Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
J Biol Chem ; 299(9): 105132, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37544648

RESUMEN

Voltage-gated sodium (NaV) channels drive the upstroke of the action potential and are comprised of a pore-forming α-subunit and regulatory ß-subunits. The ß-subunits modulate the gating, trafficking, and pharmacology of the α-subunit. These functions are routinely assessed by ectopic expression in heterologous cells. However, currently available expression systems may not capture the full range of these effects since they contain endogenous ß-subunits. To better reveal ß-subunit functions, we engineered a human cell line devoid of endogenous NaV ß-subunits and their immediate phylogenetic relatives. This new cell line, ß-subunit-eliminated eHAP expression (BeHAPe) cells, were derived from haploid eHAP cells by engineering inactivating mutations in the ß-subunits SCN1B, SCN2B, SCN3B, and SCN4B, and other subfamily members MPZ (myelin protein zero(P0)), MPZL1, MPZL2, MPZL3, and JAML. In diploid BeHAPe cells, the cardiac NaV α-subunit, NaV1.5, was highly sensitive to ß-subunit modulation and revealed that each ß-subunit and even MPZ imparted unique gating properties. Furthermore, combining ß1 and ß2 with NaV1.5 generated a sodium channel with hybrid properties, distinct from the effects of the individual subunits. Thus, this approach revealed an expanded ability of ß-subunits to regulate NaV1.5 activity and can be used to improve the characterization of other α/ß NaV complexes.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.5 , Subunidades de Proteína , Subunidades beta de Canales de Sodio Activados por Voltaje , Humanos , Potenciales de Acción , Línea Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Fosfoproteínas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/deficiencia , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Subunidades beta de Canales de Sodio Activados por Voltaje/química , Subunidades beta de Canales de Sodio Activados por Voltaje/deficiencia , Subunidades beta de Canales de Sodio Activados por Voltaje/genética , Subunidades beta de Canales de Sodio Activados por Voltaje/metabolismo , Mutación
3.
Cell ; 184(20): 5151-5162.e11, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34520724

RESUMEN

The heartbeat is initiated by voltage-gated sodium channel NaV1.5, which opens rapidly and triggers the cardiac action potential; however, the structural basis for pore opening remains unknown. Here, we blocked fast inactivation with a mutation and captured the elusive open-state structure. The fast inactivation gate moves away from its receptor, allowing asymmetric opening of pore-lining S6 segments, which bend and rotate at their intracellular ends to dilate the activation gate to ∼10 Å diameter. Molecular dynamics analyses predict physiological rates of Na+ conductance. The open-state pore blocker propafenone binds in a high-affinity pose, and drug-access pathways are revealed through the open activation gate and fenestrations. Comparison with mutagenesis results provides a structural map of arrhythmia mutations that target the activation and fast inactivation gates. These results give atomic-level insights into molecular events that underlie generation of the action potential, open-state drug block, and fast inactivation of cardiac sodium channels, which initiate the heartbeat.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Animales , Arritmias Cardíacas/genética , Microscopía por Crioelectrón , Células HEK293 , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Activación del Canal Iónico , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación/genética , Miocardio , Canal de Sodio Activado por Voltaje NAV1.5/aislamiento & purificación , Canal de Sodio Activado por Voltaje NAV1.5/ultraestructura , Propafenona/farmacología , Conformación Proteica , Ratas , Sodio/metabolismo , Factores de Tiempo , Agua/química
4.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204499

RESUMEN

BACKGROUND: Brugada syndrome (BrS) is an autosomal dominantly inherited cardiac disease characterized by "coved type" ST-segment elevation in the right precordial leads, high susceptibility to ventricular arrhythmia and a family history of sudden cardiac death. The SCN5A gene, encoding for the cardiac voltage-gated sodium channel Nav1.5, accounts for ~20-30% of BrS cases and is considered clinically relevant. METHODS: Here, we describe the clinical findings of two Italian families affected by BrS and provide the functional characterization of two novel SCN5A mutations, the missense variant Pro1310Leu and the in-frame insertion Gly1687_Ile1688insGlyArg. RESULTS: Despite being clinically different, both patients have a family history of sudden cardiac death and had history of arrhythmic events. The Pro1310Leu mutation significantly reduced peak sodium current density without affecting channel membrane localization. Changes in the gating properties of expressed Pro1310Leu channel likely account for the loss-of-function phenotype. On the other hand, Gly1687_Ile1688insGlyArg channel, identified in a female patient, yielded a nearly undetectable sodium current. Following mexiletine incubation, the Gly1687_Ile1688insGlyArg channel showed detectable, albeit very small, currents and biophysical properties similar to those of the Nav1.5 wild-type channel. CONCLUSIONS: Overall, our results suggest that the degree of loss-of-function shown by the two Nav1.5 mutant channels correlates with the aggressive clinical phenotype of the two probands. This genotype-phenotype correlation is fundamental to set out appropriate therapeutical intervention.


Asunto(s)
Síndrome de Brugada/diagnóstico , Síndrome de Brugada/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Potenciales de Acción , Anciano , Anciano de 80 o más Años , Alelos , Sustitución de Aminoácidos , Electrocardiografía , Femenino , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Italia , Masculino , Modelos Biológicos , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Linaje , Fenotipo , Conformación Proteica , Transporte de Proteínas
5.
Molecules ; 26(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207748

RESUMEN

Tiagabine is an antiepileptic drug used for the treatment of partial seizures in humans. Recently, this drug has been found useful in several non-epileptic conditions, including anxiety, chronic pain and sleep disorders. Since tachycardia-an impairment of cardiac rhythm due to cardiac ion channel dysfunction-is one of the most commonly reported non-neurological adverse effects of this drug, in the present paper we have undertaken pharmacological and numerical studies to assess a potential cardiovascular risk associated with the use of tiagabine. A chemical interaction of tiagabine with a model of human voltage-gated ion channels (VGICs) is described using the molecular docking method. The obtained in silico results imply that the adverse effects reported so far in the clinical cardiological of tiagabine could not be directly attributed to its interactions with VGICs. This is also confirmed by the results from the isolated organ studies (i.e., calcium entry blocking properties test) and in vivo (electrocardiogram study) assays of the present research. It was found that tachycardia and other tiagabine-induced cardiac complications are not due to a direct effect of this drug on ventricular depolarization and repolarization.


Asunto(s)
Canales de Calcio Tipo L/química , Canal de Potasio ERG1/antagonistas & inhibidores , Epilepsia/tratamiento farmacológico , Corazón/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/química , Tiagabina/farmacología , Potenciales de Acción , Animales , Anticonvulsivantes/efectos adversos , Canales de Calcio Tipo L/metabolismo , Simulación por Computador , Canal de Potasio ERG1/metabolismo , Epilepsia/complicaciones , Epilepsia/metabolismo , Humanos , Masculino , Simulación del Acoplamiento Molecular/métodos , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Ratas , Ratas Wistar , Tiagabina/efectos adversos
6.
Curr Top Med Chem ; 21(10): 841-848, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34036922

