results show that the D1R agonist, SKF81297, inhibits KCNQ-mediated currents and increases D1R-MSN firing rates in murine NAc slices, which is abolished by ERK inhibition. In vitro ERK phosphorylates KCNQ2 at Ser414 and Ser476; in vivo, KCNQ2 is phosphorylated downstream of dopamine signaling in NAc slices. Conditional deletion of Kcnq2 in D1R-MSNs reduces the inhibitory effect of SKF81297 on KCNQ channel activity, while enhancing neuronal excitability and cocaine-induced reward behavior. These effects are restored by wild-type, but not phospho-deficient KCNQ2. Hence, D1R-ERK signaling controls MSN excitability via KCNQ2 phosphorylation to regulate reward behavior, making KCNQ2 a potential therapeutical target for psychiatric diseases with a dysfunctional reward circuit.
Asunto(s)
Dopamina , Canal de Potasio KCNQ2 , Trastornos Mentales , Proteínas del Tejido Nervioso , Animales , Dopamina/metabolismo , Canal de Potasio KCNQ2/metabolismo , Trastornos Mentales/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fosforilación , Receptores de Dopamina D1/metabolismo , RecompensaRESUMEN
Previous immunohistochemical studies have shown the expression of KCNQ2 channels at nodes of Ranvier (NRs) of myelinated nerves. However, functions of these channels at NRs remain elusive. In the present study, we addressed this issue by directly applying whole-cell patch-clamp recordings at NRs of rat lumbar spinal ventral nerves in ex vivo preparations. We show that depolarizing voltages evoke large non-inactivating outward currents at NRs, which are partially inhibited by KCNQ channel blocker linopirdine and potentiated by KCNQ channel activator retigabine. Furthermore, linopirdine significantly alters intrinsic electrophysiological properties of NRs to depolarize resting membrane potential, increase input resistance, prolong AP width, reduce AP threshold, and decrease AP amplitude. On the other hand, retigabine significantly decreases input resistance and increases AP rheobase at NRs. Moreover, linopirdine increases excitability at NRs by converting single AP firing into multiple AP firing at many NRs. Saltatory conduction velocity is significantly reduced by retigabine, and AP success rate at high stimulation frequency is significantly increased by linopirdine. Collectively, KCNQ2 channels play a significant role in regulating intrinsic electrophysiological properties and saltatory conduction at NRs of motor nerve fibers of rats. These findings may provide insights into how the loss-of-function mutation in KCNQ2 channels can lead to neuromuscular disorders in human patients.
Asunto(s)
Canal de Potasio KCNQ2/metabolismo , Nódulos de Ranvier , Nervios Espinales , Animales , Fenómenos Electrofisiológicos , Canal de Potasio KCNQ2/genética , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Nódulos de Ranvier/metabolismo , RatasRESUMEN
In this issue of Neuron, Lopez et al. report that KCNQ2 (potassium voltage-gated channel subfamily Q member 2) is essential for the sustained antidepressant-like effects of ketamine in glutamatergic neurons of the ventral hippocampus. This study implies that KCNQ2 activators can be novel antidepressants without the ketamine side effects.