Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
J Mol Biol ; 435(17): 168192, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37394032

RESUMEN

CorA, the primary magnesium ion channel in prokaryotes and archaea, is a prototypical homopentameric ion channel that undergoes ion-dependent conformational transitions. CorA adopts five-fold symmetric non-conductive states in the presence of high concentrations of Mg2+, and highly asymmetric flexible states in its complete absence. However, the latter were of insufficient resolution to be thoroughly characterized. In order to gain additional insights into the relationship between asymmetry and channel activation, we exploited phage display selection strategies to generate conformation-specific synthetic antibodies (sABs) against CorA in the absence of Mg2+. Two sABs from these selections, C12 and C18, showed different degrees of Mg2+-sensitivity. Through structural, biochemical, and biophysical characterization, we found the sABs are both conformation-specific but probe different features of the channel under open-like conditions. C18 is highly specific to the Mg2+-depleted state of CorA and through negative-stain electron microscopy (ns-EM), we show sAB binding reflects the asymmetric arrangement of CorA protomers in Mg2+-depleted conditions. We used X-ray crystallography to determine a structure at 2.0 Å resolution of sAB C12 bound to the soluble N-terminal regulatory domain of CorA. The structure shows C12 is a competitive inhibitor of regulatory magnesium binding through its interaction with the divalent cation sensing site. We subsequently exploited this relationship to capture and visualize asymmetric CorA states in different [Mg2+] using ns-EM. We additionally utilized these sABs to provide insights into the energy landscape that governs the ion-dependent conformational transitions of CorA.


Asunto(s)
Anticuerpos , Proteínas Bacterianas , Proteínas de Transporte de Catión , Canales Iónicos , Magnesio , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Canales Iónicos/química , Canales Iónicos/inmunología , Magnesio/química , Magnesio/metabolismo , Conformación Proteica , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/inmunología , Anticuerpos/química
2.
Nat Commun ; 13(1): 105, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013224

RESUMEN

Zika virus (ZIKV) infection can be associated with neurological pathologies, such as microcephaly in newborns and Guillain-Barre syndrome in adults. Effective therapeutics are currently not available. As such, a comprehensive understanding of virus-host interactions may guide the development of medications for ZIKV. Here we report a human genome-wide overexpression screen to identify host factors that regulate ZIKV infection and find TMEM120A as a ZIKV restriction factor. TMEM120A overexpression significantly inhibits ZIKV replication, while TMEM120A knockdown increases ZIKV infection in cell lines. Moreover, Tmem120a knockout in mice facilitates ZIKV infection in primary mouse embryonic fibroblasts (MEF) cells. Mechanistically, the antiviral activity of TMEM120A is dependent on STING, as TMEM120A interacts with STING, promotes the translocation of STING from the endoplasmic reticulum (ER) to ER-Golgi intermediate compartment (ERGIC) and enhances the phosphorylation of downstream TBK1 and IRF3, resulting in the expression of multiple antiviral cytokines and interferon-stimulated genes. In summary, our gain-of-function screening identifies TMEM120A as a key activator of the antiviral signaling of STING.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Canales Iónicos/genética , Proteínas de la Membrana/genética , Infección por el Virus Zika/genética , Virus Zika/genética , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Línea Celular Tumoral , Retículo Endoplásmico/genética , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/virología , Femenino , Regulación de la Expresión Génica , Aparato de Golgi/genética , Aparato de Golgi/inmunología , Aparato de Golgi/virología , Hepatocitos/inmunología , Hepatocitos/virología , Interacciones Huésped-Patógeno/inmunología , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Interferón beta/genética , Interferón beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Canales Iónicos/deficiencia , Canales Iónicos/inmunología , Proteínas de la Membrana/inmunología , Ratones , Ratones Noqueados , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Transducción de Señal , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Virus Zika/crecimiento & desarrollo , Virus Zika/patogenicidad , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
3.
Front Immunol ; 12: 767319, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795674

RESUMEN

The importance of innate immune cells to sense and respond to their physical environment is becoming increasingly recognized. Innate immune cells (e.g. macrophages and neutrophils) are able to receive mechanical signals through several mechanisms. In this review, we discuss the role of mechanosensitive ion channels, such as Piezo1 and transient receptor potential vanilloid 4 (TRPV4), and cell adhesion molecules, such as integrins, selectins, and cadherins in biology and human disease. Furthermore, we explain that these mechanical stimuli activate intracellular signaling pathways, such as MAPK (p38, JNK), YAP/TAZ, EDN1, NF-kB, and HIF-1α, to induce protein conformation changes and modulate gene expression to drive cellular function. Understanding the mechanisms by which immune cells interpret mechanosensitive information presents potential targets to treat human disease. Important areas of future study in this area include autoimmune, allergic, infectious, and malignant conditions.