RESUMEN

Given their primacy in governing the action potential (AP) of excitable cells, voltage-gated Na+ (Nav) channels are important pharmacological targets of therapeutics for a diverse array of clinical indications. Despite historically being a traditional drug target, therapeutics targeting Nav channels lack isoform selectivity, giving rise to off-target side effects. To develop isoform-selective modulators of Nav channels with improved target-specificity, the identification and pharmacological targeting of allosteric sites that display structural divergence among Nav channel isoforms represents an attractive approach. Despite the high homology among Nav channel α subunit isoforms (Nav1.1-Nav1.9), there is considerable amino acid sequence divergence among their constituent C-terminal domains (CTD), which enables structurally and functionally specific protein: protein interactions (PPI) with auxiliary proteins. Although pharmacological targeting of such PPI interfaces between the CTDs of Nav channels and auxiliary proteins represents an innovate approach for developing isoform-selective modulators of Nav channels, appreciable modulation of PPIs using small molecules has conventionally been difficult to achieve. After briefly discussing the challenges of modulating PPIs using small molecules, this current frontier review that follows subsequently expounds on approaches for circumventing such difficulties in the context of developing small molecule modulators of PPIs between transmembrane ion channels and their auxiliary proteins. In addition to broadly discussing such approaches, the implementation of such approaches is specifically discussed in the context of developing small molecule modulators between the CTD of Nav channels and auxiliary proteins. Developing allosteric modulators of ion channels by targeting their PPI interfaces with auxiliary proteins represents an innovative and promising strategy in ion channel drug discovery that could expand the "druggable genome" and usher in first-in-class PPI-targeting therapeutics for a multitude of channelopathies.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Regulación Alostérica , Sitio Alostérico , Secuencia de Aminoácidos , Animales , Simulación por Computador , Descubrimiento de Drogas , Humanos , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
7.
Life Sci ; 278: 119646, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34048814

RESUMEN

AIMS: SCN5A gene encodes the α-subunit of Nav1.5, mainly found in the human heart. SCN5A variants are the most common genetic alterations associated with Brugada syndrome (BrS). In rare cases, compound heterozygosity is observed; however, its functional consequences are poorly understood. We aimed to analyze the functional impact of de novo Nav1.5 mutations in compound heterozygosity in distinct alleles (G400R and T1461S positions) previously found in a patient with BrS. Moreover, we evaluated the potential benefits of quinidine to improve the phenotype of mutant Na+ channels in vitro. MATERIALS AND METHODS: The functional properties of human wild-type and Nav1.5 variants were evaluated using whole-cell patch-clamp and immunofluorescence techniques in transiently expressed human embryonic kidney (HEK293) cells. KEY FINDINGS: Both variants occur in the highly conservative positions of SCN5A. Although all variants were expressed in the cell membrane, a significant reduction in the Na+ current density (except for G400R alone, which was undetected) was observed along with abnormal biophysical properties, once the variants were expressed in homozygosis and heterozygosis. Interestingly, the incubation of transfected cells with quinidine partially rescued the biophysical properties of the mutant Na+ channel. SIGNIFICANCE: De novo compound heterozygosis mutations in SNC5A disrupt the Na+ macroscopic current. Quinidine could partially reverse the in vitro loss-of-function phenotype of Na+ current. Thus, our data provide, for the first time, a detailed biophysical characterization of dysfunctional Na+ channels linked to compound heterozygosity in BrS as well as the benefits of the pharmacological treatment using quinidine on the biophysical properties of Nav1.5.


Asunto(s)
Síndrome de Brugada/genética , Mutación con Pérdida de Función , Canal de Sodio Activado por Voltaje NAV1.5/genética , Secuencia de Aminoácidos , Síndrome de Brugada/tratamiento farmacológico , Síndrome de Brugada/metabolismo , Células HEK293 , Heterocigoto , Humanos , Mutación con Pérdida de Función/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Mutación Puntual/efectos de los fármacos , Quinidina/farmacología
8.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34021086

