Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 565
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2321228121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857399

RESUMEN

Ciliary defects are linked to ciliopathies, but impairments in the sensory cilia of Caenorhabditis elegans neurons extend lifespan, a phenomenon with previously unclear mechanisms. Our study reveals that neuronal cilia defects trigger the unfolded protein response of the endoplasmic reticulum (UPRER) within intestinal cells, a process dependent on the insulin/insulin-like growth factor 1 (IGF-1) signaling transcription factor and the release of neuronal signaling molecules. While inhibiting UPRER doesn't alter the lifespan of wild-type worms, it normalizes the extended lifespan of ciliary mutants. Notably, deactivating the cyclic nucleotide-gated (CNG) channel TAX-4 on the ciliary membrane promotes lifespan extension through a UPRER-dependent mechanism. Conversely, constitutive activation of TAX-4 attenuates intestinal UPRER in ciliary mutants. Administering a CNG channel blocker to worm larvae activates intestinal UPRER and increases adult longevity. These findings suggest that ciliary dysfunction in sensory neurons triggers intestinal UPRER, contributing to lifespan extension and implying that transiently inhibiting ciliary channel activity may effectively prolong lifespan.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cilios , Longevidad , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/metabolismo , Cilios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Intestinos/citología , Transducción de Señal , Neuronas/metabolismo , Retículo Endoplásmico/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mucosa Intestinal/metabolismo
2.
Ophthalmic Res ; 67(1): 301-310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705136

RESUMEN

INTRODUCTION: Retinitis pigmentosa (RP), a heterogeneous inherited retinal disorder causing gradual vision loss, affects over 1 million people worldwide. Pathogenic variants in CNGA1 and CNGB1 genes, respectively, accounting for 1% and 4% of cases, impact the cyclic nucleotide-gated channel in rod photoreceptor cells. The aim of this study was to describe and compare genotypic and clinical characteristics of a cohort of patients with CNGA1- or CNGB1-related RP and to explore potential genotype-phenotype correlations. METHODS: The following data from patients with CNGA1- or CNGB1-related RP, followed in five Italian inherited retinal degenerations services, were retrospectively collected: genetic variants in CNGA1 and CNGB1, best-corrected visual acuity (BCVA), ellipsoid zone (EZ) width, fundus photographs, and short-wavelength fundus autofluorescence (SW-AF) images. Comparisons and correlation analyses were performed by first dividing the cohort in two groups according to the gene responsible for the disease (CNGA1 and CNGB1 groups). In parallel, the whole cohort of RP patients was divided into two other groups, according to the expected impact of the variants at protein level (low and high group). RESULTS: In total, 29 patients were recruited, 11 with CNGA1- and 18 with CNGB1-related RP. In both CNGA1 and CNGB1, 5 novel variants in CNGA1 and 5 in CNGB1 were found. BCVA was comparable between CNGA1 and CNGB1 groups, as well as between low and high groups. CNGA1 group had a larger mean EZ width compared to CNGB1 group, albeit not statistically significant, while EZ width did not differ between low and high groups A statistically significant correlation between EZ width and BCVA as well as between EZ width and age were observed in the whole cohort of RP patients. Fundus photographs of all patients in the cohort showed classic RP pattern, and in SW-AF images an hyperautofluorescent ring was observed in 14/21 patients. CONCLUSION: Rod CNG channel-associated RP was demonstrated to be a slowly progressive disease in both CNGA1- and CNGB1-related forms, making it an ideal candidate for gene augmentation therapies.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos , Genotipo , Fenotipo , Retinitis Pigmentosa , Agudeza Visual , Humanos , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/fisiopatología , Masculino , Femenino , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Estudios Retrospectivos , Persona de Mediana Edad , Adulto , Adulto Joven , Adolescente , Electrorretinografía , Tomografía de Coherencia Óptica/métodos , Anciano , Mutación , Niño , Células Fotorreceptoras Retinianas Bastones/metabolismo , Angiografía con Fluoresceína/métodos , Estudios de Asociación Genética , Análisis Mutacional de ADN , Linaje , ADN/genética
3.
Plant Sci ; 345: 112111, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38734143

RESUMEN

Cyclic Nucleotide-Gated Channels (CNGCs) serve as Ca2+ permeable cation transport pathways, which are involved in the regulation of various biological functions such as plant cell ion selective permeability, growth and development, responses to biotic and abiotic stresses. At the present study, a total of 31 CNGC genes were identified and bioinformatically analyzed in kenaf. Among these genes, HcCNGC21 characterized to localize at the plasma membrane, with the highest expression levels in leaves, followed by roots. In addition, HcCNGC21 could be significantly induced under salt or drought stress. Virus-induced gene silencing (VIGS) of HcCNGC21 in kenaf caused notable growth inhibition under salt or drought stress, characterized by reductions in plant height, stem diameter, leaf area, root length, root surface area, and root tip number. Meanwhile, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly decreased, accompanied by reduced levels of osmoregulatory substances and total chlorophyll content. However, ROS accumulation and Na+ content increased. The expression of stress-responsive genes, such as HcSOD, HcPOD, HcCAT, HcERF3, HcNAC29, HcP5CS, HcLTP, and HcNCED, was significantly downregulated in these silenced lines. However, under salt or drought stress, the physiological performance and expression of stress-related genes in transgenic Arabidopsis thaliana plants overexpressing HcCNGC21 were diametrically opposite to those of TRV2-HcCNGC21 kenaf line. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that HcCNGC21 interacts with HcAnnexin D1. These findings collectively underscore the positive role of HcCNGC21 in plant resistance to salt and drought stress.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Hibiscus , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hibiscus/genética , Hibiscus/fisiología , Hibiscus/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Estrés Salino/genética , Estrés Fisiológico/genética
4.
Plant Physiol Biochem ; 210: 108593, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615446

RESUMEN

Cyclic nucleotide-gated ion channels (CNGCs), as non-selective cation channels, play essential roles in plant growth and stress responses. However, they have not been identified in Qingke (Hordeum vulgare L.). Here, we performed a comprehensive genome-wide identification and function analysis of the HvCNGC gene family to determine its role in drought tolerance. Phylogenetic analysis showed that 27 HvCNGC genes were divided into four groups and unevenly located on seven chromosomes. Transcription analysis revealed that two closely related members of HvCNGC3 and HvCNGC16 were highly induced and the expression of both genes were distinctly different in two extremely drought-tolerant materials. Transient expression revealed that the HvCNGC3 and HvCNGC16 proteins both localized to the plasma membrane and karyotheca. Overexpression of HvCNGC3 and HvCNGC16 in Arabidopsis thaliana led to impaired seed germination and seedling drought tolerance, which was accompanied by higher hydrogen peroxide (H2O2), malondialdehyde (MDA), proline accumulation and increased cell damage. In addition, HvCNGC3 and HvCNGC16-overexpression lines reduced ABA sensitivity, as well as lower expression levels of some ABA biosynthesis and stress-related gene in transgenic lines. Furthermore, Yeast two hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that HvCNGC3 and HvCNGC16 interacted with calmodulin/calmodulin-like proteins (CaM/CML), which, as calcium sensors, participate in the perception and decoding of intracellular calcium signaling. Thus, this study provides information on the CNGC gene family and provides insight into the function and potential regulatory mechanism of HvCNGC3 and HvCNGC16 in drought tolerance in Qingke.


Asunto(s)
Arabidopsis , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Sequías , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Ácido Abscísico/metabolismo , Filogenia , Resistencia a la Sequía
5.
Plant Cell ; 36(6): 2328-2358, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38442317

RESUMEN

Multiple cyclic nucleotide-gated channels (CNGCs) are abscisic acid (ABA)-activated Ca2+ channels in Arabidopsis (Arabidopsis thaliana) guard cells. In particular, CNGC5, CNGC6, CNGC9, and CNGC12 are essential for ABA-specific cytosolic Ca2+ signaling and stomatal movements. However, the mechanisms underlying ABA-mediated regulation of CNGCs and Ca2+ signaling are still unknown. In this study, we identified the Ca2+-independent protein kinase OPEN STOMATA 1 (OST1) as a CNGC activator in Arabidopsis. OST1-targeted phosphorylation sites were identified in CNGC5, CNGC6, CNGC9, and CNGC12. These CNGCs were strongly inhibited by Ser-to-Ala mutations and fully activated by Ser-to-Asp mutations at the OST1-targeted sites. The overexpression of individual inactive CNGCs (iCNGCs) under the UBIQUITIN10 promoter in wild-type Arabidopsis conferred a strong dominant-negative-like ABA-insensitive stomatal closure phenotype. In contrast, expressing active CNGCs (aCNGCs) under their respective native promoters in the cngc5-1 cngc6-2 cngc9-1 cngc12-1 quadruple mutant fully restored ABA-activated cytosolic Ca2+ oscillations and Ca2+ currents in guard cells, and rescued the ABA-insensitive stomatal movement mutant phenotypes. Thus, we uncovered that ABA elicits cytosolic Ca2+ signaling via an OST1-CNGC module, in which OST1 functions as a convergence point of the Ca2+-dependent and -independent pathways in Arabidopsis guard cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Señalización del Calcio , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Estomas de Plantas , Proteínas Quinasas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Mutación , Fosforilación , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Estomas de Plantas/metabolismo , Estomas de Plantas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética
6.
Plant Physiol Biochem ; 208: 108522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38493663

RESUMEN

In staple crops, such as rice (Oryza sativa L.), pollen plays a crucial role in seed production. However, the molecular mechanisms underlying rice pollen germination and tube growth remain underexplored. Notably, we recently uncovered the redundant expression and mutual interaction of two rice genes encoding cyclic nucleotide-gated channels (CNGCs), OsCNGC4 and OsCNGC5, in mature pollen. Building on these findings, the current study focused on clarifying the functional roles of these two genes in pollen germination and tube growth. To overcome functional redundancy, we produced gene-edited rice plants with mutations in both genes using the CRISPR-Cas9 system. The resulting homozygous OsCNGC4 and OsCNGC5 gene-edited mutants (oscngc4/5) exhibited significantly lower pollen germination rates than the wild type (WT), along with severely reduced fertility. Transcriptome analysis of the double oscngc4/5 mutant revealed downregulation of genes related to receptor kinases, transporters, and cell wall metabolism. To identify the direct regulators of OsCNGC4, which form a heterodimer with OsCNGC5, we screened a yeast two-hybrid library containing rice cDNAs from mature anthers. Subsequently, we identified two calmodulin isoforms (CaM1-1 and CaM1-2), NETWORKED 2 A (NET2A), and proline-rich extension-like receptor kinase 13 (PERK13) proteins as interactors of OsCNGC4, suggesting its roles in regulating Ca2+ channel activity and F-actin organization. Overall, our results suggest that OsCNGC4 and OsCNGC5 may play critical roles in pollen germination and elongation by regulating the Ca2+ gradient in growing pollen tubes.


Asunto(s)
Oryza , Oryza/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Germinación/genética , Polen/metabolismo , Tubo Polínico/genética , Calmodulina/genética , Calmodulina/metabolismo , Fosfotransferasas , Nucleótidos Cíclicos/metabolismo
7.
Stem Cell Res ; 76: 103334, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340451

RESUMEN

Retinitis pigmentosa (RP) is the most common inherited retinal diseases, characterized by photoreceptor cell death and retinal pigment epithelial atrophy. Mutations in cyclic nucleotide gated channel subunit alpha 1 (CNGA1) have been reported to cause retinitis pigmentosa. Here, we established the human induced pluripotent stem cell line (iPSC) SJTUGHi002-A, generated from peripheral blood mononuclear cells of a 36-year-old male RP patient, who carried a homozygous frameshift variant in CNGA1 gene (c.265delC; p.L89Ffs*4). The cell line can serve as a patient-derived disease model for exploring the pathogenesis and drug development of CNGA1-RP.


Asunto(s)
Células Madre Pluripotentes Inducidas , Retinitis Pigmentosa , Adulto , Humanos , Masculino , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Mutación , Retinitis Pigmentosa/patología
8.
Neuroreport ; 35(5): 328-336, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38407897

RESUMEN

Traumatic brain injury (TBI) refers to brain dysfunction with or without traumatic structural injury induced by an external force. Nevertheless, the molecular mechanism of TBI remains undefined. Differentially expressed (DE) lncRNAs, DEmRNAs and DEmiRNAs were selected between human TBI tissues and the adjacent histologically normal tissue by high-throughput sequencing. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis of overlapping DEmRNAs between predicted mRNAs of DEmiRNAs and DEmRNAs. The competitive endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA was established in light of the ceRNA theory. In the ceRNA network, the key lncRNAs were screened out. Then key lncRNAs related ceRNA subnetwork was constructed. After that, qRT-PCR was applied to validate the expression levels of hub genes. 114 DElncRNAs, 1807 DEmRNAs and 6 DEmiRNAs were DE in TBI. The TBI-related ceRNA network was built with 73 lncRNA nodes, 81 mRNA nodes and 6 miRNAs. According to topological analysis, two hub lncRNAs (ENST00000562897 and ENST00000640877) were selected to construct the ceRNA subnetwork. Subsequently, key lncRNA-miRNA-mRNA regulatory axes constructed by two lncRNAs including ENST00000562897 and ENST00000640877, two miRNAs including miR-6721-5p and miR-129-1-3p, two mRNAs including ketohexokinase (KHK) and cyclic nucleotide-gated channel beta1 (CNGB1), were identified. Furthermore, qRT-PCR results displayed that the expression of ENST00000562897, KHK and CNGB1 were significantly decreased in TBI, while the miR-6721-5p expression levels were markedly increased in TBI. The results of our study reveal a new insight into understanding the ceRNA regulation mechanism in TBI and select key lncRNA-miRNA-mRNA axes for prevention and treatment of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Redes Reguladoras de Genes , Regulación Neoplásica de la Expresión Génica , Lesiones Traumáticas del Encéfalo/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo
9.
Nat Commun ; 15(1): 843, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287019

RESUMEN

Binding of cAMP to Hyperpolarization activated cyclic nucleotide gated (HCN) channels facilitates pore opening. It is unclear why the isolated cyclic nucleotide binding domain (CNBD) displays in vitro lower affinity for cAMP than the full-length channel in patch experiments. Here we show that HCN are endowed with an affinity switch for cAMP. Alpha helices D and E, downstream of the cyclic nucleotide binding domain (CNBD), bind to and stabilize the holo CNBD in a high affinity state. These helices increase by 30-fold cAMP efficacy and affinity measured in patch clamp and ITC, respectively. We further show that helices D and E regulate affinity by interacting with helix C of the CNBD, similarly to the regulatory protein TRIP8b. Our results uncover an intramolecular mechanism whereby changes in binding affinity, rather than changes in cAMP concentration, can modulate HCN channels, adding another layer to the complex regulation of their activity.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico/fisiología , Conformación Proteica en Hélice alfa , Nucleótidos Cíclicos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo
10.
New Phytol ; 242(3): 1043-1054, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38184789

RESUMEN

The timing of vegetative phase change (VPC) in plants is regulated by a temporal decline in the expression of miR156. Both exogenous cues and endogenous factors, such as temperature, light, sugar, nutrients, and epigenetic regulators, have been shown to affect VPC by altering miR156 expression. However, the genetic basis of natural variation in VPC remains largely unexplored. Here, we conducted a genome-wide association study on the variation of the timing of VPC in Arabidopsis. We identified CYCLIC NUCLEOTIDE-GATED ION CHANNEL 4 (CNGC4) as a significant locus associated with the diversity of VPC. Mutations in CNGC4 delayed VPC, accompanied by an increased expression level of miR156 and a corresponding decrease in SQUAMOSA PROMOTER BINDING-LIKE (SPL) gene expression. Furthermore, mutations in CNGC2 and CATION EXCHANGER 1/3 (CAX1/3) also led to a delay in VPC. Polymorphisms in the CNGC4 promoter contribute to the natural variation in CNGC4 expression and the diversity of VPC. Specifically, the early CNGC4 variant promotes VPC and enhances plant adaptation to local environments. In summary, our findings offer genetic insights into the natural variation in VPC in Arabidopsis, and reveal a previously unidentified role of calcium signaling in the regulation of VPC.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Señalización del Calcio , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , MicroARNs/genética , MicroARNs/metabolismo , Nucleótidos Cíclicos/metabolismo
11.
Ophthalmic Genet ; 45(1): 84-94, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37158316

RESUMEN

BACKGROUND: Ectrodactyly is a rare congenital limb malformation characterized by a deep median cleft of the hand and/or foot due to the absence of central rays. It could be isolated or depicts a part of diverse syndromic forms. Heterozygous pathogenic variants in the TP63 gene are responsible for at least four rare syndromic human disorders associated with ectrodactyly. Among them, ADULT (Acro-Dermato-Ungual-Lacrimal-Tooth) syndrome is characterized by ectodermal dysplasia, excessive freckling, nail dysplasia, and lacrimal duct obstruction, in addition to ectrodactyly and/or syndactyly. Ophthalmic findings are very common in TP63-related disorders, consisting mainly of lacrimal duct hypoplasia. Absent meibomian glands have also been well documented in EEC3 (Ectrodactyly Ectodermal dysplasia Cleft lip/palate) syndrome but not in ADULT syndrome. METHODS: We report a case of syndromic ectrodactyly consistent with ADULT syndrome, with an additional ophthalmic manifestation of agenesis of meibomian glands. The proband, as well as her elder sister, presented with congenital cone dystrophy.The molecular investigation was performed in the proband using Whole Exome Sequencing. Family segregation of the identified variants was confirmed by Sanger sequencing. RESULTS: Two clinically relevant variants were found in the proband: the novel de novo heterozygous missense c.931A > G (p.Ser311Gly) in the TP63 gene classified as pathogenic, and the homozygous nonsense pathogenic c.1810C > T (p.Arg604Ter) in the CNGB3 gene. The same homozygous CNGB3 variation was also found in the sister, explaining the cone dystrophy in both cases. CONCLUSIONS: Whole Exome Sequencing allowed dual molecular diagnoses: de novo TP63-related syndromic ectrodactyly and familial CNGB3-related congenital cone dystrophy.


Asunto(s)
Anodoncia , Mama , Labio Leporino , Fisura del Paladar , Distrofia del Cono , Displasia Ectodérmica , Obstrucción del Conducto Lagrimal , Deformidades Congénitas de las Extremidades , Uñas Malformadas , Trastornos de la Pigmentación , Adulto , Femenino , Humanos , Mama/anomalías , Labio Leporino/diagnóstico , Labio Leporino/genética , Fisura del Paladar/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Secuenciación del Exoma , Glándulas Tarsales , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
12.
Clin Genet ; 105(4): 376-385, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38148624

RESUMEN

An estimated 1 in 10 000 people are born without the ability to smell, a condition known as congenital anosmia, and about one third of those people have non-syndromic, or isolated congenital anosmia (ICA). Despite the significant impact of olfaction for our quality of life, the underlying causes of ICA remain largely unknown. Using whole exome sequencing (WES) in 10 families and 141 individuals with ICA, we identified a candidate list of 162 rare, segregating, deleterious variants in 158 genes. We confirmed the involvement of CNGA2, a previously implicated ICA gene that is an essential component of the olfactory transduction pathway. Furthermore, we found a loss-of-function variant in SREK1IP1 from the family gene candidate list, which was also observed in 5% of individuals in an additional non-family cohort with ICA. Although SREK1IP1 has not been previously associated with olfaction, its role in zinc ion binding suggests a potential influence on olfactory signaling. This study provides a more comprehensive understanding of the spectrum of genetic alterations and their etiology in ICA patients, which may improve the diagnosis, prognosis, and treatment of this disorder and lead to better understanding of the mechanisms governing basic olfactory function.


Asunto(s)
Trastornos del Olfato , Trastornos del Olfato/congénito , Calidad de Vida , Humanos , Trastornos del Olfato/genética , Trastornos del Olfato/diagnóstico , Mutación , Transducción de Señal , Olfato/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética
13.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958665

RESUMEN

Chronic heart diseases, such as coronary heart disease, heart failure, secondary arterial hypertension, and dilated and hypertrophic cardiomyopathies, are widespread and have a fairly high incidence of mortality and disability. Most of these diseases are characterized by cardiac arrhythmias, conduction, and contractility disorders. Additionally, interruption of the electrical activity of the heart, the appearance of extensive ectopic foci, and heart failure are all symptoms of a number of severe hereditary diseases. The molecular mechanisms leading to the development of heart diseases are associated with impaired permeability and excitability of cell membranes and are mainly caused by the dysfunction of cardiac Ca2+ channels. Over the past 50 years, more than 100 varieties of ion channels have been found in the cardiovascular cells. The relationship between the activity of these channels and cardiac pathology, as well as the general cellular biological function, has been intensively studied on several cell types and experimental animal models in vivo and in situ. In this review, I discuss the origin of genetic Ca2+ channelopathies of L- and T-type voltage-gated calcium channels in humans and the role of the non-genetic dysfunctions of Ca2+ channels of various types: L-, R-, and T-type voltage-gated calcium channels, RyR2, including Ca2+ permeable nonselective cation hyperpolarization-activated cyclic nucleotide-gated (HCN), and transient receptor potential (TRP) channels, in the development of cardiac pathology in humans, as well as various aspects of promising experimental studies of the dysfunctions of these channels performed on animal models or in vitro.


Asunto(s)
Insuficiencia Cardíaca , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Animales , Humanos , Arritmias Cardíacas/genética , Modelos Animales , Canales de Calcio/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética
14.
Proc Natl Acad Sci U S A ; 120(49): e2305135120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38032931

RESUMEN

In a family with inappropriate sinus tachycardia (IST), we identified a mutation (p.V240M) of the hyperpolarization-activated cyclic nucleotide-gated type 4 (HCN4) channel, which contributes to the pacemaker current (If) in human sinoatrial node cells. Here, we clinically study fifteen family members and functionally analyze the p.V240M variant. Macroscopic (IHCN4) and single-channel currents were recorded using patch-clamp in cells expressing human native (WT) and/or p.V240M HCN4 channels. All p.V240M mutation carriers exhibited IST that was accompanied by cardiomyopathy in adults. IHCN4 generated by p.V240M channels either alone or in combination with WT was significantly greater than that generated by WT channels alone. The variant, which lies in the N-terminal HCN domain, increased the single-channel conductance and opening frequency and probability of HCN4 channels. Conversely, it did not modify the channel sensitivity for cAMP and ivabradine or the level of expression at the membrane. Treatment with ivabradine based on functional data reversed the IST and the cardiomyopathy of the carriers. In computer simulations, the p.V240M gain-of-function variant increases If and beating rate and thus explains the IST of the carriers. The results demonstrate the importance of the unique HCN domain in HCN4, which stabilizes the channels in the closed state.


Asunto(s)
Cardiomiopatías , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Adulto , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Taquicardia Sinusal , Canales de Potasio/genética , Ivabradina/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Mutación con Ganancia de Función , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Nodo Sinoatrial , Cardiomiopatías/genética
15.
Nat Commun ; 14(1): 6595, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852983

RESUMEN

Ion channels function within a membrane environment characterized by dynamic lipid compartmentalization. Limited knowledge exists regarding the response of voltage-gated ion channels to transmembrane potential within distinct membrane compartments. By leveraging fluorescence lifetime imaging microscopy (FLIM) and Förster resonance energy transfer (FRET), we visualized the localization of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in membrane domains. HCN4 exhibits a greater propensity for incorporation into ordered lipid domains compared to HCN1. To investigate the conformational changes of the S4 helix voltage sensor of HCN channels, we used dual stop-codon suppression to incorporate different noncanonical amino acids, orthogonal click chemistry for site-specific fluorescence labeling, and transition metal FLIM-FRET. Remarkably, altered FRET levels were observed between VSD sites within HCN channels upon disruption of membrane domains. We propose that the voltage-sensor rearrangements, directly influenced by membrane lipid domains, can explain the heightened activity of pacemaker HCN channels when localized in cholesterol-poor, disordered lipid domains, leading to membrane hyperexcitability and diseases.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Lípidos de la Membrana , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo
16.
Channels (Austin) ; 17(1): 2273165, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37905307

RESUMEN

Recent years have seen an outpouring of atomic or near atomic resolution structures of cyclic nucleotide-gated (CNG) channels, captured in closed, transition, pre-open, partially open, and fully open states. These structures provide unprecedented molecular insights into the activation, assembly, architecture, regulation, and channelopathy of CNG channels, as well as mechanistic explanations for CNG channel biophysical and pharmacological properties. This article summarizes recent advances in CNG channel structural biology, describes key structural features and elements, and illuminates a detailed conformational landscape of activation by cyclic nucleotides. The review also correlates structures with findings and properties delineated in functional studies, including nonselective monovalent cation selectivity, Ca2+ permeation and block, block by L-cis-diltiazem, location of the activation gate, lack of voltage-dependent gating, and modulation by lipids and calmodulin. A perspective on future research is also offered.


Asunto(s)
Canalopatías , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Humanos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canalopatías/genética , Nucleótidos Cíclicos , Calmodulina , GMP Cíclico
17.
Invest Ophthalmol Vis Sci ; 64(13): 23, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37847226

RESUMEN

Purpose: Achromatopsia is a rare inherited disorder rendering retinal cone photoreceptors nonfunctional. As a consequence, the sizable foveal representation in the visual cortex is congenitally deprived of visual input, which prompts a fundamental question: is the cortical representation of the central visual field in patients with achromatopsia remapped to take up processing of paracentral inputs? Such remapping might interfere with gene therapeutic treatments aimed at restoring cone function. Methods: We conducted a multicenter study to explore the nature and plasticity of vision in the absence of functional cones in a cohort of 17 individuals affected by autosomal recessive achromatopsia and confirmed biallelic disease-causing CNGA3 or CNGB3 mutations. Specifically, we tested the hypothesis of foveal remapping in human achromatopsia. For this purpose, we applied two independent functional magnetic resonance imaging (fMRI)-based mapping approaches, i.e. conventional phase-encoded eccentricity and population receptive field mapping, to separate data sets. Results: Both fMRI approaches produced the same result in the group comparison of achromatopsia versus healthy controls: sizable remapping of the representation of the central visual field in the primary visual cortex was not apparent. Conclusions: Remapping of the cortical representation of the central visual field is not a general feature in achromatopsia. It is concluded that plasticity of the human primary visual cortex is less pronounced than previously assumed. A pretherapeutic imaging workup is proposed to optimize interventions.


Asunto(s)
Defectos de la Visión Cromática , Corteza Visual , Humanos , Células Fotorreceptoras Retinianas Conos/patología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Mutación
18.
Genet Med ; 25(12): 100979, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37689994

RESUMEN

PURPOSE: CNGA3 encoding the main subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors is one of the major disease-associated genes for achromatopsia. Most CNGA3 variants are missense variants with the majority being functionally uncharacterized and therefore hampering genetic diagnosis. In light of potential gene therapy, objective variant pathogenicity assessment is essential. METHODS: We established a medium-throughput aequorin-based luminescence bioassay allowing mutant CNGA3 channel function assessment via quantification of CNGA3 channel-mediated calcium influx in a cell culture system, thereby enabling American College of Medical Genetics and Genomics/Association for Molecular Pathology-based variant re-classification. RESULTS: We provide functional read-out obtained for 150 yet uncharacterized CNGA3 missense substitutions of which 55 were previously categorized as variants of uncertain significance (VUS) identifying 25 as functionally normal and 125 as functionally abnormal. These data enabled the American College of Medical Genetics and Genomics/ Association for Molecular Pathology-based variant re-classification of 52/55 VUS as either benign, likely benign, or likely pathogenic reaching a VUS re-classification rate of 94.5%. CONCLUSION: Our aequorin-based bioassay allows functionally ensured clinical variant interpretation for 150 CNGA3 missense variants enabling and supporting VUS re-classification and assuring molecular diagnosis to patients affected by CNGA3-associated achromatopsia, hereby identifying patients eligible for future gene therapy trials on this disease.


Asunto(s)
Defectos de la Visión Cromática , Humanos , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/genética , Defectos de la Visión Cromática/patología , Aequorina/genética , Células Fotorreceptoras Retinianas Conos/patología , Mutación Missense/genética , Genómica , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética
19.
Cell Rep ; 42(10): 113157, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37733590

RESUMEN

Sex differences in hepatocellular carcinoma (HCC) development are regulated by sex and non-sex chromosomes, sex hormones, and environmental factors. We previously reported that Ncoa5+/- mice develop HCC in a male-biased manner. Here we show that NCOA5 expression is reduced in male patient HCCs while the expression of an NCOA5-interacting tumor suppressor, TIP30, is lower in female HCCs. Tip30 heterozygous deletion does not change HCC incidence in Ncoa5+/- male mice but dramatically increases HCC incidence in Ncoa5+/- female mice, accompanied by hepatic hyperpolarization-activated cyclic nucleotide-gated cation channel 3 (HCN3) overexpression. HCN3 overexpression cooperates with MYC to promote mouse HCC development, whereas Hcn3 knockout preferentially hinders HCC development in female mice. Furthermore, HCN3 amplification and overexpression occur in human HCCs and correlate with a poorer prognosis of patients in a female-biased manner. Our results suggest that TIP30 and NCOA5 protect against female liver oncogenesis and that HCN3 is a female-biased HCC driver.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Femenino , Humanos , Masculino , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Coactivadores de Receptor Nuclear/genética , Factores de Transcripción/metabolismo
20.
Adv Exp Med Biol ; 1415: 353-358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440056

RESUMEN

The cone photoreceptor cyclic nucleotide-gated (CNG) channel plays a pivotal role in cone phototransduction. Mutations in genes encoding the channel subunits CNGA3 and CNGB3 account for about 80% of all cases of achromatopsia and are associated with progressive cone dystrophies. CNG channel deficiency leads to cellular/endoplasmic reticulum (ER) calcium dysregulation and ER stress-associated cone apoptosis. This work investigated the role of the ER calcium channel ryanodine receptor 1 (Ryr1) in ER stress and cone degeneration in CNG channel deficiency. The AAV-mediated CRISPR/SaCas9 genome editing was used to knock down Ryr1 specifically in cones. CNG channel-deficient mice displayed improved cone survival after subretinal injection of AAV2-SaCas9/gRNA-Ryr1, manifested as increased expression levels of cone proteins M-opsin, S-opsin, and cone arrestin. Knockdown of Ryr1 also led to reduced ER stress and increased expression levels of the ER-associated degradation proteins. This work demonstrates a role of Ryr1 in ER stress and cone degeneration in CNG channel deficiency, and supports strategies targeting ER calcium regulation for cone preservation.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos , Canal Liberador de Calcio Receptor de Rianodina , Animales , Ratones , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Proteolisis , Células Fotorreceptoras Retinianas Conos/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Opsinas/genética , Nucleótidos Cíclicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...