Asunto(s)
Inmunidad Innata/inmunología , Macrófagos/inmunología , Mecanotransducción Celular/inmunología , Neutrófilos/inmunología , Transducción de Señal/inmunología , Animales , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Canales Iónicos/inmunología , Canales Iónicos/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Canales Catiónicos TRPV/inmunología , Canales Catiónicos TRPV/metabolismo
4.
Front Immunol ; 12: 689397, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630381

RESUMEN

Macrophages are versatile cells of the innate immune system that perform diverse functions by responding to dynamic changes in their microenvironment. While the effects of soluble cues, including cytokines and chemokines, have been widely studied, the effects of physical cues, including mechanical stimuli, in regulating macrophage form and function are less well understood. In this study, we examined the effects of static and cyclic uniaxial stretch on macrophage inflammatory and healing activation. We found that cyclic stretch altered macrophage morphology and responses to IFNγ/LPS and IL4/IL13. Interestingly, we found that both static and cyclic stretch suppressed IFNγ/LPS induced inflammation. In contrast, IL4/IL13 mediated healing responses were suppressed with cyclic but enhanced with static stretch conditions. Mechanistically, both static and cyclic stretch increased expression of the integrin CD11b (αM integrin), decreased expression of the mechanosensitive ion channel Piezo1, and knock down of either CD11b or Piezo1 through siRNA abrogated stretch-mediated changes in inflammatory responses. Moreover, we found that knock down of CD11b enhanced the expression of Piezo1, and conversely knock down of Piezo1 enhanced CD11b expression, suggesting the potential for crosstalk between integrins and ion channels. Finally, stretch-mediated differences in macrophage activation were also dependent on actin, since pharmacological inhibition of actin polymerization abrogated the changes in activation with stretch. Together, this study demonstrates that the physical environment synergizes with biochemical cues to regulate macrophage morphology and function, and suggests a role for CD11b and Piezo1 crosstalk in mechanotransduction in macrophages.


Asunto(s)
Antígeno CD11b/inmunología , Canales Iónicos/inmunología , Macrófagos/inmunología , Mecanotransducción Celular , Animales , Supervivencia Celular , Células Cultivadas , Femenino , Activación de Macrófagos , Ratones Endogámicos C57BL , Ratones Transgénicos
5.
J Immunol ; 207(2): 421-435, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34233909

RESUMEN

Intracellular ion fluxes emerge as critical actors of immunoregulation but still remain poorly explored. In this study, we investigated the role of the redundant cation channels TMEM176A and TMEM176B (TMEM176A/B) in retinoic acid-related orphan receptor γt+ cells and conventional dendritic cells (DCs) using germline and conditional double knockout mice. Although Tmem176a/b appeared surprisingly dispensable for the protective function of Th17 and group 3 innate lymphoid cells in the intestinal mucosa, we found that they were required in conventional DCs for optimal Ag processing and presentation to CD4+ T cells. Using a real-time imaging method, we show that TMEM176A/B accumulate in dynamic post-Golgi vesicles preferentially linked to the late endolysosomal system and strongly colocalize with HLA-DM. Taken together, our results suggest that TMEM176A/B ion channels play a direct role in the MHC class II compartment of DCs for the fine regulation of Ag presentation and naive CD4+ T cell priming.


