Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Sci Rep ; 14(1): 16092, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997408

RESUMEN

Thermally stable full-length scorpion toxin peptides and partially degraded peptides with complete disulfide bond pairing are valuable natural peptide resources in traditional Chinese scorpion medicinal material. However, their pharmacological activities are largely unknown. This study discovered BmKcug1a-P1, a novel N-terminal degraded peptide, in this medicinal material. BmKcug1a-P1 inhibited hKv1.2 and hKv1.3 potassium channels with IC50 values of 2.12 ± 0.27 µM and 1.54 ± 0.28 µM, respectively. To investigate the influence of N-terminal amino acid loss on the potassium channel inhibiting activities, three analogs (i.e., full-length BmKcug1a, BmKcug1a-P1-D2 and BmKcug1a-P1-D4) of BmKcug1a-P1 were prepared, and their potassium channel inhibiting activities on hKv1.3 channel were verified by whole-cell patch clamp technique. Interestingly, the potassium channel inhibiting activity of full-length BmKcug1a on the hKv1.3 channel was significantly improved compared to its N-terminal degraded form (BmKcug1a-P1), while the activities of two truncated analogs (i.e., BmKcug1a-P1-D2 and BmKcug1a-P1-D4) were similar to that of BmKcug1a-P1. Extensive alanine-scanning experiments identified the bonding interface (including two key functional residues, Asn30 and Arg34) of BmKcug1a-P1. Structural and functional dissection further elucidated whether N-terminal residues of the peptide are located at the bonding interface is important in determining whether the N-terminus significantly influences the potassium channel inhibiting activity of the peptide. Altogether, this research identified a novel N-terminal degraded active peptide, BmKcug1a-P1, from traditional Chinese scorpion medicinal material and elucidated how the N-terminus of peptides influences their potassium channel inhibiting activity, contributing to the functional identification and molecular truncation optimization of full-length and degraded peptides from traditional Chinese scorpion medicinal material Buthus martensii Karsch.


Asunto(s)
Péptidos , Bloqueadores de los Canales de Potasio , Venenos de Escorpión , Escorpiones , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Escorpiones/química , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Animales , Péptidos/química , Péptidos/farmacología , Humanos , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.3/química , Proteolisis , Canal de Potasio Kv.1.2/metabolismo , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Canal de Potasio Kv.1.2/química , Estabilidad Proteica , Secuencia de Aminoácidos , Técnicas de Placa-Clamp , Células HEK293
2.
Sci Signal ; 17(845): eadg4124, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012937

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that is linked directly to the development of Kaposi's sarcoma. KSHV establishes a latent infection in B cells, which can be reactivated to initiate lytic replication, producing infectious virions. Using pharmacological and genetic silencing approaches, we showed that the voltage-gated K+ channel Kv1.3 in B cells enhanced KSHV lytic replication. The KSHV replication and transcription activator (RTA) protein increased the abundance of Kv1.3 and led to enhanced K+ channel activity and hyperpolarization of the B cell membrane. Enhanced Kv1.3 activity promoted intracellular Ca2+ influx, leading to the Ca2+-driven nuclear localization of KSHV RTA and host nuclear factor of activated T cells (NFAT) proteins and subsequently increased the expression of NFAT1 target genes. KSHV lytic replication and infectious virion production were inhibited by Kv1.3 blockers or silencing. These findings highlight Kv1.3 as a druggable host factor that is key to the successful completion of KSHV lytic replication.


Asunto(s)
Herpesvirus Humano 8 , Canal de Potasio Kv1.3 , Factores de Transcripción NFATC , Replicación Viral , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/antagonistas & inhibidores , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Transactivadores/metabolismo , Transactivadores/genética , Linfocitos B/virología , Linfocitos B/metabolismo , Calcio/metabolismo , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/genética
3.
J Mol Med (Berl) ; 102(7): 947-959, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38780771

RESUMEN

Pancreas ductal adenocarcinoma belongs to the most common cancers, but also to the tumors with the poorest prognosis. Here, we pharmacologically targeted a mitochondrial potassium channel, namely mitochondrial Kv1.3, and investigated the role of sphingolipids and mutated Kirsten Rat Sarcoma Virus (KRAS) in Kv1.3-mediated cell death. We demonstrate that inhibition of Kv1.3 using the Kv1.3-inhibitor PAPTP results in an increase of sphingosine and superoxide in membranes and/or membranes associated with mitochondria, which is enhanced by KRAS mutation. The effect of PAPTP on sphingosine and mitochondrial superoxide formation as well as cell death is prevented by sh-RNA-mediated downregulation of Kv1.3. Induction of sphingosine in human pancreas cancer cells by PAPTP is mediated by activation of sphingosine-1-phosphate phosphatase and prevented by an inhibitor of sphingosine-1-phosphate phosphatase. A rapid depolarization of isolated mitochondria is triggered by binding of sphingosine to cardiolipin, which is neutralized by addition of exogenous cardiolipin. The significance of these findings is indicated by treatment of mutated KRAS-harboring metastasized pancreas cancer with PAPTP in combination with ABC294640, a blocker of sphingosine kinases. This treatment results in increased formation of sphingosine and death of pancreas cancer cells in vitro and, most importantly, prolongs in vivo survival of mice challenged with metastatic pancreas cancer. KEY MESSAGES: Pancreatic ductal adenocarcinoma (PDAC) is a common tumor with poor prognosis. The mitochondrial Kv1.3 ion channel blocker induced mitochondrial sphingosine. Sphingosine binds to cardiolipin thereby mediating mitochondrial depolarization. Sphingosine is formed by a PAPTP-mediated activation of S1P-Phosphatase. Inhibition of sphingosine-consumption amplifies PAPTP effects on PDAC in vivo.


Asunto(s)
Mitocondrias , Neoplasias Pancreáticas , Esfingosina , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular Tumoral , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/antagonistas & inhibidores , Ratones , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Muerte Celular/efectos de los fármacos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética
4.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791278

RESUMEN

Recent advancements in understanding the intricate molecular mechanisms underlying immunological responses have underscored the critical involvement of ion channels in regulating calcium influx, particularly in inflammation. Nootkatone, a natural sesquiterpenoid found in Alpinia oxyphylla and various citrus species, has gained attention for its diverse pharmacological properties, including anti-inflammatory effects. This study aimed to elucidate the potential of nootkatone in modulating ion channels associated with calcium signaling, particularly CRAC, KV1.3, and KCa3.1 channels, which play pivotal roles in immune cell activation and proliferation. Using electrophysiological techniques, we demonstrated the inhibitory effects of nootkatone on CRAC, KV1.3, and KCa3.1 channels in HEK293T cells overexpressing respective channel proteins. Nootkatone exhibited dose-dependent inhibition of channel currents, with IC50 values determined for each channel. Nootkatone treatment did not significantly affect cell viability, indicating its potential safety for therapeutic applications. Furthermore, we observed that nootkatone treatment attenuated calcium influx through activated CRAC channels and showed anti-proliferative effects, suggesting its role in regulating inflammatory T cell activation. These findings highlight the potential of nootkatone as a natural compound for modulating calcium signaling pathways by targeting related key ion channels and it holds promise as a novel therapeutic agent for inflammatory disorders.


Asunto(s)
Señalización del Calcio , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Sesquiterpenos Policíclicos , Linfocitos T , Humanos , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Linfocitos T/inmunología , Sesquiterpenos Policíclicos/farmacología , Células HEK293 , Señalización del Calcio/efectos de los fármacos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Calcio/metabolismo , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.3/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Sesquiterpenos/farmacología
5.
Biomed Pharmacother ; 175: 116651, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692062

RESUMEN

Voltage-gated potassium channel 1.3 (Kv1.3) has emerged as a pivotal player in numerous biological processes and pathological conditions, sparking considerable interest as a potential therapeutic target across various diseases. In this review, we present a comprehensive examination of Kv1.3 channels, highlighting their fundamental characteristics and recent advancements in utilizing Kv1.3 inhibitors for treating autoimmune disorders, neuroinflammation, and cancers. Notably, Kv1.3 is prominently expressed in immune cells and implicated in immune responses and inflammation associated with autoimmune diseases and chronic inflammatory conditions. Moreover, its aberrant expression in certain tumors underscores its role in cancer progression. While preclinical studies have demonstrated the efficacy of Kv1.3 inhibitors, their clinical translation remains pending. Molecular imaging techniques offer promising avenues for tracking Kv1.3 inhibitors and assessing their therapeutic efficacy, thereby facilitating their development and clinical application. Challenges and future directions in Kv1.3 inhibitor research are also discussed, emphasizing the significant potential of targeting Kv1.3 as a promising therapeutic strategy across a spectrum of diseases.


Asunto(s)
Canal de Potasio Kv1.3 , Neoplasias , Humanos , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/metabolismo , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Bloqueadores de los Canales de Potasio/uso terapéutico , Bloqueadores de los Canales de Potasio/farmacología , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/metabolismo , Terapia Molecular Dirigida , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo
6.
J Biol Chem ; 300(4): 107155, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479597

RESUMEN

Despite significant advances in the development of therapeutic interventions targeting autoimmune diseases and chronic inflammatory conditions, lack of effective treatment still poses a high unmet need. Modulating chronically activated T cells through the blockade of the Kv1.3 potassium channel is a promising therapeutic approach; however, developing selective Kv1.3 inhibitors is still an arduous task. Phage display-based high throughput peptide library screening is a rapid and robust approach to develop promising drug candidates; however, it requires solid-phase immobilization of target proteins with their binding site preserved. Historically, the KcsA bacterial channel chimera harboring only the turret region of the human Kv1.3 channel was used for screening campaigns. Nevertheless, literature data suggest that binding to this type of chimera does not correlate well with blocking potency on the native Kv1.3 channels. Therefore, we designed and successfully produced advanced KcsA-Kv1.3, KcsA-Kv1.1, and KcsA-Kv1.2 chimeric proteins in which both the turret and part of the filter regions of the human Kv1.x channels were transferred. These T+F (turret-filter) chimeras showed superior peptide ligand-binding predictivity compared to their T-only versions in novel phage ELISA assays. Phage ELISA binding and competition results supported with electrophysiological data confirmed that the filter region of KcsA-Kv1.x is essential for establishing adequate relative affinity order among selected peptide toxins (Vm24 toxin, Hongotoxin-1, Kaliotoxin-1, Maurotoxin, Stichodactyla toxin) and consequently obtaining more reliable selectivity data. These new findings provide a better screening tool for future drug development efforts and offer insight into the target-ligand interactions of these therapeutically relevant ion channels.


Asunto(s)
Canal de Potasio Kv1.3 , Bloqueadores de los Canales de Potasio , Proteínas Recombinantes de Fusión , Animales , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/antagonistas & inhibidores , Sitios de Unión , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/química , Ligandos , Biblioteca de Péptidos , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Canales de Potasio/química , Canales de Potasio/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Línea Celular
7.
J Integr Neurosci ; 22(6): 171, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176920

RESUMEN

BACKGROUND: White matter injury (WMI) in basal ganglia usually induces long-term disability post intracerebral hemorrhage (ICH). Kv1.3 is an ion channel expressed in microglia and induces neuroinflammation after ICH. Here, we investigated the functions and roles of Kv1.3 activation-induced inflammatory response in WMI and the Kv1.3 blockade effect on microglia polarization after ICH. METHODS: Mice ICH model was constructed by autologous blood injection. The expression of Kv1.3 was measured using immunoblot, real-time quantitative polymerase chain reaction (RT-qPCR), and immunostaining assays. Then, the effect of administration of 5-(4-Phenoxybutoxy) psoralen (PAP-1), a selectively pharmacological Kv1.3 blocker, was investigated using open field test (OFT) and basso mouse score (BMS). RT-qPCR, immunoblot, and enzyme-linked immunosorbent assay (ELISA) were taken to elucidate the expression of pro-inflammatory or anti-inflammatory factors around hematoma. PAP-1's function in regulating microglia polarization was investigated using immunoblot, RT-qPCR, and immunostaining assays. The downstream PAP-1 signaling pathway was determined by RT-qPCR and immunoblot. RESULTS: Kv1.3 expression was increased in microglia around the hematoma significantly after ICH. PAP-1 markedly improved neurological outcomes and the WMI by reducing pro-inflammatory cytokine accumulation and upregulating anti-inflammatory factors. Mechanistically, PAP-1 reduces NF-κB p65 and p50 activation, thus facilitating microglia polarization into M2-like microglia, which exerts this beneficial effect. CONCLUSIONS: PAP-1 reduced pro-inflammatory cytokines accumulation and increased anti-inflammatory factors by facilitating M2-like microglia polarization via the NF-κB signaling pathway. Thus, the current study shows that the Kv1.3 blockade is capable of ameliorating WMI by facilitating M2-like phenotype microglia polarization after ICH.


Asunto(s)
Lesiones Encefálicas , Canal de Potasio Kv1.3 , Sustancia Blanca , Animales , Ratones , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Citocinas/metabolismo , Hematoma , FN-kappa B/metabolismo , Fenotipo , Transducción de Señal/fisiología , Canal de Potasio Kv1.3/antagonistas & inhibidores
8.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36499018

RESUMEN

Epilepsy is a chronic neurological disorder whose pathophysiology relates to inflammation. The potassium channel Kv1.3 in microglia has been reported as a promising therapeutic target in neurological diseases in which neuroinflammation is involved, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and middle cerebral artery occlusion/reperfusion (MCAO/R). Currently, little is known about the relationship between Kv1.3 and epilepsy. In this study, we found that Kv1.3 was upregulated in microglia in the KA-induced mouse epilepsy model. Importantly, blocking Kv1.3 with its specific small-molecule blocker 5-(4-phenoxybutoxy)psoralen (PAP-1) reduced seizure severity, prolonged seizure latency, and decreased neuronal loss. Mechanistically, we further confirmed that blockade of Kv1.3 suppressed proinflammatory microglial activation and reduced proinflammatory cytokine production by inhibiting the Ca2+/NF-κB signaling pathway. These results shed light on the critical function of microglial Kv1.3 in epilepsy and provided a potential therapeutic target.


Asunto(s)
Epilepsia , Canal de Potasio Kv1.3 , Animales , Ratones , Modelos Animales de Enfermedad , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Canal de Potasio Kv1.3/antagonistas & inhibidores , Microglía/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo
9.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34639190

RESUMEN

Calcium signaling plays a vital role in the regulation of various cellular processes, including activation, proliferation, and differentiation of T-lymphocytes, which is mediated by ORAI1 and potassium (K+) channels. These channels have also been identified as highly attractive therapeutic targets for immune-related diseases. Licochalcone A is a licorice-derived chalconoid known for its multifaceted beneficial effects in pharmacological treatments, including its anti-inflammatory, anti-asthmatic, antioxidant, antimicrobial, and antitumorigenic properties. However, its anti-inflammatory effects involving ion channels in lymphocytes remain unclear. Thus, the present study aimed to investigate whether licochalcone A inhibits ORAI1 and K+ channels in T-lymphocytes. Our results indicated that licochalcone A suppressed all three channels (ORAI1, Kv1.3, and KCa3.1) in a concentration-dependent matter, with IC50 values of 2.97 ± 1.217 µM, 0.83 ± 1.222 µM, and 11.21 ± 1.07 µM, respectively. Of note, licochalcone A exerted its suppressive effects on the IL-2 secretion and proliferation in CD3 and CD28 antibody-induced T-cells. These results indicate that the use of licochalcone A may provide an effective treatment strategy for inflammation-related immune diseases.


Asunto(s)
Antiinflamatorios/farmacología , Chalconas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canal de Potasio Kv1.3/antagonistas & inhibidores , Proteína ORAI1/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Calcio/metabolismo , Señalización del Calcio , Células HEK293 , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Células Jurkat , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
10.
Eur J Pharmacol ; 912: 174567, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34662565

RESUMEN

Paroxetine is one of the most effective selective serotonin reuptake inhibitors used to treat depressive and panic disorders that reduce the viability of human T lymphocytes, in which Kv1.3 channels are highly expressed. We examined whether paroxetine could modulate human Kv1.3 channels acutely and directly with the aim of understanding the biophysical effects and the underlying mechanisms of the drug. Kv1.3 channel proteins were expressed in Xenopus oocytes. Paroxetine rapidly inhibited the steady-state current and peak current of these channels within 6 min in a concentration-dependent manner; IC50s were 26.3 µM and 53.9 µM, respectively, and these effects were partially reversed by washout, which excluded the possibility of genomic regulation. At the same test voltage, paroxetine blockade of the steady-state currents was higher than that of the peak currents, and the inhibition of the steady-state current increased relative to the degree of depolarization. Paroxetine decreased the inactivation time constant in a concentration-dependent manner, but it did not affect the activation time constant, which resulted in the acceleration of intrinsic inactivation without changing ultrarapid activation. Blockade of Kv1.3 channels by paroxetine exhibited more rapid inhibition at higher activation frequencies showing the use-dependency of the blockade. Overall, these results show that paroxetine directly suppresses human Kv1.3 channels in an open state and accelerates the process of steady-state inactivation; thus, we have revealed a biophysical mechanism for possible acute immunosuppressive effects of paroxetine.


Asunto(s)
Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/metabolismo , Paroxetina/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Humanos , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Xenopus laevis
11.
Ann Clin Transl Neurol ; 8(10): 2070-2082, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34617690

RESUMEN

OBJECTIVE: The voltage-gated potassium channel Kv1.3, which is expressed on activated, disease-associated microglia and memory T cells, constitutes an attractive target for immunocytoprotection after endovascular thrombectomy (EVT). Using young male mice and rats we previously demonstrated that the Kv1.3 blocker PAP-1 when started 12 h after reperfusion dose-dependently reduces infarction and improves neurological deficit on day 8. However, these proof-of-concept findings are of limited translational value because the majority of strokes occur in patients over 65 and, when considering overall lifetime risk, in females. Here, we therefore tested whether Kv1.3 deletion or delayed pharmacological therapy would be beneficial in females and aged animals. METHODS: Transient middle cerebral artery occlusion (tMCAO, 60 min) was induced in 16-week-old and 80-week-old male and female wild-type C57BL/6J and Kv1.3-/- mice. Stroke outcomes were assessed daily with the 14-score tactile and proprioceptive limp placing test and on day 8 before sacrifice by T2-weighted MRI. Young and old female mice were treated twice daily with 40 mg/kg PAP-1 starting 12 h after reperfusion. Microglia/macrophage activation and T-cell infiltration were evaluated in whole slide scans. RESULTS: Kv1.3 deletion provided no significant benefit in young females but improved outcomes in young males, old males, and old females compared with wild-type controls of the same sex. Delayed PAP-1 treatment improved outcomes in both young and old females. In old females, Kv1.3 deletion and PAP-1 treatment significantly reduced Iba-1 and CD3 staining intensity in the ipsilateral hemisphere. INTERPRETATION: Our preclinical studies using aged and female mice further validate Kv1.3 inhibitors as potential adjunctive treatments for reperfusion therapy in stroke by providing both genetic and pharmacological verification.


Asunto(s)
Ficusina/farmacología , Infarto de la Arteria Cerebral Media/terapia , Canal de Potasio Kv1.3/antagonistas & inhibidores , Reperfusión , Accidente Cerebrovascular/terapia , Factores de Edad , Animales , Terapia Combinada , Modelos Animales de Enfermedad , Femenino , Ficusina/administración & dosificación , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Accidente Cerebrovascular/tratamiento farmacológico
12.
Biol Futur ; 72(1): 75-83, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34554500

RESUMEN

Since the discovery of the Kv1.3 voltage-gated K+ channel in human T cells in 1984, ion channels are considered crucial elements of the signal transduction machinery in the immune system. Our knowledge about Kv1.3 and its inhibitors is outstanding, motivated by their potential application in autoimmune diseases mediated by Kv1.3 overexpressing effector memory T cells (e.g., Multiple Sclerosis). High affinity Kv1.3 inhibitors are either small organic molecules (e.g., Pap-1) or peptides isolated from venomous animals. To date, the highest affinity Kv1.3 inhibitors with the best Kv1.3 selectivity are the engineered analogues of the sea anemone peptide ShK (e.g., ShK-186), the engineered scorpion toxin HsTx1[R14A] and the natural scorpion toxin Vm24. These peptides inhibit Kv1.3 in picomolar concentrations and are several thousand-fold selective for Kv1.3 over other biologically critical ion channels. Despite the significant progress in the field of Kv1.3 molecular pharmacology several progressive questions remain to be elucidated and discussed here. These include the conjugation of the peptides to carriers to increase the residency time of the peptides in the circulation (e.g., PEGylation and engineering the peptides into antibodies), use of rational drug design to create novel peptide inhibitors and understanding the potential off-target effects of Kv1.3 inhibition.


Asunto(s)
Sistema Inmunológico/efectos de los fármacos , Canal de Potasio Kv1.3/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Linfocitos T/efectos de los fármacos , Animales , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/prevención & control , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/metabolismo , Canal de Potasio Kv1.3/química , Canal de Potasio Kv1.3/metabolismo , Péptidos/farmacología , Proteínas/farmacología , Venenos de Escorpión/farmacología , Linfocitos T/metabolismo
13.
Sci Rep ; 11(1): 14046, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234241

RESUMEN

The voltage-dependent potassium channel Kv1.3 participates in the immune response. Kv1.3 is essential in different cellular functions, such as proliferation, activation and apoptosis. Because aberrant expression of Kv1.3 is linked to autoimmune diseases, fine-tuning its function is crucial for leukocyte physiology. Regulatory KCNE subunits are expressed in the immune system, and KCNE4 specifically tightly regulates Kv1.3. KCNE4 modulates Kv1.3 currents slowing activation, accelerating inactivation and retaining the channel at the endoplasmic reticulum (ER), thereby altering its membrane localization. In addition, KCNE4 genomic variants are associated with immune pathologies. Therefore, an in-depth knowledge of KCNE4 function is extremely relevant for understanding immune system physiology. We demonstrate that KCNE4 dimerizes, which is unique among KCNE regulatory peptide family members. Furthermore, the juxtamembrane tetraleucine carboxyl-terminal domain of KCNE4 is a structural platform in which Kv1.3, Ca2+/calmodulin (CaM) and dimerizing KCNE4 compete for multiple interaction partners. CaM-dependent KCNE4 dimerization controls KCNE4 membrane targeting and modulates its interaction with Kv1.3. KCNE4, which is highly retained at the ER, contains an important ER retention motif near the tetraleucine motif. Upon escaping the ER in a CaM-dependent pattern, KCNE4 follows a COP-II-dependent forward trafficking mechanism. Therefore, CaM, an essential signaling molecule that controls the dimerization and membrane targeting of KCNE4, modulates the KCNE4-dependent regulation of Kv1.3, which in turn fine-tunes leukocyte physiology.


Asunto(s)
Calmodulina/metabolismo , Membrana Celular/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Multimerización de Proteína , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Fenómenos Electrofisiológicos , Expresión Génica , Células HEK293 , Humanos , Activación del Canal Iónico , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/metabolismo , Leucocitos/metabolismo , Modelos Biológicos , Especificidad de Órganos/genética , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas
14.
Mol Metab ; 53: 101306, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34298200

RESUMEN

OBJECTIVES: Restenosis after vessel angioplasty due to dedifferentiation of the vascular smooth muscle cells (VSMCs) limits the success of surgical treatment of vascular occlusions. Type 2 diabetes (T2DM) has a major impact on restenosis, with patients exhibiting more aggressive forms of vascular disease and poorer outcomes after surgery. Kv1.3 channels are critical players in VSMC proliferation. Kv1.3 blockers inhibit VSMCs MEK/ERK signalling and prevent vessel restenosis. We hypothesize that dysregulation of microRNAs (miR) play critical roles in adverse remodelling, contributing to Kv1.3 blockers efficacy in T2DM VSMCs. METHODS AND RESULTS: We used clinically relevant in vivo models of vascular risk factors (VRF) and vessels and VSMCs from T2DM patients. RESUKTS: Human T2DM vessels showed increased remodelling, and changes persisted in culture, with augmented VSMCs migration and proliferation. Moreover, there were downregulation of PI3K/AKT/mTOR and upregulation of MEK/ERK pathways, with increased miR-126 expression. The inhibitory effects of Kv1.3 blockers on remodelling were significantly enhanced in T2DM VSMCs and in VRF model. Finally, miR-126 overexpression confered "diabetic" phenotype to non-T2DM VSMCs by downregulating PI3K/AKT axis. CONCLUSIONS: miR-126 plays crucial roles in T2DM VSMC metabolic memory through activation of MEK/ERK pathway, enhancing the efficacy of Kv1.3 blockers in the prevention of restenosis in T2DM patients.


Asunto(s)
Reestenosis Coronaria/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Epigénesis Genética/genética , Canal de Potasio Kv1.3/metabolismo , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Anciano , Animales , Reestenosis Coronaria/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Femenino , Humanos , Canal de Potasio Kv1.3/antagonistas & inhibidores , Masculino , Ratones , MicroARNs/genética , Músculo Liso Vascular/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología
15.
J Biol Chem ; 297(1): 100834, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34051231

RESUMEN

The prevalence of autoimmune diseases is on the rise globally. Currently, autoimmunity presents in over 100 different forms and affects around 9% of the world's population. Current treatments available for autoimmune diseases are inadequate, expensive, and tend to focus on symptom management rather than cure. Clinical trials have shown that live helminthic therapy can decrease chronic inflammation associated with inflammatory bowel disease and other gastrointestinal autoimmune inflammatory conditions. As an alternative and better controlled approach to live infection, we have identified and characterized two peptides, Acan1 and Nak1, from the excretory/secretory component of parasitic hookworms for their therapeutic activity on experimental colitis. We synthesized Acan1 and Nak1 peptides from the Ancylostoma caninum and Necator americanus hookworms and assessed their structures and protective properties in human cell-based assays and in a mouse model of acute colitis. Acan1 and Nak1 displayed anticolitic properties via significantly reducing weight loss and colon atrophy, edema, ulceration, and necrosis in 2,4,6-trinitrobenzene sulfonic acid-exposed mice. These hookworm peptides prevented mucosal loss of goblet cells and preserved intestinal architecture. Acan1 upregulated genes responsible for the repair and restitution of ulcerated epithelium, whereas Nak1 downregulated genes responsible for epithelial cell migration and apoptotic cell signaling within the colon. These peptides were nontoxic and displayed key immunomodulatory functions in human peripheral blood mononuclear cells by suppressing CD4+ T cell proliferation and inhibiting IL-2 and TNF production. We conclude that Acan1 and Nak1 warrant further development as therapeutics for the treatment of autoimmunity, particularly gastrointestinal inflammatory conditions.


Asunto(s)
Ancylostomatoidea/química , Colitis/tratamiento farmacológico , Colitis/prevención & control , Leucocitos/inmunología , Péptidos/uso terapéutico , Secuencia de Aminoácidos , Ancylostoma , Animales , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Intestinos/patología , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/metabolismo , Leucocitos/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Necator americanus , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Análisis de Componente Principal , Dominios Proteicos , Pliegue de Proteína , Linfocitos T/citología , Ácido Trinitrobencenosulfónico , Xenopus laevis
16.
J Biol Chem ; 296: 100670, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33864815

RESUMEN

The voltage-gated potassium (Kv) 1.3 channel plays a crucial role in the immune responsiveness of T-lymphocytes and macrophages, presenting a potential target for treatment of immune- and inflammation related-diseases. FS48, a protein from the rodent flea Xenopsylla cheopis, shares the three disulfide bond feature of scorpion toxins. However, its three-dimensional structure and biological function are still unclear. In the present study, the structure of FS48 was evaluated by circular dichroism and homology modeling. We also described its in vitro ion channel activity using patch clamp recording and investigated its anti-inflammatory activity in LPS-induced Raw 264.7 macrophage cells and carrageenan-induced paw edema in mice. FS48 was found to adopt a common αßß structure and contain an atypical dyad motif. It dose-dependently exhibited the Kv1.3 channel in Raw 264.7 and HEK 293T cells, and its ability to block the channel pore was demonstrated by the kinetics of activation and competition binding with tetraethylammonium. FS48 also downregulated the secretion of proinflammatory molecules NO, IL-1ß, TNF-α, and IL-6 by Raw 264.7 cells in a manner dependent on Kv1.3 channel blockage and the subsequent inactivation of the MAPK/NF-κB pathways. Finally, we observed that FS48 inhibited the paw edema formation, tissue myeloperoxidase activity, and inflammatory cell infiltrations in carrageenan-treated mice. We therefore conclude that FS48 identified from the flea saliva is a novel potassium channel inhibitor displaying anti-inflammatory activity. This discovery will promote understanding of the bloodsucking mechanism of the flea and provide a new template molecule for the design of Kv1.3 channel blockers.


Asunto(s)
Antiinflamatorios/farmacología , Edema/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Canal de Potasio Kv1.3/antagonistas & inhibidores , Macrófagos/efectos de los fármacos , Glándulas Salivales/metabolismo , Venenos de Escorpión/química , Animales , Edema/inmunología , Edema/metabolismo , Edema/patología , Femenino , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , FN-kappa B/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Xenopsylla
17.
J Crohns Colitis ; 15(11): 1943-1958, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-33891001

RESUMEN

BACKGROUND AND AIMS: The potassium channel Kv1.3 is a potentially attractive therapeutic target in T cell-mediated inflammatory diseases, as the activity of antigen-activated T cells is selectively impeded by Kv1.3 inhibition. In this study, we examined Kv1.3 as a potential therapeutic intervention point for ulcerative colitis [UC], and studied the efficacy of DES1, a small-molecule inhibitor of Kv1.3, in vitro and in vivo. METHODS: Kv1.3 expression on T cells in peripheral blood mononuclear cells [PBMCs] isolated from donors with and without UC was examined by flow cytometry. In biopsies from UC patients, Kv1.3-expressing CD4+ T cells were detected by flow cytometry and immunohistochemistry. In vitro, we determined the ability of DES1 to inhibit anti-CD3-driven activation of T cells. In vivo, the efficacy of DES1 was determined in a humanised mouse model of UC and compared with infliximab and tofacitinib in head-to-head studies. RESULTS: Kv1.3 expression was elevated in PBMCs from UC patients and correlated with the prevalence of TH1 and TH2 T cells. Kv1.3 expression was also detected on T cells from biopsies of UC patients. In vitro, DES1 suppressed anti-CD3-driven activation of T cells in a concentration-dependent manner. In vivo, DES1 significantly ameliorated inflammation in the UC model and most effectively so when PBMCs from donors with higher levels of activated T cells were selected for reconstitution. The efficacy of DES1 was comparable to that of either infliximab or tofacitinib. CONCLUSION: Inhibition of Kv1.3 [by DES1, for instance] appears to be a potential therapeutic intervention strategy for UC patients.


Asunto(s)
Colitis Ulcerosa/complicaciones , Inflamación/tratamiento farmacológico , Canal de Potasio Kv1.3/antagonistas & inhibidores , Proteínas de la Membrana/uso terapéutico , Oxidorreductasas/uso terapéutico , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/fisiopatología , Modelos Animales de Enfermedad , Alemania , Inflamación/fisiopatología , Leucocitos Mononucleares/efectos de los fármacos , Proteínas de la Membrana/farmacología , Ratones , Oxidorreductasas/farmacología
18.
Br J Pharmacol ; 178(13): 2617-2631, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33689167

RESUMEN

BACKGROUND AND PURPOSE: KV 1.3 potassium channels play a predominant role in regulating calcium signalling that is essential for the activation and proliferation of effector memory T (TEM ) cells. This ion channel has been recognized as a promising therapeutic target against various autoimmune diseases. EXPERIMENTAL APPROACH: In a high-throughput screening programme, WP1066 was identified as a KV 1.3 channel inhibitor. Using molecular biology and electrophysiological methods, the mechanism(s) underlying WP1066 blockade of Kv1.3 channels was investigated. Using TEM cell proliferation assay and mouse delayed-type hypersensitivity (DTH) model, the effects of WP1066 were examined. KEY RESULTS: WP1066 blocked KV 1.3 channels in a dose-dependent manner with an IC50 of 3.2 µM and induced a hyperpolarizing shift of the steady-state inactivation curve. This blockade was use-dependent, as WP1066 interacted preferentially with channels in their open state, rather than the closed state or inactivated state. When the residues located in the S6 domain scaffolding the inner vestibule, were sequentially mutated, the potency of WP1066 was significantly impaired, especially by mutations A413C and I420C, indicating a higher affinity of interacting sites for WP1066. Moreover, WP1066 effectively suppressed mouse TEM cell proliferation in vitro and mouse DTH reaction in vivo. CONCLUSIONS AND IMPLICATIONS: The results presented here have identified WP1066 as a KV 1.3 channel blocker with an open-state-dependent property, providing fundamental evidence for the application of WP1066 in further immunomodulatory studies targeting KV 1.3 channels.


Asunto(s)
Canal de Potasio Kv1.3/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio , Tirfostinos , Animales , Canal de Potasio Kv1.3/genética , Ratones , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio , Piridinas
19.
Neuropharmacology ; 185: 108399, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33400937

RESUMEN

Midbrain dopamine neurons (DANs) regulate various brain functions such as motor control and motivation. Alteration of spiking activities of these neurons could contribute to severe brain disorders including Parkinson's disease and depression. Previous studies showed important roles of somatodendritic voltage-gated K+ channels (Kv) of DANs in governing neuronal excitability and dopamine release. However, it remains largely unclear about the biophysical properties and the function of Kv channels distributed at DAN axons. We performed whole-cell recordings from the axons of DANs in acute mouse midbrain and striatal slices. We detected both rapidly activating/inactivating Kv current (i.e. A-current) and rapidly activating but slowly inactivating current (i.e. D-current) in DAN axons. Pharmacological experiments with channel blockers revealed that these currents are predominantly mediated by Kv1.4 and Kv1.2 subunits, respectively. Blocking these currents could substantially prolong axonal action potentials (APs) via a reduction of their repolarization slope. Together, our results show that Kv channels mediating A- and D-currents shape AP waveforms in midbrain DAN axons, through this regulation they may control dopamine release at the axonal terminals. Therefore, these axonal Kv channels could be drug targets for brain disorders with abnormal dopamine release.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Neuronas Dopaminérgicas/fisiología , Canal de Potasio Kv1.3/fisiología , Canal de Potasio Kv1.4/fisiología , Mesencéfalo/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Femenino , Proteínas de Interacción con los Canales Kv/antagonistas & inhibidores , Proteínas de Interacción con los Canales Kv/fisiología , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.4/antagonistas & inhibidores , Masculino , Mesencéfalo/efectos de los fármacos , Ratones , Ratones Transgénicos , Bloqueadores de los Canales de Potasio/farmacología
20.
Toxicol Appl Pharmacol ; 411: 115365, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33316272

RESUMEN

Polychlorinated biphenyls (PCBs) are persistent and serious organic pollutants and can theoretically form 209 congeners. PCBs can be divided into two categories: dioxin-like (DL) and non-DL (NDL). NDL-PCBs, which lack aryl hydrocarbon receptor affinity, have been shown to perturb the functions of Jurkat T cells, cerebellar granule cells, and uterine cells. Kv1.3 and Kv1.5 channels are important in immune and heart functions, respectively. We investigated the acute effects of 2,2',6-trichlorinated biphenyl (PCB19), an NDL-PCB, on the currents of human Kv1.3 and Kv1.5 channels. PCB19 acutely blocked the Kv1.3 peak currents concentration-dependently with an IC50 of ~2 µM, without changing the steady-state current. The PCB19-induced inhibition of the Kv1.3 peak current occurred rapidly and voltage-independently, and the effect was irreversible, excluding the possibility of genomic regulation. PCB19 increased the time constants of both activation and inactivation of Kv1.3 channels, resulting in the slowing down of both ultra-rapid activation and intrinsic inactivation. However, PCB19 failed to alter the steady-state curves of activation and inactivation. Regarding the Kv1.5 channel, PCB19 affected neither the peak current nor the steady-state current at the same concentrations tested in the Kv1.3 experiments, showing selective inhibition of PCB19 on the Kv1.3 than the Kv1.5. The presented data indicate that PCB19 could acutely affect the human Kv1.3 channel through a non-genomic mechanism, possibly causing toxic effects on various human physiological functions related to the Kv1.3 channel, such as immune and neural systems.


Asunto(s)
Contaminantes Ambientales/toxicidad , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.5/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Bloqueadores de los Canales de Potasio/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.5/genética , Canal de Potasio Kv1.5/metabolismo , Potenciales de la Membrana , Oocitos , Factores de Tiempo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...