RESUMEN

In cardiomyocytes, NaV1.5 channels mediate initiation and fast propagation of action potentials. The Ca2+-binding protein calmodulin (CaM) serves as a de facto subunit of NaV1.5. Genetic studies and atomic structures suggest that this interaction is pathophysiologically critical, as human mutations within the NaV1.5 carboxy-terminus that disrupt CaM binding are linked to distinct forms of life-threatening arrhythmias, including long QT syndrome 3, a "gain-of-function" defect, and Brugada syndrome, a "loss-of-function" phenotype. Yet, how a common disruption in CaM binding engenders divergent effects on NaV1.5 gating is not fully understood, though vital for elucidating arrhythmogenic mechanisms and for developing new therapies. Here, using extensive single-channel analysis, we find that the disruption of Ca2+-free CaM preassociation with NaV1.5 exerts two disparate effects: 1) a decrease in the peak open probability and 2) an increase in persistent NaV openings. Mechanistically, these effects arise from a CaM-dependent switch in the NaV inactivation mechanism. Specifically, CaM-bound channels preferentially inactivate from the open state, while those devoid of CaM exhibit enhanced closed-state inactivation. Further enriching this scheme, for certain mutant NaV1.5, local Ca2+ fluctuations elicit a rapid recruitment of CaM that reverses the increase in persistent Na current, a factor that may promote beat-to-beat variability in late Na current. In all, these findings identify the elementary mechanism of CaM regulation of NaV1.5 and, in so doing, unravel a noncanonical role for CaM in tuning ion channel gating. Furthermore, our results furnish an in-depth molecular framework for understanding complex arrhythmogenic phenotypes of NaV1.5 channelopathies.


Asunto(s)
Potenciales de Acción/genética , Calcio/metabolismo , Calmodulina/química , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/química , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Sitios de Unión , Señalización del Calcio , Calmodulina/genética , Calmodulina/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Expresión Génica , Células HEK293 , Humanos , Activación del Canal Iónico , Cinética , Modelos Moleculares , Mutación , Miocitos Cardíacos/citología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Técnicas de Placa-Clamp , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sodio/metabolismo
9.
J Mol Model ; 27(6): 182, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031769

RESUMEN

A homology model of Nav1.5, based mainly on the crystal structures of Nav1.2/1.5 was built, optimized and successfully inserted into the membrane bilayer. We applied steered and free MD simulation protocols for the visualization of the mechanism of Nav1.5 activation. We constrained dihedrals of S4 trigger to introduce a structural tension with further rearrangement and movement of secondary structure elements. From these, we observed an intracellular gate opening and movement of the Lys1419 residue caused by a gradual displacement of the distal S6 α-helix with the extended S4 3-10 helix of voltage-sensing domains (VSD). A construction containing the Lys1419 residue in P-loop also changed its position due to the extension of this helix and subsequent induction of the pore-forming helixes motion. From this point, a double membrane system was generated, implying a free of ligand Nav1.5 protein and on the opposite side its copy containing a docked bupivacaine molecule inside the pore channel. The system can be used for the design of selective inhibitors against the Nav1.7 channel, instead of mixed effect on both channels.


Asunto(s)
Simulación de Dinámica Molecular , Canal de Sodio Activado por Voltaje NAV1.5/química , Humanos , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína
10.
Mol Genet Genomic Med ; 9(5): e1613, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33764691

RESUMEN

BACKGROUND: We examined the genetic background of a Chinese Han family in which some members presented with complex arrhythmias including sick sinus syndrome, progressive conduction block, atrial fibrillation, atrial standstill and Brugada syndrome. The possible underlying mechanism associated with the genetic mutation was explored. METHODS: Targeted capture sequencing was conducted in the probands in the coding and splicing regions of genes implicated in inherited arrhythmias. Stable cell lines overexpressing wild type (WT) or mutant SCN5A were generated in HEK293T cells. Whole-cell recording was performed to evaluate the functional changes in sodium channels. RESULTS: The rare heterozygous linkage mutations, SCN5A R965C and R1309H, were found in these patients with complex familial arrhythmias. Compared to WT, R965C or R1309H, the peak current of sodium channel was dramatically reduced in HEK293T cell with linkage R965C-R1309H mutation when testing potentials ranging from -45 to 15 mV. Notably, the maximum peak current of sodium channels with R1309H and linkage R965C-R1309H displayed significant decreases of 31.5% and 73.34%, respectively, compared to WT. Additionally, compared to R965C or R1309H alone, the linkage mutation R965C-R1309H demonstrated not only a more obvious depolarisation-shifted activation and hyperpolarisation-shifted inactivation, but also a more significant alteration in the time constant, V1/2 and the slope factor of activation and inactivation. CONCLUSIONS: The linkage mutation SCN5A R965C-R1309H led to a more dramatically reduced current density, as well as more significant depolarisation-shifted activation and hyperpolarisation-shifted inactivation in sodium channels than R965C or R1309H alone, which potentially explain this complex familial arrhythmia syndrome.


Asunto(s)
Arritmias Cardíacas/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Potenciales de Acción , Arritmias Cardíacas/patología , Femenino , Células HEK293 , Heterocigoto , Humanos , Activación del Canal Iónico , Masculino , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Linaje , Dominios Proteicos , Adulto Joven
11.
Angew Chem Int Ed Engl ; 60(20): 11474-11480, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33684260

RESUMEN

Nav 1.5, the primary voltage-gated Na+ (Nav ) channel in heart, is a major target for class I antiarrhythmic agents. Here we present the cryo-EM structure of full-length human Nav 1.5 bound to quinidine, a class Ia antiarrhythmic drug, at 3.3 Šresolution. Quinidine is positioned right beneath the selectivity filter in the pore domain and coordinated by residues from repeats I, III, and IV. Pore blockade by quinidine is achieved through both direct obstruction of the ion permeation path and induced rotation of an invariant Tyr residue that tightens the intracellular gate. Structural comparison with a truncated rat Nav 1.5 in the presence of flecainide, a class Ic agent, reveals distinct binding poses for the two antiarrhythmics within the pore domain. Our work reported here, along with previous studies, reveals the molecular basis for the mechanism of action of class I antiarrhythmic drugs.


Asunto(s)
Antiarrítmicos/farmacología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Quinidina/farmacología , Antiarrítmicos/química , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.5/química , Quinidina/química
12.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33712541

RESUMEN

Nav1.5 is the primary voltage-gated Na+ (Nav) channel in the heart. Mutations of Nav1.5 are associated with various cardiac disorders exemplified by the type 3 long QT syndrome (LQT3) and Brugada syndrome (BrS). E1784K is a common mutation that has been found in both LQT3 and BrS patients. Here we present the cryo-EM structure of the human Nav1.5-E1784K variant at an overall resolution of 3.3 Å. The structure is nearly identical to that of the wild-type human Nav1.5 bound to quinidine. Structural mapping of 91- and 178-point mutations that are respectively associated with LQT3 and BrS reveals a unique distribution pattern for LQT3 mutations. Whereas the BrS mutations spread evenly on the structure, LQT3 mutations are clustered mainly to the segments in repeats III and IV that are involved in gating, voltage-sensing, and particularly inactivation. A mutational hotspot involving the fast inactivation segments is identified and can be mechanistically interpreted by our "door wedge" model for fast inactivation. The structural analysis presented here, with a focus on the impact of mutations on inactivation and late sodium current, establishes a structure-function relationship for the mechanistic understanding of Nav1.5 channelopathies.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco/genética , Síndrome de QT Prolongado/genética , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/genética , Síndrome de Brugada/genética , Microscopía por Crioelectrón , Humanos , Activación del Canal Iónico , Modelos Moleculares , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Conformación Proteica , Relación Estructura-Actividad
13.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33712547

RESUMEN

Among the nine subtypes of human voltage-gated sodium (Nav) channels, the brain and cardiac isoforms, Nav1.1 and Nav1.5, each carry more than 400 missense mutations respectively associated with epilepsy and cardiac disorders. High-resolution structures are required for structure-function relationship dissection of the disease variants. We report the cryo-EM structures of the full-length human Nav1.1-ß4 complex at 3.3 Å resolution here and the Nav1.5-E1784K variant in the accompanying paper. Up to 341 and 261 disease-related missense mutations in Nav1.1 and Nav1.5, respectively, are resolved. Comparative structural analysis reveals several clusters of disease mutations that are common to both Nav1.1 and Nav1.5. Among these, the majority of mutations on the extracellular loops above the pore domain and the supporting segments for the selectivity filter may impair structural integrity, while those on the pore domain and the voltage-sensing domains mostly interfere with electromechanical coupling and fast inactivation. Our systematic structural delineation of these mutations provides important insight into their pathogenic mechanism, which will facilitate the development of precise therapeutic interventions against various sodium channelopathies.


Asunto(s)
Canalopatías/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Mutación , Canal de Sodio Activado por Voltaje NAV1.1/química , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Conformación Proteica , Subunidades de Proteína , Relación Estructura-Actividad
14.
Nat Commun ; 12(1): 128, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397917

RESUMEN

Voltage-gated sodium (NaV) channels initiate action potentials in excitable cells, and their function is altered by potent gating-modifier toxins. The α-toxin LqhIII from the deathstalker scorpion inhibits fast inactivation of cardiac NaV1.5 channels with IC50 = 11.4 nM. Here we reveal the structure of LqhIII bound to NaV1.5 at 3.3 Å resolution by cryo-EM. LqhIII anchors on top of voltage-sensing domain IV, wedged between the S1-S2 and S3-S4 linkers, which traps the gating charges of the S4 segment in a unique intermediate-activated state stabilized by four ion-pairs. This conformational change is propagated inward to weaken binding of the fast inactivation gate and favor opening the activation gate. However, these changes do not permit Na+ permeation, revealing why LqhIII slows inactivation of NaV channels but does not open them. Our results provide important insights into the structural basis for gating-modifier toxin binding, voltage-sensor trapping, and fast inactivation of NaV channels.


Asunto(s)
Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Venenos de Escorpión/toxicidad , Animales , Sitios de Unión , Microscopía por Crioelectrón , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Simulación de Dinámica Molecular , Canal de Sodio Activado por Voltaje NAV1.5/ultraestructura , Conformación Proteica , Ratas , Venenos de Escorpión/química , Sodio/metabolismo
15.
J Mol Cell Cardiol ; 153: 95-103, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33370552

RESUMEN

Suppression of the cardiac sodium channel NaV1.5 leads to fatal arrhythmias in ischemic heart disease (IHD). However, the transcriptional regulation of NaV1.5 in cardiac ischemia is still unclear. Our studies are aimed to investigate the expression of enhancer of zeste homolog 2 (EZH2) in IHD and regulation of cardiac NaV1.5 expression by EZH2. Human heart tissue was obtained from IHD and non-failing heart (NFH) patients; mouse heart tissue was obtained from the peri-infarct zone of hearts with myocardial infarction (MI) and hearts with a sham procedure. Protein and mRNA expression were measured by immunoblotting, immunostaining, and qRT-PCR. Protein-DNA binding and promoter activity were analyzed by ChIP-qPCR and luciferase assays, respectively. Na+ channel activity was assessed by whole-cell patch clamp recordings. EZH2 and H3K27me3 were increased while NaV1.5 expression was reduced in IHD hearts and in mouse MI hearts compared to the controls. Reduced NaV1.5 and increased EZH2 mRNA levels were observed in mouse MI hearts. A selective EZH2 inhibitor, GSK126 decreased H3K27me3 and elevated NaV1.5 in HL-1 cells. Silencing of EZH2 expression decreased H3K27me3 and increased NaV1.5 in these cells. EZH2 and H3K27me3 were enriched in the promoter regions of Scn5a and were decreased by treatment with EZH2 siRNA. GSK126 inhibited the enrichment of H3K27me3 in the Scn5a promoter and enhanced Scn5a transcriptional activity. GSK126 significantly increased Na+ channel activity. Taken together, EZH2 is increased in ischemic hearts and epigenetically suppresses Scn5a transcription by H3K27me3, leading to decreased NaV1.5 expression and Na+ channel activity underlying the pathogenesis of arrhythmias.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigenómica , Regulación de la Expresión Génica , Histonas/metabolismo , Isquemia Miocárdica/patología , Canal de Sodio Activado por Voltaje NAV1.5/química , Regiones Promotoras Genéticas , Animales , Proteína Potenciadora del Homólogo Zeste 2/genética , Histonas/genética , Humanos , Ratones , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo
16.
Nat Chem Biol ; 16(12): 1314-1320, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33199904

RESUMEN

Electrical signaling was a dramatic development in evolution, allowing complex single-cell organisms like Paramecium to coordinate movement and early metazoans like worms and jellyfish to send regulatory signals rapidly over increasing distances. But how are electrical signals generated in biology? In fact, voltage-gated sodium channels conduct sodium currents that initiate electrical signals in all kingdoms of life, from bacteria to man. They are responsible for generating the action potential in vertebrate nerve and muscle, neuroendocrine cells, and other cell types1,2. Because of the high level of conservation of their core structure, it is likely that their fundamental mechanisms of action are conserved as well. Here we describe the complete cycle of conformational changes that a bacterial sodium channel undergoes as it transitions from resting to activated/open and inactivated/closed states, based on high-resolution structural studies of a single sodium channel. We further relate this conformational cycle of the ancestral sodium channel to the function of its vertebrate orthologs. The strong conservation of amino acid sequence and three-dimensional structure suggests that this model, at a fundamental level, is relevant for both prokaryotic and eukaryotic sodium channels, as well as voltage-gated calcium and potassium channels.


Asunto(s)
Potenciales de Acción/fisiología , Bacterias/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/química , Células Procariotas/metabolismo , Secuencia de Aminoácidos , Animales , Bacterias/genética , Secuencia Conservada , Evolución Molecular , Expresión Génica , Humanos , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Paramecium/genética , Paramecium/metabolismo , Células Procariotas/citología , Estructura Secundaria de Proteína
17.
Sci Rep ; 10(1): 14791, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908170

RESUMEN

The voltage-gated sodium channel isoform NaV1.7 is highly expressed in dorsal root ganglion neurons and is obligatory for nociceptive signal transmission. Genetic gain-of-function and loss-of-function NaV1.7 mutations have been identified in select individuals, and are associated with episodic extreme pain disorders and insensitivity to pain, respectively. These findings implicate NaV1.7 as a key pharmacotherapeutic target for the treatment of pain. While several small molecules targeting NaV1.7 have been advanced to clinical development, no NaV1.7-selective compound has shown convincing efficacy in clinical pain applications. Here we describe the discovery and characterization of ST-2262, a NaV1.7 inhibitor that blocks the extracellular vestibule of the channel with an IC50 of 72 nM and greater than 200-fold selectivity over off-target sodium channel isoforms, NaV1.1-1.6 and NaV1.8. In contrast to other NaV1.7 inhibitors that preferentially inhibit the inactivated state of the channel, ST-2262 is equipotent in a protocol that favors the resting state of the channel, a protocol that favors the inactivated state, and a high frequency protocol. In a non-human primate study, animals treated with ST-2262 exhibited reduced sensitivity to noxious heat. These findings establish the extracellular vestibule of the sodium channel as a viable receptor site for the design of selective ligands targeting NaV1.7.


Asunto(s)
Guanidina/química , Canal de Sodio Activado por Voltaje NAV1.7/química , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/farmacología , Animales , Descubrimiento de Drogas , Ganglios Espinales/metabolismo , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/química , Canal de Sodio Activado por Voltaje NAV1.2/química , Canal de Sodio Activado por Voltaje NAV1.3/química , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.6/química , Canal de Sodio Activado por Voltaje NAV1.8/química , Estructura Secundaria de Proteína
18.
Biomolecules ; 10(7)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630316

RESUMEN

Voltage-gated sodium (Nav) channels drive the rising phase of the action potential, essential for electrical signalling in nerves and muscles. The Nav channel α-subunit contains the ion-selective pore. In the cardiomyocyte, Nav1.5 is the main Nav channel α-subunit isoform, with a smaller expression of neuronal Nav channels. Four distinct regulatory ß-subunits (ß1-4) bind to the Nav channel α-subunits. Previous work has emphasised the ß-subunits as direct Nav channel gating modulators. However, there is now increasing appreciation of additional roles played by these subunits. In this review, we focus on ß-subunits as homophilic and heterophilic cell-adhesion molecules and the implications for cardiomyocyte function. Based on recent cryogenic electron microscopy (cryo-EM) data, we suggest that the ß-subunits interact with Nav1.5 in a different way from their binding to other Nav channel isoforms. We believe this feature may facilitate trans-cell-adhesion between ß1-associated Nav1.5 subunits on the intercalated disc and promote ephaptic conduction between cardiomyocytes.


Asunto(s)
Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Subunidades beta de Canales de Sodio Activados por Voltaje/metabolismo , Potenciales de Acción , Animales , Adhesión Celular , Humanos , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.5/química , Subunidades de Proteína/metabolismo , Subunidades beta de Canales de Sodio Activados por Voltaje/química
19.
BMC Pediatr ; 20(1): 211, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398054

RESUMEN

BACKGROUND: Vasovagal syncope (VVS) is common in children and significantly affects their quality of life. To our knowledge, this the first case report of SCN5A gene mutation associated with VVS and third-degree atrioventricular block (atrioventricular block, AVB), which could help pediatricians aware that VVS is not always a benign condition and help to identify VVS children at the risk of sudden death. CASE PRESENTATION: A twelve-year-old male child was admitted to Beijing Children's Hospital of Capital Medical University for chest tightness for 9 days and syncope in July 2018. The child was diagnosed as VVS with third-degree AVB after complete investagations. A heterozygous mutation in the exon coding region of the SCN5A gene, C. 5851G > T (coding region 5551 nucleotide changed from G to T), was detected in the peripheral blood of the child. Electrophysiological examination and modified vagal ganglion radiofrequency ablation were performed in the child. The ECG playback was normal on the second day after operation. Holter showed no abnormality and no chest tightness or syncope occurred after 3 months and 1 year follow-up. CONCLUSIONS: Our case report firstly reported that SCN5A mutation contributed to the pathogenesis of VVS with third-degree AVB. Vagal ganglion modified ablation have obtained good therapeutic effect. Gene analysis was of great value to the accurate diagnosis and treatment of VVS children.


Asunto(s)
Bloqueo Atrioventricular , Canal de Sodio Activado por Voltaje NAV1.5/genética , Síncope Vasovagal , Bloqueo Atrioventricular/diagnóstico , Bloqueo Atrioventricular/genética , Niño , Humanos , Masculino , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/química , Calidad de Vida , Síncope Vasovagal/diagnóstico , Síncope Vasovagal/genética
20.
J Mol Cell Cardiol ; 139: 190-200, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31958466

RESUMEN

The SCN5A gene encodes Nav1.5, which, as the cardiac voltage-gated Na+ channel's pore-forming α subunit, is crucial for the initiation and propagation of atrial and ventricular action potentials. The arrhythmogenic propensity of inherited SCN5A mutations implicates the Na+ channel in determining cardiomyocyte excitability under normal conditions. Cytosolic kinases have long been known to alter the kinetic profile of Nav1.5 inactivation via phosphorylation of specific residues. Recent substantiation of both the role of calmodulin-dependent kinase II (CaMKII) in modulating the properties of the Nav1.5 inactivation gate and the significant rise in oxidation-dependent autonomous CaMKII activity in structural heart disease has raised the possibility of a novel pathway for acquired arrhythmias - the CaMKII-Nav1.5 relationship. The aim of this review is to: (1) outline the relationship's translation from physiological adaptation to pathological vicious circle; and (2) discuss the relative merits of each of its components as pharmacological targets.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Miocardio/metabolismo , Miocardio/patología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Animales , Arritmias Cardíacas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Humanos , Modelos Biológicos , Terapia Molecular Dirigida , Canal de Sodio Activado por Voltaje NAV1.5/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA