Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 623(7985): 193-201, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880360

RESUMEN

Voltage-sensing domains control the activation of voltage-gated ion channels, with a few exceptions1. One such exception is the sperm-specific Na+/H+ exchanger SLC9C1, which is the only known transporter to be regulated by voltage-sensing domains2-5. After hyperpolarization of sperm flagella, SLC9C1 becomes active, causing pH alkalinization and CatSper Ca2+ channel activation, which drives chemotaxis2,6. SLC9C1 activation is further regulated by cAMP2,7, which is produced by soluble adenyl cyclase (sAC). SLC9C1 is therefore an essential component of the pH-sAC-cAMP signalling pathway in metazoa8,9, required for sperm motility and fertilization4. Despite its importance, the molecular basis of SLC9C1 voltage activation is unclear. Here we report cryo-electron microscopy (cryo-EM) structures of sea urchin SLC9C1 in detergent and nanodiscs. We show that the voltage-sensing domains are positioned in an unusual configuration, sandwiching each side of the SLC9C1 homodimer. The S4 segment is very long, 90 Å in length, and connects the voltage-sensing domains to the cytoplasmic cyclic-nucleotide-binding domains. The S4 segment is in the up configuration-the inactive state of SLC9C1. Consistently, although a negatively charged cavity is accessible for Na+ to bind to the ion-transporting domains of SLC9C1, an intracellular helix connected to S4 restricts their movement. On the basis of the differences in the cryo-EM structure of SLC9C1 in the presence of cAMP, we propose that, upon hyperpolarization, the S4 segment moves down, removing this constriction and enabling Na+/H+ exchange.


Asunto(s)
Microscopía por Crioelectrón , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico , Erizos de Mar , Intercambiadores de Sodio-Hidrógeno , Animales , Masculino , Adenilil Ciclasas/metabolismo , AMP Cíclico/metabolismo , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestructura , Concentración de Iones de Hidrógeno , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/ultraestructura , Potenciales de la Membrana , Multimerización de Proteína , Erizos de Mar/química , Erizos de Mar/metabolismo , Erizos de Mar/ultraestructura , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/ultraestructura , Motilidad Espermática , Espermatozoides/química , Espermatozoides/metabolismo , Espermatozoides/ultraestructura
2.
J Neurochem ; 146(6): 753-766, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29953635

RESUMEN

Active coping is an adaptive stress response that improves outcomes in medical and neuropsychiatric diseases. To date, most research into coping style has focused on neurotransmitter activity and little is known about the intrinsic excitability of neurons in the associated brain regions that facilitate coping. Previous studies have shown that HCN channels regulate neuronal excitability in pyramidal cells and that HCN channel current (Ih ) in the CA1 area increases with chronic mild stress. Reduction of Ih in the CA1 area leads to antidepressant-like behavior, and this region has been implicated in the regulation of coping style. We hypothesized that the antidepressant-like behavior achieved with CA1 knockdown of Ih is accompanied by increases in active coping. In this report, we found that global loss of TRIP8b, a necessary subunit for proper HCN channel localization in pyramidal cells, led to active coping behavior in numerous assays specific to coping style. We next employed a viral strategy using a dominant negative TRIP8b isoform to alter coping behavior by reducing HCN channel expression. This approach led to a robust reduction in Ih in CA1 pyramidal neurons and an increase in active coping. Together, these results establish that changes in HCN channel function in CA1 influences coping style.


Asunto(s)
Adaptación Psicológica/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Proteínas de la Membrana/metabolismo , Peroxinas/metabolismo , Animales , Reacción de Prevención/fisiología , Depresión/fisiopatología , Modelos Animales de Enfermedad , Conducta Exploratoria , Hipocampo/citología , Hipocampo/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/ultraestructura , Masculino , Aprendizaje por Laberinto , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica , Peroxinas/genética , Células Piramidales/metabolismo , Natación/psicología
3.
Cereb Cortex ; 28(4): 1458-1471, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351585

RESUMEN

Neurons in primary visual cortex (V1) are more resilient than those in dorsolateral prefrontal cortex (dlPFC) in aging, schizophrenia and Alzheimer's disease. The current study compared glutamate and neuromodulatory actions in macaque V1 to those in dlPFC, and found striking regional differences. V1 neuronal firing to visual stimuli depended on AMPA receptors, with subtle NMDA receptor contributions, while dlPFC depends primarily on NMDA receptors. Neuromodulatory actions also differed between regions. In V1, cAMP signaling increased neuronal firing, and the phosphodiesterase PDE4A was positioned to regulate cAMP effects on glutamate release from axons. HCN channels in V1 were classically located on distal dendrites, and enhanced cell firing. These data contrast with dlPFC, where PDE4A and HCN channels are concentrated in thin spines, and cAMP-HCN signaling gates inputs and weakens firing. These regional differences may explain why V1 neurons are more resilient than dlPFC neurons to the challenges of age and disease.


Asunto(s)
Red Nerviosa/fisiología , Neuronas/fisiología , Corteza Prefrontal/citología , Sinapsis/fisiología , Corteza Visual/citología , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Animales , Fármacos Cardiovasculares/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/ultraestructura , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/ultraestructura , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/ultraestructura , Macaca mulatta , Potenciales de la Membrana/efectos de los fármacos , Microscopía Inmunoelectrónica , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Estimulación Luminosa , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura
4.
Prog Neurobiol ; 112: 1-23, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24184323

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels are encoded by HCN1-4 gene family and have four subtypes. These channels are activated upon hyperpolarization of membrane potential and conduct an inward, excitatory current Ih in the nervous system. Ih acts as pacemaker current to initiate rhythmic firing, dampen dendritic excitability and regulate presynaptic neurotransmitter release. This review summarizes recent insights into the cellular functions of Ih and associated behavior such as learning and memory, sleep and arousal. HCN channels are excellent targets of various cellular signals to finely regulate neuronal responses to external stimuli. Numerous mechanisms, including transcriptional control, trafficking, as well as channel assembly and modification, underlie HCN channel regulation. In the next section, we discuss how the intracellular signals, especially recent findings concerning protein kinases and interacting proteins such as cGKII, Ca(2+)/CaMKII and TRIP8b, regulate function and expression of HCN channels, and subsequently provide an overview of the effects of neurotransmitters on HCN channels and their corresponding intracellular mechanisms. We also discuss the dysregulation of HCN channels in pathological conditions. Finally, insight into future directions in this exciting area of ion channel research is provided.


Asunto(s)
Relojes Biológicos/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Animales , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/ultraestructura , Modelos Neurológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA