Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Commun ; 14(1): 1030, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823201

RESUMEN

The sodium channel NaV1.6 is widely expressed in neurons of the central and peripheral nervous systems, which plays a critical role in regulating neuronal excitability. Dysfunction of NaV1.6 has been linked to epileptic encephalopathy, intellectual disability and movement disorders. Here we present cryo-EM structures of human NaV1.6/ß1/ß2 alone and complexed with a guanidinium neurotoxin 4,9-anhydro-tetrodotoxin (4,9-ah-TTX), revealing molecular mechanism of NaV1.6 inhibition by the blocker. The apo-form structure reveals two potential Na+ binding sites within the selectivity filter, suggesting a possible mechanism for Na+ selectivity and conductance. In the 4,9-ah-TTX bound structure, 4,9-ah-TTX binds to a pocket similar to the tetrodotoxin (TTX) binding site, which occupies the Na+ binding sites and completely blocks the channel. Molecular dynamics simulation results show that subtle conformational differences in the selectivity filter affect the affinity of TTX analogues. Taken together, our results provide important insights into NaV1.6 structure, ion conductance, and inhibition.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.6 , Bloqueadores de los Canales de Sodio , Tetrodotoxina , Humanos , Simulación de Dinámica Molecular , Neuronas/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/análogos & derivados , Tetrodotoxina/farmacología , Canal de Sodio Activado por Voltaje NAV1.6/química
2.
Cells ; 10(7)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202119

RESUMEN

Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel's complex regulatory mechanisms and how they may contribute to neuromodulation.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Calmodulina/metabolismo , Humanos , Canal de Sodio Activado por Voltaje NAV1.6/química , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional
3.
Sci Rep ; 10(1): 14791, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908170

RESUMEN

The voltage-gated sodium channel isoform NaV1.7 is highly expressed in dorsal root ganglion neurons and is obligatory for nociceptive signal transmission. Genetic gain-of-function and loss-of-function NaV1.7 mutations have been identified in select individuals, and are associated with episodic extreme pain disorders and insensitivity to pain, respectively. These findings implicate NaV1.7 as a key pharmacotherapeutic target for the treatment of pain. While several small molecules targeting NaV1.7 have been advanced to clinical development, no NaV1.7-selective compound has shown convincing efficacy in clinical pain applications. Here we describe the discovery and characterization of ST-2262, a NaV1.7 inhibitor that blocks the extracellular vestibule of the channel with an IC50 of 72 nM and greater than 200-fold selectivity over off-target sodium channel isoforms, NaV1.1-1.6 and NaV1.8. In contrast to other NaV1.7 inhibitors that preferentially inhibit the inactivated state of the channel, ST-2262 is equipotent in a protocol that favors the resting state of the channel, a protocol that favors the inactivated state, and a high frequency protocol. In a non-human primate study, animals treated with ST-2262 exhibited reduced sensitivity to noxious heat. These findings establish the extracellular vestibule of the sodium channel as a viable receptor site for the design of selective ligands targeting NaV1.7.


Asunto(s)
Guanidina/química , Canal de Sodio Activado por Voltaje NAV1.7/química , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/farmacología , Animales , Descubrimiento de Drogas , Ganglios Espinales/metabolismo , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/química , Canal de Sodio Activado por Voltaje NAV1.2/química , Canal de Sodio Activado por Voltaje NAV1.3/química , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.6/química , Canal de Sodio Activado por Voltaje NAV1.8/química , Estructura Secundaria de Proteína
4.
Physiol Rep ; 8(14): e14505, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32671946

RESUMEN

The voltage-gated sodium (Nav) channel complex is comprised of pore-forming α subunits (Nav1.1-1.9) and accessory regulatory proteins such as the intracellular fibroblast growth factor 14 (FGF14). The cytosolic Nav1.6 C-terminal tail binds directly to FGF14 and this interaction modifies Nav1.6-mediated currents with effects on intrinsic excitability in the brain. Previous studies have identified the FGF14V160 residue within the FGF14 core domain as a hotspot for the FGF14:Nav1.6 complex formation. Here, we used three short amino acid peptides around FGF14V160 to probe for the FGF14 interaction with the Nav1.6 C-terminal tail and to evaluate the activity of the peptide on Nav1.6-mediated currents. In silico docking predicts FLPK to bind to FGF14V160 with the expectation of interfering with the FGF14:Nav1.6 complex formation, a phenotype that was confirmed by the split-luciferase assay (LCA) and surface plasmon resonance (SPR), respectively. Whole-cell patch-clamp electrophysiology studies demonstrate that FLPK is able to prevent previously reported FGF14-dependent phenotypes of Nav1.6 currents, but that its activity requires the FGF14 N-terminal tail, a domain that has been shown to contribute to Nav1.6 inactivation independently from the FGF14 core domain. In medium spiny neurons in the nucleus accumbens, where both FGF14 and Nav1.6 are abundantly expressed, FLPK significantly increased firing frequency by a mechanism consistent with the ability of the tetrapeptide to interfere with Nav1.6 inactivation and potentiate persistent Na+ currents. Taken together, these results indicate that FLPK might serve as a probe for characterizing molecular determinants of neuronal excitability and a peptide scaffold to develop allosteric modulators of Nav channels.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Animales , Factores de Crecimiento de Fibroblastos/química , Factores de Crecimiento de Fibroblastos/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Canal de Sodio Activado por Voltaje NAV1.6/química , Canal de Sodio Activado por Voltaje NAV1.6/genética , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/química , Unión Proteica , Mapas de Interacción de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
5.
Molecules ; 25(15)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722255

RESUMEN

Disruption of protein:protein interactions (PPIs) that regulate the function of voltage-gated Na+ (Nav) channels leads to neural circuitry aberrations that have been implicated in numerous channelopathies. One example of this pathophysiology is mediated by dysfunction of the PPI between Nav1.6 and its regulatory protein fibroblast growth factor 14 (FGF14). Thus, peptides derived from FGF14 might exert modulatory actions on the FGF14:Nav1.6 complex that are functionally relevant. The tetrapeptide Glu-Tyr-Tyr-Val (EYYV) mimics surface residues of FGF14 at the ß8-ß9 loop, a structural region previously implicated in its binding to Nav1.6. Here, peptidomimetics derived from EYYV (6) were designed, synthesized, and pharmacologically evaluated to develop probes with improved potency. Addition of hydrophobic protective groups to 6 and truncation to a tripeptide (12) produced a potent inhibitor of FGF14:Nav1.6 complex assembly. Conversely, addition of hydrophobic protective groups to 6 followed by addition of an N-terminal benzoyl substituent (19) produced a potentiator of FGF14:Nav1.6 complex assembly. Subsequent functional evaluation using whole-cell patch-clamp electrophysiology confirmed their inverse activities, with 12 and 19 reducing and increasing Nav1.6-mediated transient current densities, respectively. Overall, we have identified a negative and positive allosteric modulator of Nav1.6, both of which could serve as scaffolds for the development of target-selective neurotherapeutics.


Asunto(s)
Factores de Crecimiento de Fibroblastos/química , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Peptidomiméticos/síntesis química , Peptidomiméticos/farmacología , Regulación Alostérica , Sitios de Unión , Diseño de Fármacos , Factores de Crecimiento de Fibroblastos/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Canal de Sodio Activado por Voltaje NAV1.6/química , Peptidomiméticos/química , Unión Proteica/efectos de los fármacos , Estructura Secundaria de Proteína
6.
PLoS One ; 15(3): e0219106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32134913

RESUMEN

Dravet syndrome is caused by dominant loss-of-function mutations in SCN1A which cause reduced activity of Nav1.1 leading to lack of neuronal inhibition. On the other hand, gain-of-function mutations in SCN8A can lead to a severe epileptic encephalopathy subtype by over activating NaV1.6 channels. These observations suggest that Nav1.1 and Nav1.6 represent two opposing sides of the neuronal balance between inhibition and activation. Here, we hypothesize that Dravet syndrome may be treated by either enhancing Nav1.1 or reducing Nav1.6 activity. To test this hypothesis we generated and characterized a novel DS zebrafish model and tested new compounds that selectively activate or inhibit the human NaV1.1 or NaV1.6 channel respectively. We used CRISPR/Cas9 to generate two separate Scn1Lab knockout lines as an alternative to previous zebrafish models generated by random mutagenesis or morpholino oligomers. Using an optimized locomotor assay, spontaneous burst movements were detected that were unique to Scn1Lab knockouts and disappear when introducing human SCN1A mRNA. Besides the behavioral phenotype, Scn1Lab knockouts show sudden, electrical discharges in the brain that indicate epileptic seizures in zebrafish. Scn1Lab knockouts showed increased sensitivity to the GABA antagonist pentylenetetrazole and a reduction in whole organism GABA levels. Drug screenings further validated a Dravet syndrome phenotype. We tested the NaV1.1 activator AA43279 and two novel NaV1.6 inhibitors MV1369 and MV1312 in the Scn1Lab knockouts. Both type of compounds significantly reduced the number of spontaneous burst movements and seizure activity. Our results show that selective inhibition of NaV1.6 could be just as efficient as selective activation of NaV1.1 and these approaches could prove to be novel potential treatment strategies for Dravet syndrome and other (genetic) epilepsies. Compounds tested in zebrafish however, should always be further validated in other model systems for efficacy in mammals and to screen for potential side effects.


Asunto(s)
Epilepsias Mioclónicas/patología , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Anticonvulsivantes/farmacología , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/metabolismo , Humanos , Locomoción/efectos de los fármacos , Morfolinos/metabolismo , Mutagénesis , Canal de Sodio Activado por Voltaje NAV1.1/química , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.6/química , Canal de Sodio Activado por Voltaje NAV1.6/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Pentilenotetrazol/farmacología , Fenotipo , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/metabolismo , Agonistas del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Ácido gamma-Aminobutírico/metabolismo
7.
J Biol Chem ; 295(18): 6151-6164, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32161114

RESUMEN

S-Palmitoylation is a reversible post-translational lipid modification that dynamically regulates protein functions. Voltage-gated sodium channels are subjected to S-palmitoylation and exhibit altered functions in different S-palmitoylation states. Our aim was to investigate whether and how S-palmitoylation regulates Nav1.6 channel function and to identify S-palmitoylation sites that can potentially be pharmacologically targeted. Acyl-biotin exchange assay showed that Nav1.6 is modified by S-palmitoylation in the mouse brain and in a Nav1.6 stable HEK 293 cell line. Using whole-cell voltage clamp, we discovered that enhancing S-palmitoylation with palmitic acid increases Nav1.6 current, whereas blocking S-palmitoylation with 2-bromopalmitate reduces Nav1.6 current and shifts the steady-state inactivation in the hyperpolarizing direction. Three S-palmitoylation sites (Cys1169, Cys1170, and Cys1978) were identified. These sites differentially modulate distinct Nav1.6 properties. Interestingly, Cys1978 is exclusive to Nav1.6 among all Nav isoforms and is evolutionally conserved in Nav1.6 among most species. Cys1978S-palmitoylation regulates current amplitude uniquely in Nav1.6. Furthermore, we showed that eliminating S-palmitoylation at specific sites alters Nav1.6-mediated excitability in dorsal root ganglion neurons. Therefore, our study reveals S-palmitoylation as a potential isoform-specific mechanism to modulate Nav activity and neuronal excitability in physiological and diseased conditions.


Asunto(s)
Lipoilación , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/citología , Secuencia de Aminoácidos , Fenómenos Electrofisiológicos , Ganglios Espinales/citología , Células HEK293 , Humanos , Cinética , Canal de Sodio Activado por Voltaje NAV1.6/química
8.
Genes Brain Behav ; 19(4): e12612, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31605437

RESUMEN

Mutations in the voltage-gated sodium channel gene SCN8A cause a broad range of human diseases, including epilepsy, intellectual disability, and ataxia. Here we describe three mouse lines on the C57BL/6J background with novel, overlapping mutations in the Scn8a DIIS4 voltage sensor: an in-frame 9 bp deletion (Δ9), an in-frame 3 bp insertion (∇3) and a 35 bp deletion that results in a frameshift and the generation of a null allele (Δ35). Scn8a Δ9/+ and Scn8a ∇3/+ heterozygous mutants display subtle motor deficits, reduced acoustic startle response, and are resistant to induced seizures, suggesting that these mutations reduce activity of the Scn8a channel protein, Nav 1.6. Heterozygous Scn8a Δ35/+ mutants show no alterations in motor function or acoustic startle response, but are resistant to induced seizures. Homozygous mutants from each line exhibit premature lethality and severe motor impairments, ranging from uncoordinated gait with tremor (Δ9 and ∇3) to loss of hindlimb control (Δ35). Scn8a Δ9/Δ9 and Scn8a ∇3/∇3 homozygous mutants also exhibit impaired nerve conduction velocity, while normal nerve conduction was observed in Scn8a Δ35/Δ35 homozygous mice. Our results suggest that hypomorphic mutations that reduce Nav 1.6 activity will likely result in different clinical phenotypes compared to null alleles. These three mouse lines represent a valuable opportunity to examine the phenotypic impacts of hypomorphic and null Scn8a mutations without the confound of strain-specific differences.


Asunto(s)
Movimiento , Mutación , Canal de Sodio Activado por Voltaje NAV1.6/genética , Potenciales de Acción , Animales , Homocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.6/química , Fenotipo , Dominios Proteicos
9.
J Med Chem ; 62(21): 9618-9641, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31525968

RESUMEN

Nonselective antagonists of voltage-gated sodium (NaV) channels have been long used for the treatment of epilepsies. The efficacy of these drugs is thought to be due to the block of sodium channels on excitatory neurons, primarily NaV1.6 and NaV1.2. However, these currently marketed drugs require high drug exposure and suffer from narrow therapeutic indices. Selective inhibition of NaV1.6, while sparing NaV1.1, is anticipated to provide a more effective and better tolerated treatment for epilepsies. In addition, block of NaV1.2 may complement the anticonvulsant activity of NaV1.6 inhibition. We discovered a novel series of aryl sulfonamides as CNS-penetrant, isoform-selective NaV1.6 inhibitors, which also displayed potent block of NaV1.2. Optimization focused on increasing selectivity over NaV1.1, improving metabolic stability, reducing active efflux, and addressing a pregnane X-receptor liability. We obtained compounds 30-32, which produced potent anticonvulsant activity in mouse seizure models, including a direct current maximal electroshock seizure assay.


Asunto(s)
Amidas/química , Sistema Nervioso Central/metabolismo , Epilepsia/tratamiento farmacológico , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Bloqueadores de los Canales de Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Animales , Perros , Células Hep G2 , Humanos , Células de Riñón Canino Madin Darby , Ratones , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.6/química , Dominios Proteicos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/uso terapéutico , Relación Estructura-Actividad
10.
Epilepsy Res ; 154: 55-61, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31054517

RESUMEN

This study aimed to identify monogenic mutations from Chinese patients with childhood absence epilepsy (CAE) and summarize their characteristics. A total of 100 patients with CAE were recruited in Peking University First Hospital from 2005 to 2016 and underwent telephone and outpatient follow-up review. We used targeted disease-specific gene capture sequencing (involving 300 genes) to identify pathogenic variations for these patients. We identified three de novo epilepsy-related gene mutations, including missense mutations of SCN1A (c. 5399 T > A; p. Val1800Asp), SCN8A (c. 2371 G > T; p. Val791Phe), and CLCN2 (c. 481 G > A; p. Gly161Ser), from three patients, separately. All recruited patients presented typical CAE features and good prognosis. To date, CAE has been considered a complex disease caused by multiple susceptibility genes. In this study, we observed that 3% of typical CAE patients had a de novo mutation of a known monogenic epilepsy-related gene. Our study suggests that a significant proportion of typical CAE cases may be monogenic forms of epilepsy. For genetic generalized epilepsies, such as CAE, further studies are needed to clarify the contributions of de novo or inherited rare monogenic coding, noncoding and copy number variants.


Asunto(s)
Canales de Cloruro/genética , Epilepsia Tipo Ausencia/diagnóstico , Epilepsia Tipo Ausencia/genética , Mutación Missense/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canales de Cloruro CLC-2 , Niño , Preescolar , China/epidemiología , Canales de Cloruro/química , Estudios de Cohortes , Epilepsia Tipo Ausencia/epidemiología , Femenino , Variación Genética/genética , Humanos , Masculino , Canal de Sodio Activado por Voltaje NAV1.1/química , Canal de Sodio Activado por Voltaje NAV1.6/química , Estructura Secundaria de Proteína
11.
Sci Rep ; 9(1): 4437, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872606

RESUMEN

CRISPR gene editing creates indels in targeted genes that are detected by genotyping. Separating PCR products generated from wild-type versus mutant alleles with small indels based on size is beyond the resolution capacity of regular agarose gel electrophoresis. To overcome this limitation, we developed a simple genotyping method that exploits the differential electrophoretic mobility of homoduplex versus heteroduplex DNA hybrids in high concentration agarose gels. First, the CRISPR target region is PCR amplified and homo- and hetero-duplexed amplicons formed during the last annealing cycle are separated by 4-6% agarose gel electrophoresis. WT/mutant heteroduplexes migrate more slowly and are distinguished from WT or mutant homoduplexes. Heterozygous alleles are immediately identified as they produce two distinct bands, while homozygous wild-type or mutant alleles yield a single band. To discriminate the latter, equal amounts of PCR products of homozygous samples are mixed with wild-type control samples, subjected to one denaturation/renaturation cycle and products are electrophoresed again. Samples from homozygous mutant alleles now produce two bands, while those from wild-type alleles yield single bands. This method is simple, fast and inexpensive and can identify indels >2 bp. in size in founder pups and genotype offspring in established transgenic mice colonies.


Asunto(s)
Sistemas CRISPR-Cas , Electroforesis en Gel de Agar/métodos , Edición Génica , Mutación INDEL , Proteínas de la Membrana/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Proteínas del Tejido Nervioso/genética , Animales , Femenino , Genotipo , Técnicas de Genotipaje , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.6/química , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Reacción en Cadena de la Polimerasa
12.
Biochim Biophys Acta Biomembr ; 1861(1): 142-150, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30463697

RESUMEN

To1, previously named Tc49b, is a peptide neurotoxin isolated from venom of the scorpion Tityus obscurus that is responsible for lethal human poisoning cases in the Brazilian Amazonian region. Previously, To1 was shown to be lethal to mice and to change Na+ permeation in cerebellum granular neurons from rat brain. In addition, To1 did not affect Shaker B K+ channels. Based on sequence similarities, To1 was described as a ß-toxin. In the present work, To1 was purified from T. obscurus venom and submitted to an electrophysiological characterization in human and invertebrate NaV channels. The analysis of the electrophysiological experiments reveal that To1 enhances the open probability at more negative potentials of human NaV 1.3 and 1.6, of the insect channel BgNaV1 and of arachnid VdNaV1 channel. In addition, To1 reduces the peak of Na+ currents in some of the NaVs tested. These results support the classification of the To1 as a ß-toxin. A structure and functional comparison to other ß-toxins that share sequence similarity to To1 is also presented.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.3/química , Canal de Sodio Activado por Voltaje NAV1.6/química , Venenos de Escorpión/química , Escorpiones/química , Canales de Sodio/química , Animales , Fenómenos Electrofisiológicos , Células HEK293 , Humanos , Proteínas de Insectos/química , Cinética , Péptidos , Probabilidad , Unión Proteica , Sodio/química
13.
Bioorg Med Chem Lett ; 29(3): 413-419, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30587448

RESUMEN

The voltage-gated sodium (Nav) channel is the molecular determinant of action potential in neurons. Protein-protein interactions (PPI) between the intracellular Nav1.6 C-tail and its regulatory protein fibroblast growth factor 14 (FGF14) provide an ideal and largely untapped opportunity for development of neurochemical probes. Based on a previously identified peptide FLPK, mapped to the FGF14:FGF14 PPI interface, we have designed and synthesized a series of peptidomimetics with the intent of increasing clogP values and improving cell permeability relative to the parental lead peptide. In-cell screening using the split-luciferase complementation (LCA) assay identified ZL0177 (13) as the most potent inhibitor of the FGF14:Nav1.6 channel complex assembly with an apparent IC50 of 11 µM. Whole-cell patch-clamp recordings demonstrated that ZL0177 significantly reduced Nav1.6-mediated transient current density and induced a depolarizing shift of the channel voltage-dependence of activation. Docking studies revealed strong interactions between ZL0177 and Nav1.6, mediated by hydrogen bonds, cation-π interactions and hydrophobic contacts. All together these results suggest that ZL0177 retains some key features of FGF14-dependent modulation of Nav1.6 currents. Overall, ZL0177 provides a chemical scaffold for developing Nav channel modulators as pharmacological probes with therapeutic potential of interest for a broad range of CNS and PNS disorders.


Asunto(s)
Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Sondas Moleculares/farmacología , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Oligopéptidos/farmacología , Peptidomiméticos/farmacología , Relación Dosis-Respuesta a Droga , Factores de Crecimiento de Fibroblastos/química , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Sondas Moleculares/síntesis química , Sondas Moleculares/química , Estructura Molecular , Canal de Sodio Activado por Voltaje NAV1.6/química , Oligopéptidos/síntesis química , Oligopéptidos/química , Peptidomiméticos/síntesis química , Peptidomiméticos/química , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad
14.
J Biol Chem ; 293(43): 16546-16558, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30219789

RESUMEN

Cannabis sativa contains many related compounds known as phytocannabinoids. The main psychoactive and nonpsychoactive compounds are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), respectively. Much of the evidence for clinical efficacy of CBD-mediated antiepileptic effects has been from case reports or smaller surveys. The mechanisms for CBD's anticonvulsant effects are unclear and likely involve noncannabinoid receptor pathways. CBD is reported to modulate several ion channels, including sodium channels (Nav). Evaluating the therapeutic mechanisms and safety of CBD demands a richer understanding of its interactions with central nervous system targets. Here, we used voltage-clamp electrophysiology of HEK-293 cells and iPSC neurons to characterize the effects of CBD on Nav channels. Our results show that CBD inhibits hNav1.1-1.7 currents, with an IC50 of 1.9-3.8 µm, suggesting that this inhibition could occur at therapeutically relevant concentrations. A steep Hill slope of ∼3 suggested multiple interactions of CBD with Nav channels. CBD exhibited resting-state blockade, became more potent at depolarized potentials, and also slowed recovery from inactivation, supporting the idea that CBD binding preferentially stabilizes inactivated Nav channel states. We also found that CBD inhibits other voltage-dependent currents from diverse channels, including bacterial homomeric Nav channel (NaChBac) and voltage-gated potassium channel subunit Kv2.1. Lastly, the CBD block of Nav was temperature-dependent, with potency increasing at lower temperatures. We conclude that CBD's mode of action likely involves 1) compound partitioning in lipid membranes, which alters membrane fluidity affecting gating, and 2) undetermined direct interactions with sodium and potassium channels, whose combined effects are loss of channel excitability.


Asunto(s)
Cannabidiol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.1/química , Canal de Sodio Activado por Voltaje NAV1.6/química , Neuronas/patología , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/química , Células HEK293 , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Sodio/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo
15.
J Physiol ; 596(17): 4141-4156, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29870060

RESUMEN

KEY POINTS: High-frequency stimulation (HFS) of the Schaffer collateral pathway activates metabotropic glutamate receptor 5 (mGluR5) signalling in the proximal apical dendrites of CA1 pyramidal neurons. The synaptic activation of mGluR5-mediated calcium signalling causes a significant increase in persistent sodium current (INa,P ) in the dendrites. Increased INa,P by HFS underlies potentiation of synaptic inputs at both the proximal and distal dendrite, leading to an enhanced probability of action potential firing associated with decreased action potential thresholds. Therefore, HFS-induced activation of intracellular mGluR5 serves an important role as an instructive signal for potentiation of upcoming inputs by increasing dendritic excitability. ABSTRACT: Dendritic Na+ channels in pyramidal neurons are known to amplify synaptic signals, thereby facilitating action potential (AP) generation. However, the mechanisms that modulate dendritic Na+ channels have remained largely uncharacterized. Here, we report a new form of short-term plasticity in which proximal excitatory synaptic inputs to hippocampal CA1 pyramidal neurons transiently elevate dendritic excitability. High-frequency stimulations (HFS) to the Schaffer collateral (SC) pathway activate mGluR5-dependent Ca2+ signalling in the apical dendrites, which, with calmodulin, upregulates specifically Nav1.6 channel-mediated persistent Na+ currents (INa,P ) in the dendrites. This HFS-induced increase in dendritic INa,P results in transient increases in the amplitude of excitatory postsynaptic potentials induced by both proximal SC and distal perforant path stimulation, leading to the enhanced probability of AP firing associated with decreased AP thresholds. Taken together, our study identifies dendritic INa,P as a novel target for mediating activity-dependent modulation of dendritic integration and neuronal output.


Asunto(s)
Potenciales de Acción , Región CA1 Hipocampal/fisiología , Dendritas/fisiología , Potenciales Postsinápticos Excitadores , Células Piramidales/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Sodio/metabolismo , Animales , Calcio/metabolismo , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.6/química , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Células Piramidales/citología , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley
16.
Cell Rep ; 23(2): 555-567, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642012

RESUMEN

Resilience and vulnerability to neuropsychiatric disorders are linked to molecular changes underlying excitability that are still poorly understood. Here, we identify glycogen-synthase kinase 3ß (GSK3ß) and voltage-gated Na+ channel Nav1.6 as regulators of neuroplasticity induced by environmentally enriched (EC) or isolated (IC) conditions-models for resilience and vulnerability. Transcriptomic studies in the nucleus accumbens from EC and IC rats predicted low levels of GSK3ß and SCN8A mRNA as a protective phenotype associated with reduced excitability in medium spiny neurons (MSNs). In vivo genetic manipulations demonstrate that GSK3ß and Nav1.6 are molecular determinants of MSN excitability and that silencing of GSK3ß prevents maladaptive plasticity of IC MSNs. In vitro studies reveal direct interaction of GSK3ß with Nav1.6 and phosphorylation at Nav1.6T1936 by GSK3ß. A GSK3ß-Nav1.6T1936 competing peptide reduces MSNs excitability in IC, but not EC rats. These results identify GSK3ß regulation of Nav1.6 as a biosignature of MSNs maladaptive plasticity.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Condicionamiento Físico Animal , Aislamiento Social , Animales , Potenciales Evocados , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/genética , Células HEK293 , Humanos , Masculino , Canal de Sodio Activado por Voltaje NAV1.6/química , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Técnicas de Placa-Clamp , Fosfopéptidos/análisis , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Transcriptoma
17.
J Physiol ; 596(9): 1601-1626, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29441586

RESUMEN

KEY POINTS: Na+ current inactivation is biphasic in insulin-secreting cells, proceeding with two voltage dependences that are half-maximal at ∼-100 mV and -60 mV. Inactivation of voltage-gated Na+ (NaV ) channels occurs at ∼30 mV more negative voltages in insulin-secreting Ins1 and primary ß-cells than in HEK, CHO or glucagon-secreting αTC1-6 cells. The difference in inactivation between Ins1 and non-ß-cells persists in the inside-out patch configuration, discounting an involvement of a diffusible factor. In Ins1 cells and primary ß-cells, but not in HEK cells, inactivation of a single NaV subtype is biphasic and follows two voltage dependences separated by 30-40 mV. We propose that NaV channels adopt different inactivation behaviours depending on the local membrane environment. ABSTRACT: Pancreatic ß-cells are equipped with voltage-gated Na+ channels that undergo biphasic voltage-dependent steady-state inactivation. A small Na+ current component (10-15%) inactivates over physiological membrane potentials and contributes to action potential firing. However, the major Na+ channel component is completely inactivated at -90 to -80 mV and is therefore inactive in the ß-cell. It has been proposed that the biphasic inactivation reflects the contribution of different NaV α-subunits. We tested this possibility by expression of TTX-resistant variants of the NaV subunits found in ß-cells (NaV 1.3, NaV 1.6 and NaV 1.7) in insulin-secreting Ins1 cells and in non-ß-cells (including HEK and CHO cells). We found that all NaV subunits inactivated at 20-30 mV more negative membrane potentials in Ins1 cells than in HEK or CHO cells. The more negative inactivation in Ins1 cells does not involve a diffusible intracellular factor because the difference between Ins1 and CHO persisted after excision of the membrane. NaV 1.7 inactivated at 15--20 mV more negative membrane potentials than NaV 1.3 and NaV 1.6 in Ins1 cells but this small difference is insufficient to solely explain the biphasic inactivation in Ins1 cells. In Ins1 cells, but never in the other cell types, widely different components of NaV inactivation (separated by 30 mV) were also observed following expression of a single type of NaV α-subunit. The more positive component exhibited a voltage dependence of inactivation similar to that found in HEK and CHO cells. We propose that biphasic NaV inactivation in insulin-secreting cells reflects insertion of channels in membrane domains that differ with regard to lipid and/or membrane protein composition.


Asunto(s)
Regulación de la Expresión Génica , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Canal de Sodio Activado por Voltaje NAV1.3/química , Canal de Sodio Activado por Voltaje NAV1.6/química , Canal de Sodio Activado por Voltaje NAV1.7/química , Bloqueadores de los Canales de Sodio/farmacología , Potenciales de Acción , Secuencia de Aminoácidos , Animales , Cricetinae , Cricetulus , Fenómenos Electrofisiológicos , Células HEK293 , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Insulinoma/tratamiento farmacológico , Insulinoma/patología , Potenciales de la Membrana , Ratones , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.3/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Ratas , Homología de Secuencia , Sodio/metabolismo
18.
Ann Clin Lab Sci ; 47(6): 747-753, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29263050

RESUMEN

Mutations in SCN8A, which codes for the voltage-gated sodium channel NaV1.6, have been described in relation to infantile onset epilepsy with developmental delay and cognitive impairment. Here, we report the case of an infant and her father with early onset benign familial infantile epilepsy, but without cognitive or neurological impairment. In this patient, diagnostic exome sequencing (DES) identified a heterozygous mutation (c.4427G>A; p.Gly1476Asp) in the SCN8A gene. This mutation, confirmed by Sanger sequencing, effects a highly conserved amino acid. In-silico analysis predicts that this mutation may be pathogenic. To our knowledge, this is the first clinical report on Korean benign familial infantile epilepsy with a SCN8A mutation. We were able to achieve good seizure control in our patients with sodium channel blockers. This result suggests the application of DES will be valuable for the diagnosis of patients with infantile epilepsy but no cognitive impairment.


Asunto(s)
Pueblo Asiatico/genética , Síndromes Epilépticos/genética , Secuenciación del Exoma/métodos , Patrón de Herencia/genética , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Secuencia de Aminoácidos , Preescolar , Familia , Femenino , Humanos , Lactante , Masculino , Canal de Sodio Activado por Voltaje NAV1.6/química , Linaje
19.
J Physiol Biochem ; 72(2): 293-302, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26995749

RESUMEN

Bisoprolol, an antagonist of ß1-adrenergic receptors, is effective in reducing the morbidity and mortality in patients with heart failure (HF). It has been found that HF is accompanied with dysfunction of the sinoatrial node (SAN). However, whether bisoprolol reverses the decreased SAN function in HF and how the relevant ion channels in SAN change were relatively less studied. SAN function and messenger RNA (mRNA) expression of sodium channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channel subunits were assessed in sham-operated rats, abdominal arterio-venous shunt (volume overload)-induced HF rats, and bisoprolol- treated HF rats. SAN cells of rats were isolated by laser capture microdissection. Quantitative real-time PCR analysis was used to quantify mRNA expression of sodium channels and HCN channel subunits in SAN. Intrinsic heart rate declined and sinus node recovery time prolonged in HF rats, indicating the suppressed SAN function, which could be improved by bisoprolol treatment. Nav1.1, Nav1.6, and HCN4 mRNA expressions were reduced in SAN in HF rats compared with that in control rats. Treatment with bisoprolol could reverse both the SAN function and the Nav1.1, Nav1.6, and HCN4 mRNA expression partially. These data indicated that bisoprolol is effective in HF treatment partially due to improved SAN function by reversing the down-regulation of sodium channels (Nav1.1 and Nav1.6) and HCN channel (HCN4) subunits in SAN in failing hearts.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 1/uso terapéutico , Bisoprolol/uso terapéutico , Cardiotónicos/uso terapéutico , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/tratamiento farmacológico , Canales Iónicos/agonistas , Nodo Sinoatrial/efectos de los fármacos , Animales , Remodelación Atrial/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/agonistas , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Captura por Microdisección con Láser , Masculino , Canal de Sodio Activado por Voltaje NAV1.1/química , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/química , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Canales de Potasio/agonistas , Canales de Potasio/genética , Canales de Potasio/metabolismo , Subunidades de Proteína/agonistas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/patología , Nodo Sinoatrial/fisiopatología
20.
J Biol Chem ; 291(21): 11268-84, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-26994141

RESUMEN

The voltage-gated Na(+) (Nav) channel provides the basis for electrical excitability in the brain. This channel is regulated by a number of accessory proteins including fibroblast growth factor 14 (FGF14), a member of the intracellular FGF family. In addition to forming homodimers, FGF14 binds directly to the Nav1.6 channel C-tail, regulating channel gating and expression, properties that are required for intrinsic excitability in neurons. Seeking amino acid residues with unique roles at the protein-protein interaction interface (PPI) of FGF14·Nav1.6, we engineered model-guided mutations of FGF14 and validated their impact on the FGF14·Nav1.6 complex and the FGF14:FGF14 dimer formation using a luciferase assay. Divergence was found in the ß-9 sheet of FGF14 where an alanine (Ala) mutation of Val-160 impaired binding to Nav1.6 but had no effect on FGF14:FGF14 dimer formation. Additional analysis revealed also a key role of residues Lys-74/Ile-76 at the N-terminal of FGF14 in the FGF14·Nav1.6 complex and FGF14:FGF14 dimer formation. Using whole-cell patch clamp electrophysiology, we demonstrated that either the FGF14(V160A) or the FGF14(K74A/I76A) mutation was sufficient to abolish the FGF14-dependent regulation of peak transient Na(+) currents and the voltage-dependent activation and steady-state inactivation of Nav1.6; but only V160A with a concomitant alanine mutation at Tyr-158 could impede FGF14-dependent modulation of the channel fast inactivation. Intrinsic fluorescence spectroscopy of purified proteins confirmed a stronger binding reduction of FGF14(V160A) to the Nav1.6 C-tail compared with FGF14(K74A/I76A) Altogether these studies indicate that the ß-9 sheet and the N terminus of FGF14 are well positioned targets for drug development of PPI-based allosteric modulators of Nav channels.


Asunto(s)
Factores de Crecimiento de Fibroblastos/química , Factores de Crecimiento de Fibroblastos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/química , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Sustitución de Aminoácidos , Aminoácidos/química , Factores de Crecimiento de Fibroblastos/genética , Células HEK293 , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Canal de Sodio Activado por Voltaje NAV1.6/genética , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA