Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125637

RESUMEN

The signaling complex around voltage-gated sodium (Nav) channels includes accessory proteins and kinases crucial for regulating neuronal firing. Previous studies showed that one such kinase, WEE1-critical to the cell cycle-selectively modulates Nav1.2 channel activity through the accessory protein fibroblast growth factor 14 (FGF14). Here, we tested whether WEE1 exhibits crosstalk with the AKT/GSK3 kinase pathway for coordinated regulation of FGF14/Nav1.2 channel complex assembly and function. Using the in-cell split luciferase complementation assay (LCA), we found that the WEE1 inhibitor II and GSK3 inhibitor XIII reduce the FGF14/Nav1.2 complex formation, while the AKT inhibitor triciribine increases it. However, combining WEE1 inhibitor II with either one of the other two inhibitors abolished its effect on the FGF14/Nav1.2 complex formation. Whole-cell voltage-clamp recordings of sodium currents (INa) in HEK293 cells co-expressing Nav1.2 channels and FGF14-GFP showed that WEE1 inhibitor II significantly suppresses peak INa density, both alone and in the presence of triciribine or GSK3 inhibitor XIII, despite the latter inhibitor's opposite effects on INa. Additionally, WEE1 inhibitor II slowed the tau of fast inactivation and caused depolarizing shifts in the voltage dependence of activation and inactivation. These phenotypes either prevailed or were additive when combined with triciribine but were outcompeted when both WEE1 inhibitor II and GSK3 inhibitor XIII were present. Concerted regulation by WEE1 inhibitor II, triciribine, and GSK3 inhibitor XIII was also observed in long-term inactivation and use dependency of Nav1.2 currents. Overall, these findings suggest a complex role for WEE1 kinase-in concert with the AKT/GSK3 pathway-in regulating the Nav1.2 channelosome.


Asunto(s)
Proteínas de Ciclo Celular , Glucógeno Sintasa Quinasa 3 , Canal de Sodio Activado por Voltaje NAV1.2 , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas c-akt , Humanos , Células HEK293 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Ciclo Celular/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/genética , Proteínas Tirosina Quinasas/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos
2.
PLoS One ; 19(6): e0304869, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38837984

RESUMEN

OBJECTIVE: Epilepsy patients exhibit considerable differences in their response to sodium valproate (VPA) therapy, a phenomenon that might be attributed to individual genetic variances. The role of genetic variations, specifically in sodium channels encoded by SCN1A and SCN2A genes, in influencing the effectiveness of VPA in treating epilepsy is still debated. This research focuses on examining the impact of these genetic polymorphisms on the efficacy of VPA therapy among pediatric epilepsy patients in China. METHODS: Five single nucleotide polymorphisms (SNPs), including SCN1A (rs10188577, rs2298771, rs3812718) and SCN2A (rs2304016, rs17183814), were genotyped in 233 epilepsy patients undergoing VPA therapy. The associations between genotypes and the antiepileptic effects of VPA were assessed, with 128 patients categorized as VPA responders and 105 as VPA non-responders. RESULTS: In the context of VPA monotherapy, SCN1A rs2298771 and SCN2A rs17183814 were found to be significantly associated with VPA response (P< 0.05). CONCLUSION: Our study suggests the findings of this investigation indicate that the polymorphisms SCN1A rs2298771 and SCN2A rs17183814 could potentially act as predictive biomarkers for the responsiveness to VPA among Chinese epilepsy patients.


Asunto(s)
Anticonvulsivantes , Epilepsia , Canal de Sodio Activado por Voltaje NAV1.1 , Canal de Sodio Activado por Voltaje NAV1.2 , Polimorfismo de Nucleótido Simple , Ácido Valproico , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Ácido Valproico/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.2/genética , Niño , Masculino , Femenino , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Anticonvulsivantes/uso terapéutico , Preescolar , China , Pueblo Asiatico/genética , Adolescente , Resultado del Tratamiento , Genotipo , Lactante , Pueblos del Este de Asia
3.
STAR Protoc ; 5(2): 103094, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38796847

RESUMEN

SCN2A loss-of-function variants cause a range of neurodevelopmental disorders. Here, we present a protocol to induce severe Scn2a insufficiency in mice. We describe steps for intracerebroventricular (ICV) antisense oligonucleotide (ASO) injection that causes a selective downregulation of Scn2a and ASO-mediated mRNA degradation. We then detail procedures for qPCR and western blot protocol to measure Scn2a mRNA and protein. This protocol can be used as a mouse model for behavioral and in vivo two-photon Ca2+ imaging.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.2 , Oligonucleótidos Antisentido , Animales , Ratones , Modelos Animales de Enfermedad , Inyecciones Intraventriculares , Canal de Sodio Activado por Voltaje NAV1.2/genética , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Brain ; 147(8): 2761-2774, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651838

RESUMEN

SCN2A-related disorders secondary to altered function in the voltage-gated sodium channel Nav1.2 are rare, with clinically heterogeneous expressions that include epilepsy, autism and multiple severe to profound impairments and other conditions. To advance understanding of the clinical phenotypes and their relationship to channel function, 81 patients (36 female, 44%, median age 5.4 years) with 69 unique SCN2A variants were systematically phenotyped and their Nav1.2 channel function systematically assessed. Participants were recruited through the FamileSCN2A Foundation. Primary phenotype (epilepsy of neonatal onset, n = 27; infant onset, n = 18; and later onset n = 24; and autism without seizures, n = 12) was strongly correlated with a non-seizure severity index (P = 0.002), which was based on presence of severe impairments in gross motor, fine motor, communication abilities, gastrostomy tube dependence and diagnosis of cortical visual impairment and scoliosis. Non-seizure severity was greatest in the neonatal-onset group and least in the autism group (P = 0.002). Children with the lowest severity indices were still severely impaired, as reflected by an average Vineland Adaptive Behavior composite score of 49.5 (>3 standard deviations below the norm-referenced mean of the test). Epileptic spasms were significantly more common in infant-onset (67%) than in neonatal (22%) or later-onset (29%) epilepsy (P = 0.007). Primary phenotype was also strongly correlated with variant function (P < 0.0001); gain-of-function and mixed function variants predominated in neonatal-onset epilepsy, shifting to moderate loss of function in infant-onset epilepsy and to severe and complete loss of function in later-onset epilepsy and autism groups. Exploratory cluster analysis identified five groups, representing: (i) primarily later-onset epilepsy with moderate loss-of-function variants and low severity indices; (ii) mostly infant-onset epilepsy with moderate loss-of-function variants but higher severity indices; and (iii) late-onset and autism only, with the lowest severity indices (mostly zero) and severe/complete loss-of-function variants. Two exclusively neonatal clusters were distinguished from each other largely on non-seizure severity scores and secondarily on variant function. The relationship between primary phenotype and variant function emphasizes the role of developmental factors in the differential clinical expression of SCN2A variants based on their effects on Nav1.2 channel function. The non-seizure severity of SCN2A disorders depends on a combination of the age at seizure onset (primary phenotype) and variant function. As precision therapies for SCN2A-related disorders advance towards clinical trials, knowledge of the relationship between variant function and clinical disease expression will be valuable for identifying appropriate patients for these trials and in selecting efficient clinical outcomes.


Asunto(s)
Epilepsia , Canal de Sodio Activado por Voltaje NAV1.2 , Fenotipo , Humanos , Canal de Sodio Activado por Voltaje NAV1.2/genética , Femenino , Masculino , Preescolar , Niño , Lactante , Adolescente , Epilepsia/genética , Adulto , Adulto Joven , Mutación , Trastorno Autístico/genética , Índice de Severidad de la Enfermedad
5.
Stem Cell Res ; 76: 103367, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479087

RESUMEN

Many developmental and epileptic encephalopathies (DEEs) result from variants in cation channel genes. Using mRNA transfection, we generated and characterised an induced pluripotent stem cell (iPSC) line from the fibroblasts of a male late-onset DEE patient carrying a heterozygous missense variant (E1211K) in Nav1.2(SCN2A) protein. The iPSC line displays features characteristic of the human iPSCs, colony morphology and expression of pluripotency-associated marker genes, ability to produce derivatives of all three embryonic germ layers, and normal karyotype without SNP array-detectable abnormalities. We anticipate that this iPSC line will aid in the modelling and development of precision therapies for this debilitating condition.


Asunto(s)
Encefalopatías , Células Madre Pluripotentes Inducidas , Humanos , Masculino , Células Madre Pluripotentes Inducidas/metabolismo , Mutación Missense , Heterocigoto , Mutación , Canal de Sodio Activado por Voltaje NAV1.2/genética
6.
Neuron ; 112(9): 1444-1455.e5, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38412857

RESUMEN

Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here, we identify a mechanism that underlies hypersensitivity in a sensorimotor reflex found to be altered in humans and in mice with loss of function in the ASD risk-factor gene SCN2A. The cerebellum-dependent vestibulo-ocular reflex (VOR), which helps maintain one's gaze during movement, was hypersensitized due to deficits in cerebellar synaptic plasticity. Heterozygous loss of SCN2A-encoded NaV1.2 sodium channels in granule cells impaired high-frequency transmission to Purkinje cells and long-term potentiation, a form of synaptic plasticity important for modulating VOR gain. VOR plasticity could be rescued in mice via a CRISPR-activator approach that increases Scn2a expression, demonstrating that evaluation of a simple reflex can be used to assess and quantify successful therapeutic intervention.


Asunto(s)
Trastorno del Espectro Autista , Cerebelo , Canal de Sodio Activado por Voltaje NAV1.2 , Plasticidad Neuronal , Animales , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Ratones , Plasticidad Neuronal/fisiología , Cerebelo/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Humanos , Reflejo Vestibuloocular/fisiología , Masculino , Células de Purkinje/metabolismo , Ratones Endogámicos C57BL
7.
Neuron ; 112(7): 1133-1149.e6, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38290518

RESUMEN

Dysfunction in sodium channels and their ankyrin scaffolding partners have both been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). In particular, the genes SCN2A, which encodes the sodium channel NaV1.2, and ANK2, which encodes ankyrin-B, have strong ASD association. Recent studies indicate that ASD-associated haploinsufficiency in Scn2a impairs dendritic excitability and synaptic function in neocortical pyramidal cells, but how NaV1.2 is anchored within dendritic regions is unknown. Here, we show that ankyrin-B is essential for scaffolding NaV1.2 to the dendritic membrane of mouse neocortical neurons and that haploinsufficiency of Ank2 phenocopies intrinsic dendritic excitability and synaptic deficits observed in Scn2a+/- conditions. These results establish a direct, convergent link between two major ASD risk genes and reinforce an emerging framework suggesting that neocortical pyramidal cell dendritic dysfunction can contribute to neurodevelopmental disorder pathophysiology.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Neocórtex , Animales , Ratones , Ancirinas/genética , Ancirinas/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/metabolismo , Dendritas/fisiología , Canal de Sodio Activado por Voltaje NAV1.2/genética , Neocórtex/metabolismo , Células Piramidales/fisiología
8.
Eur J Hum Genet ; 32(2): 224-231, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38097767

RESUMEN

Alternating hemiplegia of childhood (AHC) is a rare neurodevelopment disorder that is typically characterized by debilitating episodic attacks of hemiplegia, seizures, and intellectual disability. Over 85% of individuals with AHC have a de novo missense variant in ATP1A3 encoding the catalytic α3 subunit of neuronal Na+/K+ ATPases. The remainder of the patients are genetically unexplained. Here, we used next-generation sequencing to search for the genetic cause of 26 ATP1A3-negative index patients with a clinical presentation of AHC or an AHC-like phenotype. Three patients had affected siblings. Using targeted sequencing of exonic, intronic, and flanking regions of ATP1A3 in 22 of the 26 index patients, we found no ultra-rare variants. Using exome sequencing, we identified the likely genetic diagnosis in 9 probands (35%) in five genes, including RHOBTB2 (n = 3), ATP1A2 (n = 3), ANK3 (n = 1), SCN2A (n = 1), and CHD2 (n = 1). In follow-up investigations, two additional ATP1A3-negative individuals were found to have rare missense SCN2A variants, including one de novo likely pathogenic variant and one likely pathogenic variant for which inheritance could not be determined. Functional evaluation of the variants identified in SCN2A and ATP1A2 supports the pathogenicity of the identified variants. Our data show that genetic variants in various neurodevelopmental genes, including SCN2A, lead to AHC or AHC-like presentation. Still, the majority of ATP1A3-negative AHC or AHC-like patients remain unexplained, suggesting that other mutational mechanisms may account for the phenotype or that cases may be explained by oligo- or polygenic risk factors.


Asunto(s)
Hemiplejía , Mutación Missense , Humanos , Hemiplejía/diagnóstico , Hemiplejía/genética , Secuenciación del Exoma , Mutación , ATPasa Intercambiadora de Sodio-Potasio/genética , Proteínas de Unión al GTP/genética , Proteínas Supresoras de Tumor/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética
9.
J Neurosci ; 44(8)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38148154

RESUMEN

SCN2A encodes NaV1.2, an excitatory neuron voltage-gated sodium channel and a major monogenic cause of neurodevelopmental disorders, including developmental and epileptic encephalopathies (DEE) and autism. Clinical presentation and pharmocosensitivity vary with the nature of SCN2A variant dysfunction and can be divided into gain-of-function (GoF) cases with pre- or peri-natal seizures and loss-of-function (LoF) patients typically having infantile spasms after 6 months of age. We established and assessed patient induced pluripotent stem cell (iPSC) - derived neuronal models for two recurrent SCN2A DEE variants with GoF R1882Q and LoF R853Q associated with early- and late-onset DEE, respectively. Two male patient-derived iPSC isogenic pairs were differentiated using Neurogenin-2 overexpression yielding populations of cortical-like glutamatergic neurons. Functional properties were assessed using patch clamp and multielectrode array recordings and transcriptomic profiles obtained with total mRNA sequencing after 2-4 weeks in culture. At 3 weeks of differentiation, increased neuronal activity at cellular and network levels was observed for R1882Q iPSC-derived neurons. In contrast, R853Q neurons showed only subtle changes in excitability after 4 weeks and an overall reduced network activity after 7 weeks in vitro. Consistent with the reported efficacy in some GoF SCN2A patients, phenytoin (sodium channel blocker) reduced the excitability of neurons to the control levels in R1882Q neuronal cultures. Transcriptomic alterations in neurons were detected for each variant and convergent pathways suggested potential shared mechanisms underlying SCN2A DEE. In summary, patient iPSC-derived neuronal models of SCN2A GoF and LoF pathogenic variants causing DEE show specific functional and transcriptomic in vitro phenotypes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Espasmos Infantiles , Humanos , Masculino , Células Madre Pluripotentes Inducidas/metabolismo , Convulsiones/genética , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Fenotipo , Neuronas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/genética
10.
eNeuro ; 10(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38151324

RESUMEN

Dysfunction in the gene SCN2A, which encodes the voltage-gated sodium channel Nav1.2, is strongly associated with neurodevelopmental disorders including autism spectrum disorder and intellectual disability (ASD/ID). This dysfunction typically manifests in these disorders as a haploinsufficiency, where loss of one copy of a gene cannot be compensated for by the other allele. Scn2a haploinsufficiency affects a range of cells and circuits across the brain, including associative neocortical circuits that are important for cognitive flexibility and decision-making behaviors. Here, we tested whether Scn2a haploinsufficiency has any effect on a dynamic foraging task that engages such circuits. Scn2a +/- mice and wild-type (WT) littermates were trained on a choice behavior where the probability of reward between two options varied dynamically across trials and where the location of the high reward underwent uncued reversals. Despite impairments in Scn2a-related neuronal excitability, we found that both male and female Scn2a +/- mice performed these tasks as well as wild-type littermates, with no behavioral difference across genotypes in learning or performance parameters. Varying the number of trials between reversals or probabilities of receiving reward did not result in an observable behavioral difference, either. These data suggest that, despite heterozygous loss of Scn2a, mice can perform relatively complex foraging tasks that make use of higher-order neuronal circuits.


Asunto(s)
Haploinsuficiencia , Canal de Sodio Activado por Voltaje NAV1.2 , Animales , Ratones , Canal de Sodio Activado por Voltaje NAV1.2/genética , Masculino , Femenino , Conducta Animal , Aprendizaje , Recompensa , Toma de Decisiones , Humanos , Modelos Animales
11.
Clin Neurol Neurosurg ; 234: 107983, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37776663

RESUMEN

OBJECTIVE: SCN2A gene pathogenic variants are associated with a wide phenotypic spectrum, encompassing epilepsy, developmental delay, and autism spectrum disorder. Researches conducted in Denmark have revealed a disease frequency of approximately 1/78,608 (0.0012%) live births in this population. We estimated the frequency of SCN2A-related disorder in the birth cohort of Brescia and its province between 2002 and 2021. METHODS: Frequency was calculated by ratio between patients with SCN2A pathogenic variant and the total number of live births at the Regional Epilepsy Center of Brescia, between 2002 and 2021. The number of births in Brescia and province was obtained from the Italian National Institute of Statistics (ISTAT). RESULTS: A frequency of 11/23,2678 births (0.0047%) was found. In comparison with Danish data, we noticed a higher frequency of the pathogenic variant in our population, even considering the same time frame (0.0035% of subjects born between 2006 and 2014). CONCLUSION: The frequency of SCN2A pathogenic variant among live births in Brescia and its Province between 2006 and 2014 was about three times that of Danish population; this difference was about four times if we consider the period from 2002 to 2021. More studies are needed to further delineate the frequency of SCN2A pathogenic variant in Italian population.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Humanos , Trastorno del Espectro Autista/genética , Fenotipo , Canal de Sodio Activado por Voltaje NAV1.2/genética , Epilepsia/epidemiología , Epilepsia/genética
12.
Stem Cell Res ; 71: 103179, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37597357

RESUMEN

A range of epilepsies, including the most severe group of developmental and epileptic encephalopathies (DEEs), are caused by gain-of-function variants in voltage-gated channels. Here we report the generation and characterisation of an iPSC cell line from the fibroblasts of a girl with early infantile DEE carrying heterozygous missense gain-of-function mutation (R1882Q) in Nav1.2(SCN2A) protein, using transient transfection with a single mRNA molecule. The established iPSC line displays typical human primed pluripotent stem cell characteristics: typical colony morphology and robust expression of pluripotency-associated marker genes, ability to give rise to derivatives of all three embryonic germ layers, and normal karyotype without any SNP array-detectable copy number variations. We anticipate that this iPSC line will be useful for the development of neuronal hyperactivity-caused human stem cell-based DEE models, advancing both understanding and potential therapy development for this debilitating condition.


Asunto(s)
Encefalopatías , Células Madre Pluripotentes Inducidas , Canales de Sodio Activados por Voltaje , Femenino , Humanos , Variaciones en el Número de Copia de ADN , Mutación con Ganancia de Función , Canal de Sodio Activado por Voltaje NAV1.2/genética
13.
J Gen Physiol ; 155(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37578743

RESUMEN

Pathogenic variants in voltage-gated sodium (NaV) channel genes including SCN2A, encoding NaV1.2, are discovered frequently in neurodevelopmental disorders with or without epilepsy. SCN2A is also a high-confidence risk gene for autism spectrum disorder (ASD) and nonsyndromic intellectual disability (ID). Previous work to determine the functional consequences of SCN2A variants yielded a paradigm in which predominantly gain-of-function variants cause neonatal-onset epilepsy, whereas loss-of-function variants are associated with ASD and ID. However, this framework was derived from a limited number of studies conducted under heterogeneous experimental conditions, whereas most disease-associated SCN2A variants have not been functionally annotated. We determined the functional properties of SCN2A variants using automated patch-clamp recording to demonstrate the validity of this method and to examine whether a binary classification of variant dysfunction is evident in a larger cohort studied under uniform conditions. We studied 28 disease-associated variants and 4 common variants using two alternatively spliced isoforms of NaV1.2 expressed in HEK293T cells. Automated patch-clamp recording provided a valid high throughput method to ascertain detailed functional properties of NaV1.2 variants with concordant findings for variants that were previously studied using manual patch clamp. Many epilepsy-associated variants in our study exhibited complex patterns of gain- and loss-of-functions that are difficult to classify by a simple binary scheme. The higher throughput achievable with automated patch clamp enables study of variants with greater standardization of recording conditions, freedom from operator bias, and enhanced experimental rigor. This approach offers an enhanced ability to discern relationships between channel dysfunction and neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Trastornos del Neurodesarrollo , Humanos , Trastorno del Espectro Autista/genética , Epilepsia/genética , Células HEK293 , Canal de Sodio Activado por Voltaje NAV1.2/genética , Trastornos del Neurodesarrollo/genética , Fenotipo
14.
Seizure ; 110: 212-219, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37429183

RESUMEN

PURPOSE: Early recognition of seizures in neonates secondary to pathogenic variants in potassium or sodium channel coding genes is crucial, as these seizures are often resistant to commonly used anti-seizure medications but respond well to sodium channel blockers. Recently, a characteristic ictal amplitude-integrated electroencephalogram (aEEG) pattern was described in neonates with KCNQ2-related epilepsy. We report a similar aEEG pattern in seizures caused by SCN2A- and KCNQ3-pathogenic variants, as well as conventional EEG (cEEG) descriptions. METHODS: International multicentre descriptive study, reporting clinical characteristics, aEEG and cEEG findings of 13 neonates with seizures due to pathogenic SCN2A- and KCNQ3-variants. As a comparison group, aEEGs and cEEGs of neonates with seizures due to hypoxic-ischemic encephalopathy (n = 117) and other confirmed genetic causes affecting channel function (n = 55) were reviewed. RESULTS: In 12 out of 13 patients, the aEEG showed a characteristic sequence of brief onset with a decrease, followed by a quick rise, and then postictal amplitude attenuation. This pattern correlated with bilateral EEG onset attenuation, followed by rhythmic discharges ending in several seconds of post-ictal amplitude suppression. Apart from patients with KCNQ2-related epilepsy, none of the patients in the comparison groups had a similar aEEG or cEEG pattern. DISCUSSION: Seizures in SCN2A- and KCNQ3-related epilepsy in neonates can usually be recognized by a characteristic ictal aEEG pattern, previously reported only in KCNQ2-related epilepsy, extending this unique feature to other channelopathies. Awareness of this pattern facilitates the prompt initiation of precision treatment with sodium channel blockers even before genetic results are available.


Asunto(s)
Electroencefalografía , Epilepsia , Recién Nacido , Humanos , Electroencefalografía/métodos , Bloqueadores de los Canales de Sodio , Canal de Potasio KCNQ2/genética , Cognición , Canal de Sodio Activado por Voltaje NAV1.2/genética
15.
Neurobiol Dis ; 183: 106177, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37271286

RESUMEN

PRRT2 is a neuronal protein that controls neuronal excitability and network stability by modulating voltage-gated Na+ channel (Nav). PRRT2 pathogenic variants cause pleiotropic syndromes including epilepsy, paroxysmal kinesigenic dyskinesia and episodic ataxia attributable to loss-of-function pathogenetic mechanism. Based on the evidence that the transmembrane domain of PRRT2 interacts with Nav1.2/1.6, we focused on eight missense mutations located within the domain that show expression and membrane localization similar to the wild-type protein. Molecular dynamics simulations showed that the mutants do not alter the structural stability of the PRRT2 membrane domain and preserve its conformation. Using affinity assays, we found that the A320V and V286M mutants displayed respectively decreased and increased binding to Nav1.2. Accordingly, surface biotinylation showed an increased Nav1.2 surface exposure induced by the A320V mutant. Electrophysiological analysis confirmed the lack of modulation of Nav1.2 biophysical properties by the A320V mutant with a loss-of-function phenotype, while the V286M mutant displayed a gain-of-function with respect to wild-type PRRT2 with a more pronounced left-shift of the inactivation kinetics and delayed recovery from inactivation. The data confirm the key role played by the PRRT2-Nav interaction in the pathogenesis of the PRRT2-linked disorders and suggest an involvement of the A320 and V286 residues in the interaction site. Given the similar clinical phenotype caused by the two mutations, we speculate that circuit instability and paroxysmal manifestations may arise when PRRT2 function is outside the physiological range.


Asunto(s)
Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.2 , Canal de Sodio Activado por Voltaje NAV1.2/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Mutación/genética
16.
Hum Mol Genet ; 32(13): 2192-2204, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37010102

RESUMEN

Pathogenic heterozygous variants in SCN2A, which encodes the neuronal sodium channel NaV1.2, cause different types of epilepsy or intellectual disability (ID)/autism without seizures. Previous studies using mouse models or heterologous systems suggest that NaV1.2 channel gain-of-function typically causes epilepsy, whereas loss-of-function leads to ID/autism. How altered channel biophysics translate into patient neurons remains unknown. Here, we investigated iPSC-derived early-stage cortical neurons from ID patients harboring diverse pathogenic SCN2A variants [p.(Leu611Valfs*35); p.(Arg937Cys); p.(Trp1716*)] and compared them with neurons from an epileptic encephalopathy (EE) patient [p.(Glu1803Gly)] and controls. ID neurons consistently expressed lower NaV1.2 protein levels. In neurons with the frameshift variant, NaV1.2 mRNA and protein levels were reduced by ~ 50%, suggesting nonsense-mediated decay and haploinsufficiency. In other ID neurons, only protein levels were reduced implying NaV1.2 instability. Electrophysiological analysis revealed decreased sodium current density and impaired action potential (AP) firing in ID neurons, consistent with reduced NaV1.2 levels. In contrast, epilepsy neurons displayed no change in NaV1.2 levels or sodium current density, but impaired sodium channel inactivation. Single-cell transcriptomics identified dysregulation of distinct molecular pathways including inhibition of oxidative phosphorylation in neurons with SCN2A haploinsufficiency and activation of calcium signaling and neurotransmission in epilepsy neurons. Together, our patient iPSC-derived neurons reveal characteristic sodium channel dysfunction consistent with biophysical changes previously observed in heterologous systems. Additionally, our model links the channel dysfunction in ID to reduced NaV1.2 levels and uncovers impaired AP firing in early-stage neurons. The altered molecular pathways may reflect a homeostatic response to NaV1.2 dysfunction and can guide further investigations.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Epilepsia/genética , Discapacidad Intelectual/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Neuronas/metabolismo , Convulsiones , Sodio/metabolismo , Canales de Sodio/genética , Humanos
18.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361691

RESUMEN

Complex genomic rearrangements (CGRs) are structural variants arising from two or more chromosomal breaks, which are challenging to characterize by conventional or molecular cytogenetic analysis (karyotype and FISH). The integrated approach of standard and genomic techniques, including optical genome mapping (OGM) and genome sequencing, is crucial for disclosing and characterizing cryptic chromosomal rearrangements at high resolutions. We report on a patient with a complex developmental and epileptic encephalopathy in which karyotype analysis showed a de novo balanced translocation involving the long arms of chromosomes 2 and 18. Microarray analysis detected a 194 Kb microdeletion at 2q24.3 involving the SCN2A gene, which was considered the likely translocation breakpoint on chromosome 2. However, OGM redefined the translocation breakpoints by disclosing a paracentric inversion at 2q24.3 disrupting SCN1A. This combined genomic high-resolution approach allowed a fine characterization of the CGR, which involves two different chromosomes with four breakpoints. The patient's phenotype resulted from the concomitant loss of function of SCN1A and SCN2A.


Asunto(s)
Encefalopatías , Aberraciones Cromosómicas , Humanos , Cariotipificación , Translocación Genética , Inversión Cromosómica , Cariotipo , Genómica , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.1
19.
Eur J Med Genet ; 65(12): 104639, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36206969

RESUMEN

Variants in SCN2A, encoding the voltage-gated sodium channel Nav1.2, are commonly associated with developmental and epileptic encephalopathy. Although animal studies demonstrated a role for Nav1.2 in intraventricular conduction, heart anomalies have been only occasionally described in patients with SCN2A variants. In this report we trace the prenatal and neonatal history of a fetus/newborn with a de novo pathogenic variant in the SCN2A gene identified by prenatal trio whole-exome sequencing (WES). In addition to more typically SCN2A-associated neurological manifestations, the patient showed sustained tachyarrhythmia, potentially expanding the phenotypic spectrum associated with SCN2A variants and raising the question of whether cardiological assessment and prompt pharmacological intervention in SCN2A channelopathies to avoid heart complications might be beneficial. To the best of our knowledge, this represents the first clinical description of a SCN2A phenotype in a prenatal setting, as well as the first SCN2A diagnosis achieved by prenatal trio-WES approach.


Asunto(s)
Arritmias Cardíacas , Canal de Sodio Activado por Voltaje NAV1.2 , Humanos , Canal de Sodio Activado por Voltaje NAV1.2/genética , Fenotipo , Arritmias Cardíacas/genética , Mutación
20.
Epilepsy Res ; 186: 107002, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36027690

RESUMEN

OBJECTIVE: Opening of voltage-gated sodium channels is crucial for neuronal depolarization. Proper channel opening and influx of Na+ through the ion pore, is dependent upon binding of Na+ ion to a specific amino-acid motif (DEKA) within the pore. In this study we used molecular dynamic simulations, an advanced bioinformatic tool, to research the dysfunction caused by pathogenic variants in SCN1a, SCN2a and SCN8a genes. METHOD: Molecular dynamic simulations were performed in six patients: three patients with Dravet syndrome (p.Gly177Ala,p.Ser259Arg and p.Met1267Ile, SCN1a), two patients with early onset drug resistant epilepsy(p.Ala263Val, SCN2a and p.Ile251Arg, SCN8a), and a patient with autism (p.Thr155Ala, SCN2a). After predicting the 3D-structure of mutated proteins by homology modeling, time dependent molecular dynamic simulations were performed, using the Schrödinger algorithm. The opening of the sodium channel, including the detachment of the sodium ion to the DEKA motif and pore diameter were assessed. Results were compared to the existent patch clamp analysis in four patients, and consistency with clinical phenotype was noted. RESULTS: The Na+ ion remained attached to DEKA filter longer when compared to wild type in the p.Gly177Ala, p.Ser259Arg,SCN1a, and p.Thr155Ala, SCN2a variants, consistent with loss-of-function. In contrast, it detached quicker from DEKA than wild type in the p.Ala263Val,SCN2a variant, consistent with gain-of-function. In the p.Met1267Ile,SCN1a variant, detachment from DEKA was quicker, but pore diameter decreased, suggesting partial loss-of-function. In the p.Leu251Arg,SCN8a variant, the pore remained opened longer when compared to wild type, consistent with a gain-of-function. The molecular dynamic simulation results were consistent with the existing patch-clamp analysis studies, as well as the clinical phenotype. SIGNIFICANCE: Molecular dynamic simulation can be useful in predicting pathogenicity of variants and the disease phenotype, and selecting targeted treatment based on channel dysfunction. Further development of these bioinformatic tools may lead to "virtual patch-clamp analysis".


Asunto(s)
Epilepsias Mioclónicas , Canal de Sodio Activado por Voltaje NAV1.1 , Epilepsias Mioclónicas/genética , Humanos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/genética , Fenotipo , Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...