Asunto(s)
Presentación de Antígeno/inmunología , Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Proteínas de la Membrana/inmunología , Animales , Endosomas/inmunología , Femenino , Genes MHC Clase II/inmunología , Aparato de Golgi/inmunología , Inmunidad Innata/inmunología , Mucosa Intestinal/inmunología , Canales Iónicos/inmunología , Linfocitos/inmunología , Lisosomas/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Th17/inmunología , Tretinoina/inmunología
6.
Neurochem Int ; 142: 104925, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248207

RESUMEN

Microglial cells interact with all components of the central nervous system (CNS) and are increasingly recognized to play essential roles during brain development, homeostasis and disease pathologies. Functions of microglia include maintaining tissue integrity, clearing cellular debris and dead neurons through the process of phagocytosis, and providing tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. Changes of microglial ionic homeostasis (Na+, Ca2+, K+, H+, Cl-) are important for microglial activation, including proliferation, migration, cytokine release and reactive oxygen species production, etc. These are mediated by ion channels and ion transporters in microglial cells. Here, we review the current knowledge about the role of major microglial ion channels and transporters, including several types of Ca2+ channels (store-operated Ca2+ entry (SOCE) channels, transient receptor potential (TRP) channels and voltage-gated Ca2+ channels (VGCCs)) and Na+ channels (voltage-gated Na+ channels (Nav) and acid-sensing ion channels (ASICs)), K+ channels (inward rectifier K+ channels (Kir), voltage-gated K+ channels (KV) and calcium-activated K+ channels (KCa)), proton channels (voltage-gated proton channel (Hv1)), and Cl- channels (volume (or swelling)-regulated Cl- channels (VRCCs) and chloride intracellular channels (CLICs)). In addition, ion transporter proteins such as Na+/Ca2+ exchanger (NCX), Na+-K+-Cl- cotransporter (NKCC1), and Na+/H+ exchanger (NHE1) are also involved in microglial function in physiology and brain diseases. We discussed microglial activation and neuroinflammation in relation to the ion channel/transporter stimulation under brain disease conditions and therapeutic aspects of targeting microglial ion channels/transporters for neurodegenerative disease, ischemic stroke, traumatic brain injury and neuropathic pain.


Asunto(s)
Encefalopatías/metabolismo , Mediadores de Inflamación/metabolismo , Canales Iónicos/metabolismo , Microglía/fisiología , Transporte de Proteínas/fisiología , Animales , Encefalopatías/inmunología , Humanos , Mediadores de Inflamación/inmunología , Canales Iónicos/inmunología , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/metabolismo
7.
Sci Immunol ; 5(50)2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32826342

RESUMEN

Piezo1 is a mechanosensitive ion channel that has gained recognition for its role in regulating diverse physiological processes. However, the influence of Piezo1 in inflammatory disease, including infection and tumor immunity, is not well studied. We postulated that Piezo1 links physical forces to immune regulation in myeloid cells. We found signal transduction via Piezo1 in myeloid cells and established this channel as the primary sensor of mechanical stress in these cells. Global inhibition of Piezo1 with a peptide inhibitor was protective against both cancer and septic shock and resulted in a diminution in suppressive myeloid cells. Moreover, deletion of Piezo1 in myeloid cells protected against cancer and increased survival in polymicrobial sepsis. Mechanistically, we show that mechanical stimulation promotes Piezo1-dependent myeloid cell expansion by suppressing the retinoblastoma gene Rb1 We further show that Piezo1-mediated silencing of Rb1 is regulated via up-regulation of histone deacetylase 2. Collectively, our work uncovers Piezo1 as a targetable immune checkpoint that drives immunosuppressive myelopoiesis in cancer and infectious disease.


Asunto(s)
Carcinoma Ductal Pancreático/inmunología , Enfermedades Transmisibles/inmunología , Canales Iónicos/inmunología , Neoplasias Pancreáticas/inmunología , Sepsis/inmunología , Animales , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Humanos , Inmunidad Innata , Canales Iónicos/genética , Estimación de Kaplan-Meier , Masculino , Ratones Transgénicos , Células Mieloides/inmunología , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Transducción de Señal
8.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668612

RESUMEN

In the last years, different kinds of limbic encephalitis associated with autoantibodies against ion channels and synaptic receptors have been described. Many studies have demonstrated that such autoantibodies induce channel or receptor dysfunction. The same mechanism is discussed in immune-mediated cerebellar ataxias (IMCAs), but the pathogenesis has been less investigated. The aim of the present review is to evaluate what kind of cerebellar ion channels, their related proteins, and the synaptic machinery proteins that are preferably impaired by autoantibodies so as to develop cerebellar ataxias (CAs). The cerebellum predictively coordinates motor and cognitive functions through a continuous update of an internal model. These controls are relayed by cerebellum-specific functions such as precise neuronal discharges with potassium channels, synaptic plasticity through calcium signaling pathways coupled with voltage-gated calcium channels (VGCC) and metabotropic glutamate receptors 1 (mGluR1), a synaptic organization with glutamate receptor delta (GluRδ), and output signal formation through chained GABAergic neurons. Consistently, the association of CAs with anti-potassium channel-related proteins, anti-VGCC, anti-mGluR1, and GluRδ, and anti-glutamate decarboxylase 65 antibodies is observed in IMCAs. Despite ample distributions of AMPA and GABA receptors, however, CAs are rare in conditions with autoantibodies against these receptors. Notably, when the autoantibodies impair synaptic transmission, the autoimmune targets are commonly classified into three categories: release machinery proteins, synaptic adhesion molecules, and receptors. This physiopathological categorization impacts on both our understanding of the pathophysiology and clinical prognosis.


Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Ataxia Cerebelosa/inmunología , Canales Iónicos/inmunología , Proteínas del Tejido Nervioso/inmunología , Sinapsis/inmunología , Animales , Reacciones Antígeno-Anticuerpo , Autoantígenos/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Ataxia Cerebelosa/metabolismo , Cerebelo/metabolismo , Humanos , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Plasticidad Neuronal , Neurotransmisores/metabolismo , Transporte de Proteínas , Células de Purkinje/metabolismo , Sinapsis/metabolismo
9.
Pflugers Arch ; 472(8): 1003-1018, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32621085

RESUMEN

Many anion channels, frequently referred as Cl- channels, are permeable to different anions in addition to Cl-. As the second-most abundant anion in the human body, HCO3- permeation via anion channels has many important physiological roles. In addition to its classical role as an intracellular pH regulator, HCO3- also controls the activity and stability of dissolved proteins in bodily fluids such as saliva, pancreatic juice, intestinal fluid, and airway surface liquid. Moreover, HCO3- permeation through these channels affects membrane potentials that are the driving forces for transmembrane transport of solutes and water in epithelia and affect neuronal excitability in nervous tissue. Consequently, aberrant HCO3- transport via anion channels causes a number of human diseases in respiratory, gastrointestinal, genitourinary, and neuronal systems. Notably, recent studies have shown that the HCO3- permeabilities of several anion channels are not fixed and can be altered by cellular stimuli, findings which may have both physiological and pathophysiological significance. In this review, we summarize recent progress in understanding the molecular mechanisms and the physiological roles of HCO3- permeation through anion channels. We hope that the present discussions can stimulate further research into this very important topic, which will provide the basis for human disorders associated with aberrant HCO3- transport.


Asunto(s)
Aniones/metabolismo , Bicarbonatos/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Canales Iónicos/inmunología , Animales , Transporte Biológico/fisiología , Humanos
10.
Methods ; 180: 111-126, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32422249

RESUMEN

Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning helices, encompass families of proteins which are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels and transporters. Although these proteins have typically been targeted by small molecule drugs and peptides, the high specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. However, it remains the case that isolation of antibodies with desired pharmacological function(s) has proven difficult due to technical challenges in preparing membrane protein antigens suitable to support antibody drug discovery. In this review recent progress in defining strategies for generation of membrane protein antigens is outlined. We also highlight antibody isolation strategies which have generated antibodies which bind the membrane protein and modulate the protein function.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Descubrimiento de Drogas/métodos , Canales Iónicos/inmunología , Proteínas de la Membrana/inmunología , Receptores Acoplados a Proteínas G/inmunología , Animales , Bacterias/metabolismo , Expresión Génica/genética , Expresión Génica/inmunología , Células HEK293 , Humanos , Insectos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Receptores Acoplados a Proteínas G/química , Proteínas Recombinantes , Levaduras/metabolismo
11.
Circulation ; 141(22): 1764-1774, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32312099

RESUMEN

BACKGROUND: Cardiac arrest is a tragic event that causes 1 death roughly every 90 seconds worldwide. Survivors generally undergo a workup to identify the cause of arrest. However, 5% to 10% of cardiac arrests remain unexplained. Because cardiac arrhythmias underlie most cardiac arrests and increasing evidence strongly supports the involvement of autoantibodies in arrhythmogenesis, a large-panel autoantibody screening was performed in patients with cardiac arrest. METHODS: This is an observational, cross-sectional study of patients from the Montreal Heart Institute hospital cohort, a single-center registry of participants. A peptide microarray was designed to screen for immunoglobulin G targeting epitopes from all known cardiac ion channels with extracellular domains. Plasma samples from 23 patients with unexplained cardiac arrest were compared with those from 22 patients with cardiac arrest cases of ischemic origin and a group of 29 age-, sex-, and body mass index-matched healthy subjects. The false discovery rate, least absolute shrinkage and selection operator logistic regression, and random forest methods were carried out jointly to find significant differential immunoglobulin G responses. RESULTS: The autoantibody against the pore domain of the L-type voltage-gated calcium channel was consistently identified as a biomarker of idiopathic cardiac arrest (P=0.002; false discovery rate, 0.007; classification accuracies ≥0.83). Functional studies on human induced pluripotent stem cell-derived cardiomyocytes demonstrated that the anti-L-type voltage-gated calcium channel immunoglobulin G purified from patients with idiopathic cardiac arrest is proarrhythmogenic by reducing the action potential duration through calcium channel inhibition. CONCLUSIONS: The present report addresses the concept of autoimmunity and cardiac arrest. Hitherto unknown autoantibodies targeting extracellular sequences of cardiac ion channels were detected. Moreover, the study identified an autoantibody signature specific to patients with cardiac arrest.


Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/inmunología , Canales de Calcio Tipo L/inmunología , Paro Cardíaco/inmunología , Potenciales de Acción , Adulto , Anciano , Secuencia de Aminoácidos , Especificidad de Anticuerpos , Arritmias Cardíacas/sangre , Arritmias Cardíacas/inmunología , Arritmias Cardíacas/fisiopatología , Autoanticuerpos/sangre , Biomarcadores , Diferenciación Celular , Células Cultivadas , Estudios Transversales , Femenino , Paro Cardíaco/sangre , Paro Cardíaco/epidemiología , Sistema de Conducción Cardíaco/inmunología , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Células Madre Pluripotentes Inducidas/citología , Canales Iónicos/inmunología , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/inmunología , Técnicas de Placa-Clamp , Biblioteca de Péptidos , Análisis por Matrices de Proteínas , Quebec/epidemiología , Sistema de Registros
13.
Prog Biophys Mol Biol ; 150: 153-159, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31525385

RESUMEN

Dewetting transition - a concept borrowed from fluid mechanics - is a physiological process that takes place inside the hydrophobic pores of ion channels. This transient phenomenon causes a metastable state that forbids water molecules to cross microscopic receptor cavities. This leads to a decreased conductance, a closure of the pore and, subsequently, severe impairment of cellular performance. We suggest that artificially-provoked dewetting transition in ion channel hydrophobic pores might stand for a molecular candidate to erase detrimental organisms, such as viruses, bacteria, and cancer cells. We describe a novel type of high-affinity monoclonal antibody, that: a) targets specific trans-membrane receptor structures of harmful or redundant cells; b) is equipped with lipophilic and/or hydrophobic fragments that prevent physiological water flow inside ion channels. Therefore, we achieve an artificial dewetting transition inside receptor cavities, that causes discontinuity within transmembrane ionic flows, channel blockage, and subsequent damage of morbid cells. As an example, we describe dewetting monoclonal antibodies that target the M2 channel of the Influenza A virus: they might prevent water from entering pores thus leading to virion impairment.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Canales Iónicos/inmunología , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/inmunología , Animales , Bacterias/metabolismo , Línea Celular Tumoral , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inmunoterapia/métodos , Activación del Canal Iónico/inmunología , Modelos Moleculares , Transición de Fase , Unión Proteica , Conformación Proteica , Temperatura , Virus/metabolismo , Agua
14.
CNS Neurosci Ther ; 26(3): 374-384, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31774629

RESUMEN

Perioperative neurocognitive disorders have been widely recognized as common adverse events after surgical intervention. Aging is one of the most important independent risk factors for worsened cognitive outcome, and this deterioration is linked to exacerbated microglia-mediated neuroinflammation in the aged brain. Under pathological stimulation, microglia are capable of polarizing toward proinflammatory M1 and anti-inflammatory M2 phenotypes. In the present study, we examined how aging affects microglial responses and neuroinflammation following peripheral surgery. Adult (2-3 months) and aged (18 months old) male C57/BL6 mice were subjected to tibial fracture or sham surgery. Aged mice exhibited higher level of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in the hippocampus. The expression of synaptic protein synaptophysin (SYP) was also markedly reduced in the aged brain after the surgery. Both adult and aged mice showed significant increases in M1 microglial polarization (CD16/32). In contrast, tibial fracture surgery induced a decreased M2 microglial polarization (CD206, Ym1/2, Arg1) in aged brain but enhanced M2 microglial polarization in adult brain. Aged mice have upregulated voltage-gated proton channel (Hv1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit expression compared with adult mice. The percentage of CD16/32-positive M1 microglia colabeling with Hv1 was higher in aged mice after tibial fracture surgery. Thus, Hv1/NADPH oxidase upregulation in the aged brain may shift the dynamic equilibrium of microglial activation toward M1 polarization and exaggerate postoperative neuroinflammatory responses after peripheral surgical intervention.


Asunto(s)
Envejecimiento/metabolismo , Polaridad Celular/fisiología , Fijación de Fractura/efectos adversos , Mediadores de Inflamación/metabolismo , Canales Iónicos/biosíntesis , Microglía/metabolismo , Envejecimiento/inmunología , Animales , Inmunidad Innata/fisiología , Inflamación/etiología , Inflamación/inmunología , Inflamación/metabolismo , Mediadores de Inflamación/inmunología , Canales Iónicos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Fracturas de la Tibia/inmunología , Fracturas de la Tibia/metabolismo , Fracturas de la Tibia/cirugía
15.
Sheng Li Xue Bao ; 71(6): 894-904, 2019 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-31879745

RESUMEN

Ion channels are a widespread class of membrane proteins that help establish and control cell membrane potential by allowing the passive diffusion of inorganic ions with high specificity through cell membrane. They are widely distributed in various cells and tissues, and their normal structure and function are of fundamental importance for all living organisms. The rapid advances in molecular cloning, protein structure analysis, patch clamp recordings and other technologies have greatly promoted the research on the biophysical and molecular properties of ion channels, and made significant progress in the study of the relationship between ion channels and pathophysiology as well. The immune system is made up of immune cells and organs that work together to protect the body and respond to infection and disease. Remarkably, recent basic and clinical research has revealed that ion channels are frequently and abundantly expressed in immune cells and have crucial roles in immune cell development and immune response. This review summarized recent progress in the roles of ion channels in immune cells, including the expression and regulation of ion channels in immune cells, the effects of ion flux mediated by ion channels on lymphocyte development, and functional roles of ion channels in both innate and adaptive immune responses. We also discussed some unresolved and insufficiently addressed issues in the current research, so as to provide an informative reference for better understanding the functional roles of ion channels in the immune system and further elucidation of their function from a physiological and pathological point of view.


Asunto(s)
Inmunidad , Canales Iónicos , Proteínas de la Membrana , Membrana Celular , Inmunidad/fisiología , Canales Iónicos/inmunología , Investigación/tendencias
17.
Proc Natl Acad Sci U S A ; 116(30): 14971-14978, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285332

RESUMEN

Generating and improving antibodies and peptides that bind specifically to membrane protein targets such as ion channels and G protein-coupled receptors (GPCRs) can be challenging using established selection methods. Current strategies are often limited by difficulties in the presentation of the antigen or the efficiency of the selection process. Here, we report a method for obtaining antibodies specific for whole cell membrane-associated antigens which combines a cell-cell interaction format based on yeast display technology with fluorescence-activated cell sorting of dual fluorescent complexes. Using this method, we were able to direct the affinity maturation of an antagonist antibody specific for the proton-gated ion channel ASIC1a and showed that both the affinity and potency were improved. We were also able to use this method to do kinetic selections to generate clones with better dissociation profiles. In addition, this method was employed successfully to handle the difficult problem of selecting antibodies specific to a GPCR target, the mu-opioid receptor.


Asunto(s)
Anticuerpos/inmunología , Descubrimiento de Drogas/métodos , Citometría de Flujo/métodos , Canales Iónicos/inmunología , Receptores Acoplados a Proteínas G/inmunología , Animales , Afinidad de Anticuerpos , Células CHO , Cricetinae , Cricetulus , Saccharomyces cerevisiae
18.
Sci Signal ; 12(572)2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862701

RESUMEN

Ion channels facilitate the movement of ions across the plasma and organellar membranes. A recent symposium brought together scientists who study ion channels and transporters in immune cells, which highlighted advances in this emerging field and served to chart new avenues for investigating the roles of ion channels in immunity.


Asunto(s)
Señalización del Calcio/inmunología , Membranas Intracelulares/inmunología , Canales Iónicos/inmunología , Orgánulos/inmunología , Animales , Humanos
19.
Nat Rev Drug Discov ; 18(5): 339-357, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30728472

RESUMEN

Ion channels play fundamental roles in both excitable and non-excitable tissues and therefore constitute attractive drug targets for myriad neurological, cardiovascular and metabolic diseases as well as for cancer and immunomodulation. However, achieving selectivity for specific ion channel subtypes with small-molecule drugs has been challenging, and there currently is a growing trend to target ion channels with biologics. One approach is to improve the pharmacokinetics of existing or novel venom-derived peptides. In parallel, after initial studies with polyclonal antibodies demonstrated the technical feasibility of inhibiting channel function with antibodies, multiple preclinical programmes are now using the full spectrum of available technologies to generate conventional monoclonal and engineered antibodies or nanobodies against extracellular loops of ion channels. After a summary of the current state of ion channel drug discovery, this Review discusses recent developments using the purinergic receptor channel P2X purinoceptor 7 (P2X7), the voltage-gated potassium channel KV1.3 and the voltage-gated sodium channel NaV1.7 as examples of targeting ion channels with biologics.


Asunto(s)
Anticuerpos Bloqueadores/farmacología , Canales Iónicos/efectos de los fármacos , Ponzoñas/farmacología , Animales , Anticuerpos Bloqueadores/uso terapéutico , Descubrimiento de Drogas , Humanos , Canales Iónicos/inmunología , Péptidos/farmacología , Péptidos/uso terapéutico , Ponzoñas/uso terapéutico
20.
J Exp Med ; 215(10): 2655-2672, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30194266

RESUMEN

The vascular endothelium is constantly exposed to mechanical forces, including fluid shear stress exerted by the flowing blood. Endothelial cells can sense different flow patterns and convert the mechanical signal of laminar flow into atheroprotective signals, including eNOS activation, whereas disturbed flow in atheroprone areas induces inflammatory signaling, including NF-κB activation. How endothelial cells distinguish different flow patterns is poorly understood. Here we show that both laminar and disturbed flow activate the same initial pathway involving the mechanosensitive cation channel Piezo1, the purinergic P2Y2 receptor, and Gq/G11-mediated signaling. However, only disturbed flow leads to Piezo1- and Gq/G11-mediated integrin activation resulting in focal adhesion kinase-dependent NF-κB activation. Mice with induced endothelium-specific deficiency of Piezo1 or Gαq/Gα11 show reduced integrin activation, inflammatory signaling, and progression of atherosclerosis in atheroprone areas. Our data identify critical steps in endothelial mechanotransduction, which distinguish flow pattern-dependent activation of atheroprotective and atherogenic endothelial signaling and suggest novel therapeutic strategies to treat inflammatory vascular disorders such as atherosclerosis.


Asunto(s)
Endotelio Vascular/inmunología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/inmunología , Subunidades alfa de la Proteína de Unión al GTP/inmunología , Integrinas/inmunología , Canales Iónicos/inmunología , Animales , Aterosclerosis/genética , Aterosclerosis/inmunología , Aterosclerosis/patología , Endotelio Vascular/patología , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Integrinas/genética , Canales Iónicos/genética , Ratones , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA