Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.129
Filtrar
1.
Biochemistry (Mosc) ; 89(6): 1061-1078, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38981701

RESUMEN

Voltage-dependent anion channels (VDAC1-3) of the outer mitochondrial membrane are a family of pore-forming ß-barrel proteins that carry out controlled "filtration" of small molecules and ions between the cytoplasm and mitochondria. Due to the conformational transitions between the closed and open states and interaction with cytoplasmic and mitochondrial proteins, VDACs not only regulate the mitochondrial membrane permeability for major metabolites and ions, but also participate in the control of essential intracellular processes and pathological conditions. This review discusses novel data on the molecular structure, regulatory mechanisms, and pathophysiological role of VDAC proteins, as well as future directions in this area of research.


Asunto(s)
Membranas Mitocondriales , Canales Aniónicos Dependientes del Voltaje , Humanos , Canales Aniónicos Dependientes del Voltaje/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Mitocondrias/metabolismo
2.
Biomolecules ; 14(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38927058

RESUMEN

The retina, a tissue of the central nervous system, is vital for vision as its photoreceptors capture light and transform it into electrical signals, which are further processed before they are sent to the brain to be interpreted as images. The retina is unique in that it is continuously exposed to light and has the highest metabolic rate and demand for energy amongst all the tissues in the body. Consequently, the retina is very susceptible to oxidative stress. VDAC, a pore in the outer membrane of mitochondria, shuttles metabolites between mitochondria and the cytosol and normally protects cells from oxidative damage, but when a cell's integrity is greatly compromised it initiates cell death. There are three isoforms of VDAC, and existing evidence indicates that all three are expressed in the retina. However, their precise localization and function in each cell type is unknown. It appears that most retinal cells express substantial amounts of VDAC2 and VDAC3, presumably to protect them from oxidative stress. Photoreceptors express VDAC2, HK2, and PKM2-key proteins in the Warburg pathway that also protect these cells. Consistent with its role in initiating cell death, VDAC is overexpressed in the retinal degenerative diseases retinitis pigmentosa, age related macular degeneration (AMD), and glaucoma. Treatment with antioxidants or inhibiting VDAC oligomerization reduced its expression and improved cell survival. Thus, VDAC may be a promising therapeutic candidate for the treatment of these diseases.


Asunto(s)
Retina , Canales Aniónicos Dependientes del Voltaje , Humanos , Canales Aniónicos Dependientes del Voltaje/metabolismo , Retina/metabolismo , Animales , Estrés Oxidativo , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Mitocondrias/metabolismo , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología
3.
Theriogenology ; 224: 26-33, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38723471

RESUMEN

Pigs are usually bred through artificial insemination with liquid semen preserved at 15-20 °C. While this method of preservation brings many benefits, including a greater reproductive performance compared to frozen-thawed sperm, the period of storage is a limiting factor. As the mitochondrion regulates many facets of sperm physiology, modulating its activity could have an impact on their lifespan. Aligned with this hypothesis, the present study sought to investigate whether inhibition of voltage-dependent anion channels (VDACs), which reside in the outer mitochondrial membrane and regulate the flux of ions between mitochondria and the cytosol in somatic cells, influences the resilience of pig sperm to liquid preservation at 17 °C. For this purpose, semen samples (N = 7) were treated with two different concentrations of TRO19622 (5 µM and 50 µM), an inhibitor of VDACs, and stored at 17 °C for 10 days. At days 0, 4 and 10, sperm quality and functionality parameters were evaluated by flow cytometry and computer-assisted sperm analysis (CASA). The effects of inhibiting VDACs depended on the concentration of the inhibitor. On the one hand, the greatest concentration of TRO19622 (50 µM) led to a decrease in sperm motility, viability and mitochondrial membrane potential, which could be related to the observed intracellular Ca2+ increase. In contrast, total sperm motility was higher in samples treated with 5 µM TRO19622 than in the control, suggesting that when VDACs channels are inhibited by the lowest concentration of the blocking agent the resilience of pig sperm to liquid storage increases. In conclusion, the current research indicates that mitochondrial function, as regulated by ion channels in the outer mitochondrial membrane like VDACs, is related to the sperm resilience to liquid preservation and may influence cell lifespan.


Asunto(s)
Colestenonas , Preservación de Semen , Semen , Porcinos , Canales Aniónicos Dependientes del Voltaje , Aniones , Animales , Preservación de Semen/métodos , Inseminación Artificial , Temperatura , Motilidad Espermática , Calcio/análisis
4.
Biochim Biophys Acta Biomembr ; 1866(5): 184329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679309

RESUMEN

VBIT-4 is a new inhibitor of the oligomerization of VDAC proteins of the outer mitochondrial membrane preventing the development of oxidative stress, mitochondrial dysfunction, and cell death in various pathologies. However, as a VDAC inhibitor, VBIT-4 may itself cause mitochondrial dysfunction in healthy cells. The article examines the effect of VBIT-4 on the functional activity of rat liver mitochondria and cell cultures. We have demonstrated that high concentrations of VBIT-4 (15-30 µM) suppressed mitochondrial respiration in state 3 and 3UDNP driven by substrates of complex I and II. VBIT-4 induced depolarization of organelles fueled by substrates of complex I but not complex II of the respiratory chain. VBIT-4 has been found to inhibit the activity of complexes I, III, and IV of the respiratory chain. Molecular docking demonstrated that VBIT-4 interacts with the rotenone-binding site in complex I with similar affinity. 15-30 µM VBIT-4 caused an increase in H2O2 production in mitochondria, decreased the Ca2+ retention capacity, but increased the time of Ca2+-dependent mitochondrial swelling. We have found that the incubation of breast adenocarcinoma (MCF-7) with 30 µM VBIT-4 for 48 h led to the decrease of the mitochondrial membrane potential, an increase in ROS production and death of MCF-7 cells. The mechanism of action of VBIT-4 on mitochondria and cells is discussed.


Asunto(s)
Supervivencia Celular , Mitocondrias Hepáticas , Animales , Humanos , Ratas , Supervivencia Celular/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Células MCF-7 , Simulación del Acoplamiento Molecular , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Calcio/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Masculino
5.
Brain Res ; 1835: 148920, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38599511

RESUMEN

Mitochondrial dysfunction has been implicated in the pathogenesis of Alzheimer's disease, a neurodegenerative disorder characterized by progressive cognitive decline. Voltage-dependent anion channel (VDAC), a protein located in the outer mitochondrial membrane, plays a critical role in regulating mitochondrial function and cellular energy metabolism. Recent studies have identified VDAC as a potential therapeutic target for Alzheimer's disease. This article aims to provide an overview of the role of VDAC in mitochondrial dysfunction, its association with Alzheimer's disease, and the potential of targeting VDAC for developing novel therapeutic interventions. Understanding the involvement of VDAC in Alzheimer's disease may pave the way for the development of effective treatments that can restore mitochondrial function and halt disease progression.


Asunto(s)
Enfermedad de Alzheimer , Mitocondrias , Canales Aniónicos Dependientes del Voltaje , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Canales Aniónicos Dependientes del Voltaje/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Animales
6.
Pest Manag Sci ; 80(8): 3752-3762, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38488318

RESUMEN

BACKGROUND: Voltage-dependent anion-selective channels (VDACs) serve as pore proteins within the mitochondrial membrane, aiding in the regulation of cell life and cell death. Although the occurrence of cell death is crucial for defense against virus infection, the function played by VDAC in Bombyx mori, in response to the influence of Bombyx mori nucleopolyhedrovirus (BmNPV), remains unclear. RESULTS: BmVDAC was found to be relatively highly expressed both during embryonic development, and in the Malpighian tubule and midgut. Additionally, the expression levels of BmVDAC were found to be different among silkworm strains with varying levels of resistance to BmNPV, strongly suggesting a connection between BmVDAC and virus infection. To gain further insight into the function of BmVDAC in BmNPV, we employed RNA interference (RNAi) to silence and overexpress it by pIZT/V5-His-mCherry. The results revealed that BmVDAC is instrumental in developing the resistance of host cells to BmNPV infection in BmN cell-line cells, which was further validated as likely to be associated with initiating programmed cell death (PCD). Furthermore, we evaluated the function of BmVDAC in another insect, Spodoptera exigua. Knockdown of the BmVDAC homolog in S. exigua, SeVDAC, made the larvae more sensitive to BmNPV. CONCLUSION: We have substantiated the pivotal role of BmVDAC in conferring resistance against BmNPV infection, primarily associated with the initiation of PCD. The findings of this study shine new light on the molecular mechanisms governing the silkworm's response to BmNPV infection, thereby supporting innovative approaches for pest biocontrol. © 2024 Society of Chemical Industry.


Asunto(s)
Apoptosis , Bombyx , Larva , Nucleopoliedrovirus , Canales Aniónicos Dependientes del Voltaje , Animales , Bombyx/virología , Bombyx/genética , Nucleopoliedrovirus/fisiología , Larva/virología , Larva/crecimiento & desarrollo , Larva/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Interferencia de ARN
7.
Aging (Albany NY) ; 16(6): 5501-5525, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38517390

RESUMEN

The endoplasmic reticulum (ER) membrane protein complex (EMC) is a conserved, multi-subunit complex acting as an insertase at the ER membrane. Growing evidence shows that the EMC is also involved in stabilizing and trafficking membrane proteins. However, the structural basis and regulation of its multifunctionality remain elusive. Here, we report cryo-electron microscopy structures of human EMC in apo- and voltage-dependent anion channel (VDAC)-bound states at resolutions of 3.47 Å and 3.32 Å, respectively. We discovered a specific interaction between VDAC proteins and the EMC at mitochondria-ER contact sites, which is conserved from yeast to humans. Moreover, we identified a gating plug located inside the EMC hydrophilic vestibule, the substrate-binding pocket for client insertion. Conformation changes of this gating plug during the apo-to-VDAC-bound transition reveal that the EMC unlikely acts as an insertase in the VDAC1-bound state. Based on the data analysis, the gating plug may regulate EMC functions by modifying the hydrophilic vestibule in different states. Our discovery offers valuable insights into the structural basis of EMC's multifunctionality.


Asunto(s)
Retículo Endoplásmico , Canales Aniónicos Dependientes del Voltaje , Humanos , Microscopía por Crioelectrón , Canales Aniónicos Dependientes del Voltaje/metabolismo , Retículo Endoplásmico/metabolismo , Saccharomyces cerevisiae
8.
Dev Biol ; 513: 50-62, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38492873

RESUMEN

The voltage gated (Kv) slow-inactivating delayed rectifier channel regulates the development of hollow organs of the zebrafish. The functional channel consists of the tetramer of electrically active Kcnb1 (Kv2.1) subunits and Kcng4b (Kv6.4) modulatory or electrically silent subunits. The two mutations in zebrafish kcng4b gene - kcng4b-C1 and kcng4b-C2 (Gasanov et al., 2021) - have been studied during ear development using electrophysiology, developmental biology and in silico structural modelling. kcng4b-C1 mutation causes a C-terminal truncation characterized by mild Kcng4b loss-of-function (LOF) manifested by failure of kinocilia to extend and formation of ectopic otoliths. In contrast, the kcng4b-C2-/- mutation causes the C-terminal domain to elongate and the ectopic seventh transmembrane (TM) domain to form, converting the intracellular C-terminus to an extracellular one. Kcng4b-C2 acts as a Kcng4b gain-of-function (GOF) allele. Otoliths fail to develop and kinocilia are reduced in kcng4b-C2-/-. These results show that different mutations of the silent subunit Kcng4 can affect the activity of the Kv channel and cause a wide range of developmental defects.


Asunto(s)
Oído , Canales Aniónicos Dependientes del Voltaje , Proteínas de Pez Cebra , Pez Cebra , Animales , Oído/embriología , Mutación/genética , Pez Cebra/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo
9.
Eur J Cell Biol ; 103(2): 151405, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503132

RESUMEN

Yeast Rho5 is a small GTPase which mediates the response to nutrient and oxidative stress, and triggers mitophagy and apoptosis. We here studied the rapid translocation of a GFP-tagged Rho5 to mitochondria under such stress conditions by live-cell fluorescence microscopy in the background of strains lacking different mitochondrial outer membrane proteins (MOMP). Fun14, Msp1 and Alo1 were found to be required for efficient recruitment of the GTPase, whereas translocation of Dck1 and Lmo1, the subunits of its dimeric GDP/GTP exchange factor (GEF), remained unaffected. An influence of the voltage-dependent anion channel (VDAC) Por1 on the association of GFP-Rho5 with mitochondria under oxidative stress conditions appeared to be strain-dependent. However, epistasis analyses and bimolecular fluorescence complementation (BiFC) studies indicate a genetic and physical interaction. All four strains lacking a single MOMP were investigated for their effect on mitophagy.


Asunto(s)
Membranas Mitocondriales , Estrés Oxidativo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Unión al GTP rho , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Membranas Mitocondriales/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Transporte de Proteínas , Canales Aniónicos Dependientes del Voltaje/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mitofagia , Porinas
10.
Biomolecules ; 14(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38540723

RESUMEN

Mitochondria are most likely descendants of strictly aerobic prokaryotes from the class Alphaproteobacteria. The mitochondrial matrix is surrounded by two membranes according to its relationship with Gram-negative bacteria. Similar to the bacterial outer membrane, the mitochondrial outer membrane acts as a molecular sieve because it also contains diffusion pores. However, it is more actively involved in mitochondrial metabolism because it plays a functional role, whereas the bacterial outer membrane has only passive sieving properties. Mitochondrial porins, also known as eukaryotic porins or voltage-dependent anion-selective channels (VDACs) control the permeability properties of the mitochondrial outer membrane. They contrast with most bacterial porins because they are voltage-dependent. They switch at relatively small transmembrane potentials of 20 to 30 mV in closed states that exhibit different permeability properties than the open state. Whereas the open state is preferentially permeable to anionic metabolites of mitochondrial metabolism, the closed states prefer cationic solutes, in particular, calcium ions. Mitochondrial porins are encoded in the nucleus, synthesized at cytoplasmatic ribosomes, and post-translationally imported through special transport systems into mitochondria. Nineteen beta strands form the beta-barrel cylinders of mitochondrial and related porins. The pores contain in addition an α-helical structure at the N-terminal end of the protein that serves as a gate for the voltage-dependence. Similarly, they bind peripheral proteins that are involved in mitochondrial function and compartment formation. This means that mitochondrial porins are localized in a strategic position to control mitochondrial metabolism. The special features of the role of mitochondrial porins in apoptosis and cancer will also be discussed in this article.


Asunto(s)
Canales Iónicos , Canales Aniónicos Dependientes del Voltaje , Canales Iónicos/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Porinas/análisis , Porinas/química , Porinas/metabolismo , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Potenciales de la Membrana
11.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474278

RESUMEN

The small GTPase RAS acts as a plasma membrane-anchored intracellular neurotrophin counteracting neuronal degeneration in the brain, but the underlying molecular mechanisms are largely unknown. In transgenic mice expressing constitutively activated V12-Ha-RAS selectively in neurons, proteome analysis uncovered a 70% decrease in voltage-dependent anion channel-1 (VDAC-1) in the cortex and hippocampus. We observed a corresponding reduction in the levels of mRNA splicing variant coding for plasma membrane-targeted VDAC-1 (pl-VDAC-1) while mRNA levels for mitochondrial membrane VDAC-1 (mt-VDAC-1) remained constant. In primary cortical neurons derived from V12-Ha-RAS animals, a decrease in pl-VDAC-1 mRNA levels was observed, accompanied by a concomitant reduction in the ferricyanide reductase activity associated with VDAC-1 protein. Application of MEK inhibitor U0126 to transgenic cortical neurons reconstituted pl-VDAC-1 mRNA to reach wild-type levels. Excitotoxic glutamate-induced cell death was strongly attenuated in transgenic V12-Ha-RAS overexpressing cortical cultures. Consistently, a neuroprotective effect could also be achieved in wild-type cortical cultures by the extracellular application of channel-blocking antibody targeting the N-terminus of VDAC-1. These results may encourage novel therapeutic approaches toward blocking pl-VDAC-1 by monoclonal antibody targeting for complementary treatments in transplantation and neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Canales Aniónicos Dependientes del Voltaje , Ratones , Animales , Canales Aniónicos Dependientes del Voltaje/metabolismo , Neuroprotección , Enfermedades Neurodegenerativas/metabolismo , Proteínas ras/metabolismo , Regulación hacia Abajo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Membrana Celular/metabolismo , Ratones Transgénicos , ARN Mensajero/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/metabolismo
12.
Arch Biochem Biophys ; 753: 109914, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290597

RESUMEN

The mitochondrial outer membrane protein porin 1 (Por1), the yeast orthologue of mammalian voltage-dependent anion channel (VDAC), is the major permeability pathway for the flux of metabolites and ions between cytosol and mitochondria. In yeast, several Por1 phosphorylation sites have been identified. Protein phosphorylation is a major modification regulating a variety of biological activities, but the potential biological roles of Por1 phosphorylation remains unaddressed. In this work, we analysed 10 experimentally observed phosphorylation sites in yeast Por1 using bioinformatics tools. Two of the residues, T100 and S133, predicted to reduce and increase pore permeability, respectively, were validated using biological assays. In accordance, Por1T100D reduced mitochondrial respiration, while Por1S133E phosphomimetic mutant increased it. Por1T100A expression also improved respiratory growth, while Por1S133A caused defects in all growth conditions tested, notably in fermenting media. In conclusion, we found phosphorylation has the potential to modulate Por1, causing a marked effect on mitochondrial function. It can also impact on cell morphology and growth both in respiratory and, unpredictably, also in fermenting conditions, expanding our knowledge on the role of Por1 in cell physiology.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosforilación , Canales Aniónicos Dependientes del Voltaje/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
13.
J Biol Chem ; 300(2): 105632, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199573

RESUMEN

We previously reported that bakuchiol, a phenolic isoprenoid anticancer compound, and its analogs exert anti-influenza activity. However, the proteins targeted by bakuchiol remain unclear. Here, we investigated the chemical structures responsible for the anti-influenza activity of bakuchiol and found that all functional groups and C6 chirality of bakuchiol were required for its anti-influenza activity. Based on these results, we synthesized a molecular probe containing a biotin tag bound to the C1 position of bakuchiol. With this probe, we performed a pulldown assay for Madin-Darby canine kidney cell lysates and purified the specific bakuchiol-binding proteins with SDS-PAGE. Using nanoLC-MS/MS analysis, we identified prohibitin (PHB) 2, voltage-dependent anion channel (VDAC) 1, and VDAC2 as binding proteins of bakuchiol. We confirmed the binding of bakuchiol to PHB1, PHB2, and VDAC2 in vitro using Western blot analysis. Immunofluorescence analysis showed that bakuchiol was bound to PHBs and VDAC2 in cells and colocalized in the mitochondria. The knockdown of PHBs or VDAC2 by transfection with specific siRNAs, along with bakuchiol cotreatment, led to significantly reduced influenza nucleoprotein expression levels and viral titers in the conditioned medium of virus-infected Madin-Darby canine kidney cells, compared to the levels observed with transfection or treatment alone. These findings indicate that reducing PHBs or VDAC2 protein, combined with bakuchiol treatment, additively suppressed the growth of influenza virus. Our findings indicate that bakuchiol exerts anti-influenza activity via a novel mechanism involving these mitochondrial proteins, providing new insight for developing anti-influenza agents.


Asunto(s)
Antivirales , Gripe Humana , Fenoles , Animales , Perros , Humanos , Antivirales/farmacología , Antivirales/química , Proteínas Mitocondriales/metabolismo , Prohibitinas , Espectrometría de Masas en Tándem , Canal Aniónico 1 Dependiente del Voltaje , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Canales Aniónicos Dependientes del Voltaje , Línea Celular
14.
Plant Physiol ; 194(2): 1041-1058, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37772952

RESUMEN

In Arabidopsis (Arabidopsis thaliana), stomatal closure mediated by abscisic acid (ABA) is redundantly controlled by ABA receptor family proteins (PYRABACTIN RESISTANCE 1 [PYR1]/PYR1-LIKE [PYLs]) and subclass III SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASES 2 (SnRK2s). Among these proteins, the roles of PYR1, PYL2, and SnRK2.6 are more dominant. A recent discovery showed that ABA-induced accumulation of reactive oxygen species (ROS) in mitochondria promotes stomatal closure. By analyzing stomatal movements in an array of single and higher order mutants, we revealed that the mitochondrial protein VOLTAGE-DEPENDENT ANION CHANNEL 3 (VDAC3) jointly regulates ABA-mediated stomatal closure with a specialized set of PYLs and SnRK2s by affecting cellular and mitochondrial ROS accumulation. VDAC3 interacted with 9 PYLs and all 3 subclass III SnRK2s. Single mutation in VDAC3, PYLs (except PYR1 and PYL2), or SnRK2.2/2.3 had little effect on ABA-mediated stomatal closure. However, knocking out PYR1, PYL1/2/4/8, or SnRK2.2/2.3 in vdac3 mutants resulted in significantly delayed or attenuated ABA-mediated stomatal closure, despite the presence of other PYLs or SnRK2s conferring redundant functions. We found that cellular and mitochondrial accumulation of ROS induced by ABA was altered in vdac3pyl1 mutants. Moreover, H2O2 treatment restored ABA-induced stomatal closure in mutants with decreased stomatal sensitivity to ABA. Our work reveals that VDAC3 ensures redundant control of ABA-mediated stomatal closure by canonical ABA signaling components.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Estomas de Plantas/metabolismo , Arabidopsis/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Mitocondrias/metabolismo
15.
Plant Physiol Biochem ; 206: 108237, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38109831

RESUMEN

Pathogen severely affects plant mitochondrial processes including respiration, however, the roles and mechanism of mitochondrial protein during the immune response remain largely unexplored. The interplay of plant hormone signaling during defense is an outcome of plant pathogen interaction. We recently discovered that the Arabidopsis calcineurin B-like interacting protein kinase 9 (AtCIPK9) interacts with the voltage-dependent anion channel 3 (AtVDAC3) and inhibits MV-induced oxidative damage. Here we report the characterization of AtVDAC3 in an antagonistic interaction pathway between abscisic acid (ABA) and salicylic acid (SA) signaling in Pseudomonas syringae -Arabidopsis interaction. In this study, we observed that mutants of AtVDAC3 were highly susceptible to Pseudomonas syringae infection as compared to the wild type (WT) Arabidopsis plants. Transcripts of VDAC3 and CIPK9 were inducible upon ABA application. Following pathogen exposure, expression analyses of ABA and SA biosynthesis genes indicated that the function of VDAC3 is required for isochorisimate synthase 1 (ICS1) expression but not for Nine-cis-epoxycaotenoid dioxygenase 3 (NCED3) expression. Despite the fact that vdac3 mutants had increased NCED3 expression in response to pathogen challenge, transcripts of ABA sensitive genes such as AtRD22 and AtRAB18 were downregulated even after exogenous ABA application. VDAC3 is required for ABA responsive genes expression upon exogenous ABA application. We also found that Pseudomonas syringae-induced SA signaling is downregulated in vdac3 mutants since overexpression of VDAC3 resulted in hyperaccumulation of Pathogenesis related gene1 (PR1) transcript. Interestingly, ABA application prior to P. syringae inoculation resulted in the upregulation of ABA responsive genes like Responsive to ABA18 (RAB18) and Responsive to dehydration 22 (RD22). Intriguingly, in the absence of AtVDAC3, Pst challenge can dramatically increase ABA-induced RD22 and RAB18 expression. Altogether our results reveal a novel Pathogen-SA-ABA interaction pathway in plants. Our findings show that ABA plays a significant role in modifying plant-pathogen interactions, owing to cross-talk with the biotic stress signaling pathways of ABA and SA.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Dioxigenasas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Dioxigenasas/genética , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo , Pseudomonas syringae/fisiología , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/metabolismo
16.
J Mol Biol ; 436(4): 168432, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38161000

RESUMEN

Helicobacter pylori colonizes the stomach in about half of the human population, leading to an increased risk of peptic ulcer disease and gastric cancer. H. pylori secretes an 88 kDa VacA toxin that contributes to pathogenesis. VacA assembles into oligomeric complexes in solution and forms anion-selective channels in cell membranes. Cryo-electron microscopy (cryo-EM) analyses of VacA oligomers in solution provided insights into VacA oligomerization but failed to reveal the structure of the hydrophobic N-terminal region predicted to be a pore-forming domain. In this study, we incubated VacA with liposomes and used single particle cryo-EM to analyze detergent-extracted VacA oligomers. A 3D structure of detergent-solubilized VacA hexamers revealed the presence of six α-helices extending from the center of the oligomers, a feature not observed in previous studies of water-soluble VacA oligomers. Cryo-electron tomography analysis and 2D averages of VacA associated with liposomes confirmed that central regions of the membrane-associated VacA oligomers can insert into the lipid bilayer. However, insertion is heterogenous, with some membrane-associated oligomers appearing only partially inserted and others sitting on top of the bilayer. These studies indicate that VacA undergoes a conformational change when contacting the membrane and reveal an α-helical region positioned to extend into the membrane. Although the reported VacA 3D structure does not represent a selective anion channel, our combined single particle 3D analysis, cryo-electron tomography, and modeling allow us to propose a model for the structural organization of the VacA N-terminus in the context of a hexamer as it inserts into the membrane.


Asunto(s)
Proteínas Bacterianas , Helicobacter pylori , Toxinas Biológicas , Canales Aniónicos Dependientes del Voltaje , Humanos , Proteínas Bacterianas/química , Microscopía por Crioelectrón/métodos , Detergentes , Helicobacter pylori/química , Liposomas/química , Toxinas Biológicas/química , Canales Aniónicos Dependientes del Voltaje/química , Multimerización de Proteína
17.
Nat Commun ; 14(1): 8115, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065946

RESUMEN

Mitochondria are double-membrane-bounded organelles that depend critically on phospholipids supplied by the endoplasmic reticulum. These lipids must cross the outer membrane to support mitochondrial function, but how they do this is unclear. We identify the Voltage Dependent Anion Channel (VDAC), an abundant outer membrane protein, as a scramblase-type lipid transporter that catalyzes lipid entry. On reconstitution into membrane vesicles, dimers of human VDAC1 and VDAC2 catalyze rapid transbilayer translocation of phospholipids by a mechanism that is unrelated to their channel activity. Coarse-grained molecular dynamics simulations of VDAC1 reveal that lipid scrambling occurs at a specific dimer interface where polar residues induce large water defects and bilayer thinning. The rate of phospholipid import into yeast mitochondria is an order of magnitude lower in the absence of VDAC homologs, indicating that VDACs provide the main pathway for lipid entry. Thus, VDAC isoforms, members of a superfamily of beta barrel proteins, moonlight as a class of phospholipid scramblases - distinct from alpha-helical scramblase proteins - that act to import lipids into mitochondria.


Asunto(s)
Fosfolípidos , Canal Aniónico 1 Dependiente del Voltaje , Humanos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Fosfolípidos/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo
18.
Redox Biol ; 68: 102959, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977042

RESUMEN

Colorectal cancer (CRC) is a common and deadly disease of the digestive system, but its targeted therapy is hampered by the lack of reliable and specific biomarkers. Hence, discovering new therapeutic targets and agents for CRC is an urgent and challenging task. Here we report that carnitine palmitoyltransferase 1A (CPT1A), a mitochondrial enzyme that catalyzes fatty acid oxidation (FAO), is a potential target for CRC treatment. We show that CPT1A is overexpressed in CRC cells and that its inhibition by a secolignan-type compound, 2,6-dihydroxypeperomin B (DHP-B), isolated from the plant Peperomia dindygulensis, suppresses tumor cell growth and induces apoptosis. We demonstrate that DHP-B covalently binds to Cys96 of CPT1A, blocks FAO, and disrupts the mitochondrial CPT1A-VDAC1 interaction, leading to increased mitochondrial permeability and reduced oxygen consumption and energy metabolism in CRC cells. We also reveal that CPT1A expression correlates with the survival of tumor-bearing animals and that DHP-B exhibits anti-CRC activity in vitro and in vivo. Our study uncovers the molecular mechanism of DHP-B as a novel CPT1A inhibitor and provides a rationale for its preclinical development as well as a new strategy for CRC targeted therapy.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Neoplasias Colorrectales , Animales , Apoptosis , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Oxidación-Reducción , Canales Aniónicos Dependientes del Voltaje/metabolismo
19.
Gene ; 887: 147784, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37689223

RESUMEN

Acrosome is inextricably related to membranous organelles. The origin of acrosome is still controversial, one reason is that limited articles were reported about the proteomic analysis of the acrosome. Mitochondrial proteins were found exist in the acrosome, nevertheless, only limited attention has been paid to the function of mitochondrial proteins in the acrosome formation. Eriocheir sinensis sperm has a large acrosome, which makes it an ideal model to study acrosome formation. Here, we firstly compared the rate of acrosome reaction induced by the calcium ionophore A23187 and ionomycin. The rate of acrosome reaction induced by ionomycin is higher (95.8%) than A23187 (58.7%). Morphological changes were observed using light, confocal and transmission electron microscopy. Further more, proteins released during the acrosome reaction as induced by ionomycin were collected for LC-MS/MS analysis. A total of 945 proteins, including malate dehydrogenase (MDH) and voltage-dependent anion channel 3 (VDAC3), were identified in the acrosomal released proteome. The number of proteins from mitochondria (17.57%) was higher compared with endoplasmic reituculum (1.59%) and lysosomes (1.8%). To investigate the functions of target mitochondrial proteins during spermatogenesis, poly-antibodies of MDH in E. sinensis were prepared. The characteristics, further analyzed using immunofluorescence, of two mitochondrial proteins during acrosome formation showed that MDH and VDAC3 were independently involved in the formation of acrosomal membrane. These findings illustrate the acrosomal released proteome and provide important data resource for understanding the relationship between mitochondria and the acrosome in Decapoda crustacean.


Asunto(s)
Malato Deshidrogenasa , Proteoma , Masculino , Humanos , Acrosoma , Calcimicina , Cromatografía Liquida , Ionomicina , Proteómica , Semen , Espectrometría de Masas en Tándem , Espermatozoides , Espermatogénesis , Mitocondrias , Proteínas Mitocondriales , Canales Aniónicos Dependientes del Voltaje , Lisosomas
20.
J Steroid Biochem Mol Biol ; 234: 106400, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37722462

RESUMEN

Steroidogenesis machinery involves the steroidogenic acute regulatory protein (StAR), which regulates cholesterol transfer within the mitochondria, and the transport of cholesterol via a channel composed of 18-kDa translocator protein (TSPO), the voltage-dependent anion channel (VDAC) plus some accessory proteins. In this study, we investigated the immunolocalizations and expressions of StAR, TSPO, VDAC and cytochrome P450 side chain cleavage enzyme (P450scc, CYP11A1) in the scent glands of muskrats (Ondatra zibethicus) during the breeding and non-breeding periods. StAR, TSPO, VDAC and CYP11A1 were immunolocalized in the scent glandular, interstitial and epithelial cells in both breeding and non-breeding seasons with stronger immunostaining in the breeding season. The mRNA expression levels of StAR, TSPO, VDAC and CYP11A1 were higher in the scent glands of the breeding season than those of the non-breeding season. The circulating follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone (T) as well as scent glandular T and dihydrotestosterone (DHT) concentrations were also significantly higher in the breeding season. Additionally, the transcriptomic study in the scent glands identified that differentially expressed genes might be related to the lipid metabolic process, integral component of membrane, and steroid hormone receptor activity and hormone activity using GO analysis. Further in vitro study verified that StAR, TSPO, VDAC and CYP11A1 expression levels increased significantly after human chorionic gonadotropin, hCG/FSH treatment compared with the control group. The KEGG pathway enriched by differentially expressed genes detected to be involved in endocrine system or amino acid metabolism. These findings suggested that the scent glands of the muskrats have ability to synthesize steroids de novo, and that the steroid hormones may have an important regulatory role in the scent glandular function via an autocrine/paracrine pathway.


Asunto(s)
Arvicolinae , Glándulas Odoríferas , Animales , Humanos , Estaciones del Año , Arvicolinae/metabolismo , Glándulas Odoríferas/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Testosterona/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Colesterol/metabolismo , Hormona Folículo Estimulante/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...