Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.701
Filtrar
1.
Nat Commun ; 15(1): 3682, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693121

RESUMEN

In diabetes, macrophages and inflammation are increased in the islets, along with ß-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in ß-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. ß-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic ß-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.


Asunto(s)
Dieta Alta en Grasa , Galectina 3 , Secreción de Insulina , Células Secretoras de Insulina , Animales , Humanos , Masculino , Ratones , Calcio/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa/efectos adversos , Galectina 3/metabolismo , Galectina 3/genética , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
2.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557489

RESUMEN

Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.


Asunto(s)
Canales de Calcio , Calcio , Ratones , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Calcio/metabolismo , Páncreas/metabolismo , Exocitosis/fisiología , Vesículas Secretoras/genética
3.
Genes (Basel) ; 15(4)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38674378

RESUMEN

Migraine is a severe, debilitating neurovascular disorder. Hemiplegic migraine (HM) is a rare and debilitating neurological condition with a strong genetic basis. Sequencing technologies have improved the diagnosis and our understanding of the molecular pathophysiology of HM. Linkage analysis and sequencing studies in HM families have identified pathogenic variants in ion channels and related genes, including CACNA1A, ATP1A2, and SCN1A, that cause HM. However, approximately 75% of HM patients are negative for these mutations, indicating there are other genes involved in disease causation. In this review, we explored our current understanding of the genetics of HM. The evidence presented herein summarises the current knowledge of the genetics of HM, which can be expanded further to explain the remaining heritability of this debilitating condition. Innovative bioinformatics and computational strategies to cover the entire genetic spectrum of HM are also discussed in this review.


Asunto(s)
Migraña con Aura , Humanos , Migraña con Aura/genética , Mutación , Predisposición Genética a la Enfermedad , Canal de Sodio Activado por Voltaje NAV1.1/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Ligamiento Genético , Canales de Calcio/genética
4.
Genes (Basel) ; 15(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674446

RESUMEN

Obesity is a public health crisis, and its prevalence disproportionately affects African Americans in the United States. Dysregulation of organelle calcium homeostasis is associated with obesity. The mitochondrial calcium uniporter (MCU) complex is primarily responsible for mitochondrial calcium homeostasis. Obesity is a multifactorial disease in which genetic underpinnings such as single-nucleotide polymorphisms (SNPs) may contribute to disease progression. The objective of this study was to identify genetic variations of MCU with anthropometric measurements and obesity in the All of Us Research Program. METHODS: We used an additive genetic model to assess the association between obesity traits (body mass index (BMI), waist and hip circumference) and selected MCU SNPs in 19,325 participants (3221 normal weight and 16,104 obese). Eleven common MCU SNPs with a minor allele frequency ≥ 5% were used for analysis. RESULTS: We observed three MCU SNPs in self-reported Black/African American (B/AA) men, and six MCU SNPs in B/AA women associated with increased risk of obesity, whereas six MCU SNPs in White men, and nine MCU SNPs in White women were protective against obesity development. CONCLUSIONS: This study found associations of MCU SNPs with obesity, providing evidence of a potential predictor of obesity susceptibility in B/AA adults.


Asunto(s)
Canales de Calcio , Obesidad , Polimorfismo de Nucleótido Simple , Humanos , Obesidad/genética , Femenino , Masculino , Adulto , Persona de Mediana Edad , Canales de Calcio/genética , Índice de Masa Corporal , Estados Unidos/epidemiología , Negro o Afroamericano/genética , Predisposición Genética a la Enfermedad , Población Blanca/genética
5.
J Bone Miner Res ; 39(3): 298-314, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38477790

RESUMEN

Osteocytes sense and respond to mechanical force by controlling the activity of other bone cells. However, the mechanisms by which osteocytes sense mechanical input and transmit biological signals remain unclear. Voltage-sensitive calcium channels (VSCCs) regulate calcium (Ca2+) influx in response to external stimuli. Inhibition or deletion of VSCCs impairs osteogenesis and skeletal responses to mechanical loading. VSCC activity is influenced by its auxiliary subunits, which bind the channel's α1 pore-forming subunit to alter intracellular Ca2+ concentrations. The α2δ1 auxiliary subunit associates with the pore-forming subunit via a glycosylphosphatidylinositol anchor and regulates the channel's calcium-gating kinetics. Knockdown of α2δ1 in osteocytes impairs responses to membrane stretch, and global deletion of α2δ1 in mice results in osteopenia and impaired skeletal responses to loading in vivo. Therefore, we hypothesized that the α2δ1 subunit functions as a mechanotransducer, and its deletion in osteocytes would impair skeletal development and load-induced bone formation. Mice (C57BL/6) with LoxP sequences flanking Cacna2d1, the gene encoding α2δ1, were crossed with mice expressing Cre under the control of the Dmp1 promoter (10 kb). Deletion of α2δ1 in osteocytes and late-stage osteoblasts decreased femoral bone quantity (P < .05) by DXA, reduced relative osteoid surface (P < .05), and altered osteoblast and osteocyte regulatory gene expression (P < .01). Cacna2d1f/f, Cre + male mice displayed decreased femoral strength and lower 10-wk cancellous bone in vivo micro-computed tomography measurements at the proximal tibia (P < .01) compared to controls, whereas Cacna2d1f/f, Cre + female mice showed impaired 20-wk cancellous and cortical bone ex vivo micro-computed tomography measurements (P < .05) vs controls. Deletion of α2δ1 in osteocytes and late-stage osteoblasts suppressed load-induced calcium signaling in vivo and decreased anabolic responses to mechanical loading in male mice, demonstrating decreased mechanosensitivity. Collectively, the α2δ1 auxiliary subunit is essential for the regulation of osteoid-formation, femur strength, and load-induced bone formation in male mice.


The ability of bone to sense and respond to forces generated during daily physical activities is essential to skeletal health. Although several bone cell types contribute to the maintenance of bone health, osteocytes are thought to be the primary mechanosensitive cells; however, the mechanisms through which these cells perceive mechanical stimuli remains unclear. Previous work has shown that voltage sensitive calcium channels are necessary for bone to sense mechanical force; yet the means by which those channels translate the physical signal into a biochemical signal is unclear. Data within this manuscript demonstrate that the extracellular α2δ1 subunit of voltage sensitive calcium channels is necessary for load-induced bone formation as well as to enable calcium influx within osteocytes. As this subunit enables physical interactions of the channel pore with the extracellular matrix, our data demonstrate the need for the α2δ1 subunit for mechanically induced bone adaptation, thus serving as a physical conduit through which mechanical signals from the bone matrix are transduced into biochemical signals by enabling calcium influx into osteocytes.


Asunto(s)
Osteocitos , Osteogénesis , Ratones , Masculino , Femenino , Animales , Osteocitos/metabolismo , Osteogénesis/genética , Calcio/metabolismo , Microtomografía por Rayos X , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Fémur/diagnóstico por imagen , Fémur/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo
6.
Biol Cell ; 116(5): e2300067, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537110

RESUMEN

BACKGROUND INFORMATION: Two pore channels (TPCs) are voltage-gated ion channel superfamily members that release Ca2+ from acidic intracellular stores and are ubiquitously present in both animals and plants. Starvation initiates multicellular development in Dictyostelium discoideum. Increased intracellular calcium levels bias Dictyostelium cells towards the stalk pathway and thus we decided to analyze the role of TPC2 in development, differentiation, and autophagy. RESULTS: We showed TPC2 protein localizes in lysosome-like acidic vesicles and the in situ data showed stalk cell biasness. Deletion of tpc2 showed defective and delayed development with formation of multi-tipped structures attached to a common base, while tpc2OE cells showed faster development with numerous small-sized aggregates and wiry fruiting bodies. The tpc2OE cells showed higher intracellular cAMP levels as compared to the tpc2- cells while pinocytosis was found to be higher in the tpc2- cells. Also, TPC2 regulates cell-substrate adhesion and cellular morphology. Under nutrient starvation, deletion of tpc2 reduced autophagic flux as compared to Ax2. During chimera formation, tpc2- cells showed a bias towards the prestalk/stalk region while tpc2OE cells showed a bias towards the prespore/spore region. tpc2 deficient strain exhibits aberrant cell-type patterning and loss of distinct boundary between the prestalk/prespore regions. CONCLUSION: TPC2 is required for effective development and differentiation in Dictyostelium and supports autophagic cell death and cell-type patterning. SIGNIFICANCE: Decreased calcium due to deletion of tpc2 inhibit autophagic flux.


Asunto(s)
Autofagia , Dictyostelium , Proteínas Protozoarias , Dictyostelium/genética , Dictyostelium/metabolismo , Dictyostelium/citología , Dictyostelium/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Eliminación de Gen , Canales de Calcio/metabolismo , Canales de Calcio/genética , Calcio/metabolismo , Diferenciación Celular
7.
Biomed Pharmacother ; 174: 116472, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531121

RESUMEN

The Voltage-Gated Calcium Channel (VGCC) auxiliary subunit Cavα2δ-1 (CACNA2D1) is the target/receptor of gabapentinoids which are known therapeutics in epilepsy and neuropathic pain. Following damage to the peripheral sensory nervous system, Cavα2δ-1 is upregulated in dorsal root ganglion (DRG) neurons in several animal models of chronic neuropathic pain. Gabapentinoids, such as gabapentin and pregabalin, engage with Cavα2δ-1 via binding an arginine residue (R241) within an RRR motif located at the N-terminus of human Cavα2δ-1. A novel, next generation gabapentinoid, engineered not to penetrate the brain, was able to generate a strong analgesic response in Chronic Constriction Injury animal model of chronic neuropathic pain and showed binding specificity for Cavα2δ-1 versus the Cavα2δ-2 subunit. This novel non-brain penetrant gabapentinoid, binds to R241 and a novel binding site on Cavα2δ-1, which is located within the VGCC_α2 domain, identified as a lysine residue within an IKAK amino acid motif (K634). The overall whole cell current amplitudes were diminished by the compound, with these inhibitory effects being diminished in R241A mutant Cavα2δ-1 subunits. The functional effects occurred at lower concentrations than those needed for inhibition by gabapentin or pregabalin, which apparently bound the Cavα2δ-1 subunit only on the R241 and not on the K634 residue. Our work sets the stage for the identification and characterisation of novel compounds with therapeutic properties in neuropathic pain and possibly in other disorders and conditions which require engagement of the Cavα2δ-1 target.


Asunto(s)
Canales de Calcio Tipo L , Neuralgia , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Animales , Ligandos , Humanos , Masculino , Canales de Calcio/metabolismo , Canales de Calcio/genética , Gabapentina/farmacología , Ratas Sprague-Dawley , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Ratas , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo N/metabolismo , Canales de Calcio Tipo N/genética , Analgésicos/farmacología , Modelos Animales de Enfermedad , Pregabalina/farmacología
8.
Anim Genet ; 55(3): 344-351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38426585

RESUMEN

Bovine familial convulsions and ataxia (BFCA) is considered an autosomal dominant syndrome with incomplete penetrance. Nine Angus calves from the same herd were diagnosed with BFCA within days of birth. Necropsy revealed cerebellar and spinal cord lesions associated with the condition. Parentage testing confirmed that all affected calves had a common sire. The sire was then bred to 36 cows across two herds using artificial insemination, producing an additional 14 affected calves. The objective of this investigation was to identify hypothesized dominant genetic variation underlying the condition. Whole-genome sequencing was performed on the sire, six affected and seven unaffected paternal half-sibling calves and combined with data from 135 unrelated controls. The sire and five of the six affected calves were heterozygous for a nonsense variant (Chr7 g.12367906C>T, c.5073C>T, p.Arg1681*) in CACNA1A. The other affected calves (N = 8) were heterozygous for the variant but it was absent in the other unaffected calves (N = 7) and parents of the sire. This variant was also absent in sequence data from over 6500 other cattle obtained via public repositories and collaborator projects. The variant in CACNA1A is expressed in the cerebellum of the ataxic calves as detected in the transcriptome and was not differentially expressed compared with controls. The CACNA1A protein is part of a highly expressed cerebellar calcium voltage gated channel. The nonsense variant is proposed to cause haploinsufficiency, preventing proper transmission of neuronal signals through the channel and resulting in BFCA.


Asunto(s)
Ataxia , Canales de Calcio , Enfermedades de los Bovinos , Convulsiones , Animales , Bovinos/genética , Canales de Calcio/genética , Ataxia/veterinaria , Ataxia/genética , Enfermedades de los Bovinos/genética , Convulsiones/veterinaria , Convulsiones/genética , Masculino , Femenino , Secuenciación Completa del Genoma/veterinaria , Genes Dominantes , Mutación
9.
Exp Eye Res ; 241: 109835, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373629

RESUMEN

The etiology of elevated intraocular pressure (IOP), a major risk factor for glaucoma (optic nerve atrophy), is poorly understood despite continued efforts. Although the gene variant of CACNA2D1 (encoding α2δ1), a calcium voltage-gated channel auxiliary subunit, has been reported to be associated with primary open-angle glaucoma, and the pharmacological mitigation of α2δ1 activity by pregabalin lowers IOP, the cellular basis for α2δ1 role in the modulation of IOP remains unclear. Our recent findings reveled readily detectable levels of α2δ1 and its ligand thrombospondin in the cytoskeletome fraction of human trabecular meshwork (TM) cells. To understand the direct role of α2δ1 in the modulation of IOP, we evaluated α2δ1 null mice for changes in IOP and found a moderate (∼10%) but significant decrease in IOP compared to littermate wild type control mice. Additionally, to gain cellular insights into α2δ1 antagonist (pregabalin) induced IOP changes, we assessed pregabalin's effects on human TM cell actin cytoskeletal organization and cell adhesive interactions in comparison with a Rho kinase inhibitor (Y27632), a known ocular hypotensive agent. Unlike Y27632, pregabalin did not have overt effects on cell morphology, actin cytoskeletal organization, or cell adhesion in human TM cells. These results reveal a modest but significant decrease in IOP in α2δ1 deficient mice, and this response appears to be not associated with the contractile and cell adhesive characteristics of TM cells based on the findings of pregabalin effects on isolated TM cells. Therefore, the mechanism by which pregabalin lowers IOP remains elusive.


Asunto(s)
Amidas , Glaucoma de Ángulo Abierto , Glaucoma , Piridinas , Animales , Humanos , Ratones , Actinas/metabolismo , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Glaucoma/metabolismo , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/metabolismo , Presión Intraocular , Pregabalina , Malla Trabecular/metabolismo
10.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 99-109, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38372107

RESUMEN

This study aimed to explore the involvement of Transmembrane and coiled-coil domains 1 (TMCO1) in ovarian cancer progression and its regulatory mechanisms in cisplatin resistance. Using the GEPIA database, we analyzed TMCO1 expression in ovarian cancer and normal tissues. In a cohort of 99 ovarian cancer patients, immunohistochemistry and immunofluorescence were employed to assess TMCO1 expression in tumor and adjacent tissues, correlating findings with clinical and pathological characteristics. TMCO1 overexpression and knockout cell models were constructed, and their impact on non-cisplatin-resistant (SK-OV-3) and cisplatin-resistant (SK-OV-3-CDDP) ovarian cancer cells was investigated through cloning, wound healing, Fluo 4, and Transwell experiments. Knocking down CALR and VDAC1 was performed to examine their effects on TMCO1, cell proliferation, and malignant markers. Subcutaneous tumor models in nude mice elucidated the in vivo role of TMCO1 in tumor growth. Expression levels of CALR, VDAC1, angiogenesis indicators (CD34), and epithelial-mesenchymal transition (EMT) markers were evaluated. TMCO1 expression in ovarian cancer tissue significantly differed from normal tissue, correlating with survival rates. TMCO1 overexpression was associated with lymph node metastases, late FIGO stage, and larger tumors. TMCO1 promoted proliferation, calcium ion elevation, cytoskeletal remodeling, and metastasis in SK-OV-3 and SK-OV-3-CDDP cells, upregulating VDAC1, CALR, Vimentin, N-cadherin, ß-catenin, and downregulating E-cadherin. Silencing TMCO1 inhibited cell growth, proliferation, and angiogenesis in vivo, suppressing the expression of CALR, VDAC1, Vimentin, N-cadherin, and ß-catenin. Overall, this study highlighted TMCO1 as a crucial regulator in ovarian cancer progression, influencing VDAC1 through CALR and impacting diverse cellular processes, offering potential as a targeted therapeutic strategy for ovarian cancer.


Asunto(s)
Canales de Calcio , Calreticulina , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , beta Catenina/metabolismo , Cadherinas/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Transición Epitelial-Mesenquimal/genética , Ratones Desnudos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Vimentina/metabolismo , Calreticulina/genética , Calreticulina/metabolismo
11.
Sci Adv ; 10(7): eadk2317, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354239

RESUMEN

Lysosomal calcium (Ca2+) release is critical to cell signaling and is mediated by well-known lysosomal Ca2+ channels. Yet, how lysosomes refill their Ca2+ remains hitherto undescribed. Here, from an RNA interference screen in Caenorhabditis elegans, we identify an evolutionarily conserved gene, lci-1, that facilitates lysosomal Ca2+ entry in C. elegans and mammalian cells. We found that its human homolog TMEM165, previously designated as a Ca2+/H+ exchanger, imports Ca2+ pH dependently into lysosomes. Using two-ion mapping and electrophysiology, we show that TMEM165, hereafter referred to as human LCI, acts as a proton-activated, lysosomal Ca2+ importer. Defects in lysosomal Ca2+ channels cause several neurodegenerative diseases, and knowledge of lysosomal Ca2+ importers may provide previously unidentified avenues to explore the physiology of Ca2+ channels.


Asunto(s)
Calcio , Proteínas de Transporte de Catión , Animales , Humanos , Calcio/metabolismo , Caenorhabditis elegans/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Transducción de Señal , Lisosomas/metabolismo , Señalización del Calcio , Mamíferos/metabolismo , Antiportadores/metabolismo , Proteínas de Transporte de Catión/metabolismo
12.
Plant Cell Physiol ; 65(4): 660-670, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38195149

RESUMEN

In response to both biotic and abiotic stresses, vascular plants transmit long-distance Ca2+ and electrical signals from localized stress sites to distant tissues through their vasculature. Various models have been proposed for the mechanisms underlying the long-distance signaling, primarily centered around the presence of vascular bundles. We here demonstrate that the non-vascular liverwort Marchantia polymorpha possesses a mechanism for propagating Ca2+ waves and electrical signals in response to wounding. The propagation velocity of these signals was approximately 1-2 mm s-1, equivalent to that observed in vascular plants. Both Ca2+ waves and electrical signals were inhibited by La3+ as well as tetraethylammonium chloride, suggesting the crucial importance of both Ca2+ channel(s) and K+ channel(s) in wound-induced membrane depolarization as well as the subsequent long-distance signal propagation. Simultaneous recordings of Ca2+ and electrical signals indicated a tight coupling between the dynamics of these two signaling modalities. Furthermore, molecular genetic studies revealed that a GLUTAMATE RECEPTOR-LIKE (GLR) channel plays a central role in the propagation of both Ca2+ waves and electrical signals. Conversely, none of the three two-pore channels were implicated in either signal propagation. These findings shed light on the evolutionary conservation of rapid long-distance Ca2+ wave and electrical signal propagation involving GLRs in land plants, even in the absence of vascular tissue.


Asunto(s)
Señalización del Calcio , Calcio , Marchantia , Marchantia/fisiología , Marchantia/genética , Marchantia/metabolismo , Calcio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Lantano/farmacología , Receptores de Glutamato/metabolismo , Receptores de Glutamato/genética , Canales de Calcio/metabolismo , Canales de Calcio/genética , Tetraetilamonio/farmacología , Canales de Potasio/metabolismo , Canales de Potasio/genética
13.
J Clin Invest ; 134(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165034

RESUMEN

The infertility of many couples rests on an enigmatic dysfunction of the man's sperm. To gain insight into the underlying pathomechanisms, we assessed the function of the sperm-specific multisubunit CatSper-channel complex in the sperm of almost 2,300 men undergoing a fertility workup, using a simple motility-based test. We identified a group of men with normal semen parameters but defective CatSper function. These men or couples failed to conceive naturally and upon medically assisted reproduction via intrauterine insemination and in vitro fertilization. Intracytoplasmic sperm injection (ICSI) was, ultimately, required to conceive a child. We revealed that the defective CatSper function was caused by variations in CATSPER genes. Moreover, we unveiled that CatSper-deficient human sperm were unable to undergo hyperactive motility and, therefore, failed to penetrate the egg coat. Thus, our study provides the experimental evidence that sperm hyperactivation is required for human fertilization, explaining the infertility of CatSper-deficient men and the need of ICSI for medically assisted reproduction. Finally, our study also revealed that defective CatSper function and ensuing failure to hyperactivate represents the most common cause of unexplained male infertility known thus far and that this sperm channelopathy can readily be diagnosed, enabling future evidence-based treatment of affected couples.


Asunto(s)
Infertilidad Masculina , Semen , Niño , Humanos , Masculino , Semen/fisiología , Canales de Calcio/genética , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Infertilidad Masculina/terapia , Infertilidad Masculina/genética , Fertilización In Vitro , Fertilización/fisiología
14.
Brain Res Bull ; 207: 110876, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215950

RESUMEN

Numb is an evolutionarily conserved protein that regulates the differentiation of neuronal progenitor cells through unknown mechanisms. Numb has four alternative splice variants with different lengths of phosphotyrosine-binding (PTB) and proline-rich regions (PRR) domains. In this study, we demonstrated that Numb expression was increased in the primary cultures of rat cortical and hippocampal neurons over time in vitro, and Numb antisense inhibited neurite outgrowth. We verified that cells overexpressing short PTB (SPTB) or long PTB (LPTB) domains exhibited differentiation or proliferation, respectively. SPTB-mediated differentiation was related to the PRR domains, as cells expressing SPTB/LPRR had longer dendrites and more branched dendrites than cells expressing SPTB/SPRR. The differentiation of both cell types was completely blocked by the Ca2+ chelator. Western blot analysis revealed the increased total protein expression of voltage-gated calcium channel (VGCC) subunit α1C and α1D in cells expressing SPTB and LPTB Numb. The increased expression of the VGCC ß3 subunit was only observed in cells expressing SPTB Numb. Immunocytochemistry further showed that SPTB-mediated cell differentiation was associated with increased membrane expression of VGCC subunits α1C, α1D and ß3, which corresponded to the higher Ca2+ current (ICa) densities. Furthermore, we found that VGCC of cells transfected with SPTB/SPRR or SPTB/LPRR Numb isoforms exhibit steady-state inactivation (SSI) in both differentiated and undifferentiated phenotypes. A similar SSI of VGCC was observed in the differentiated cells transfected with SPTB/SPRR or SPTB/LPRR Numb isoforms, whereas a left shift SSI of VGCC in cells expressing SPTB/LPRR was detected in the undifferentiated cells. Collectively, these data indicate that SPTB domain is essential for neurite outgrowth involving in membrane expression of VGCC subunits, and LPRR plays a role in neuronal branching and the regulation of VGCC inactivation kinetics.


Asunto(s)
Proteínas de la Membrana , Neuronas , Ratas , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Canales de Calcio/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , Proyección Neuronal , Calcio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
15.
Neurology ; 102(1): e207992, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38175838

RESUMEN

A 9-month-old male infant was evaluated for sudden onset of paroxysmal episodes of forced, conjugate upward eye deviation. Extensive in-hospital evaluation including electrophysiology and neuroimaging studies were reassuring against seizures or a structural abnormality. Given the clinical presentation of sudden onset intermittent upward eye deviations, downbeating saccades, associated ataxia, and typical development, a clinical diagnosis of paroxysmal tonic upgaze (PTU) with ataxia was made. Targeted genetic testing of CACNA1A was performed, which revealed a variant of undetermined significance, which was later classified as a de novo pathogenic variant after protein modeling and parental testing performed. Off-label use of oral acetazolamide was prescribed, which led to dose-responsive decrease in the frequency and intensity of eye movement episodes. After 6 months of episode freedom at 2 years of age, acetazolamide was discontinued without return of episodes. Neurodevelopmental assessments revealed continued typical development. This case is presented to describe the diagnostic formulation, etiologic evaluation, and symptomatic treatment of CACNA1A-related PTU with ataxia.


Asunto(s)
Trastornos de la Motilidad Ocular , Estrabismo , Humanos , Lactante , Masculino , Acetazolamida/uso terapéutico , Ataxia/tratamiento farmacológico , Ataxia/genética , Ataxia/diagnóstico , Canales de Calcio/genética , Movimientos Oculares , Trastornos de la Motilidad Ocular/tratamiento farmacológico , Trastornos de la Motilidad Ocular/genética , Trastornos de la Motilidad Ocular/diagnóstico , Convulsiones/tratamiento farmacológico
17.
FEBS J ; 291(5): 1027-1042, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38050648

RESUMEN

The primary cilium is an antenna-like organelle protruding from the cell surface that can detect physical and chemical stimuli in the extracellular space to activate specific signaling pathways and downstream gene expressions. Calcium ion (Ca2+ ) signaling regulates a wide spectrum of cellular processes, including fertilization, proliferation, differentiation, muscle contraction, migration, and death. This study investigated the effects of the regulation of cytosolic Ca2+ levels on ciliogenesis using chemical, genetic, and optogenetic approaches. We found that ionomycin-induced Ca2+ influx inhibited ciliogenesis and Ca2+ chelator BATPA-AM-induced Ca2+ depletion promoted ciliogenesis. In addition, store-operated Ca2+ entry and the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) negatively regulated ciliogenesis. Moreover, an optogenetic platform was used to create different Ca2+ oscillation patterns by manipulating lighting parameters, including density, frequency, exposure time, and duration. Light-activated Ca2+ -translocating channelrhodopsin (CatCh) is activated by 470-nm blue light to induce Ca2+ influx. Our results show that high-frequency Ca2+ oscillations decrease ciliogenesis. Furthermore, the inhibition of cilia formation induced by Ca2+ may occur via the activation of Aurora kinase A. Cilia not only induce Ca2+ signaling but also regulate cilia formation by Ca2+ signaling.


Asunto(s)
Canales de Calcio , Señalización del Calcio , Señalización del Calcio/fisiología , Canales de Calcio/genética , Canales de Calcio/metabolismo , Calcio/metabolismo , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Retículo Endoplásmico/metabolismo
18.
J Physiol Biochem ; 80(1): 113-126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37882938

RESUMEN

The global prevalence and incidence of non-alcoholic fatty liver disease (NAFLD) are exhibiting an increasing trend. NAFLD is characterized by a significant accumulation of lipids, though its underlying mechanism is still unknown. Here we report that high-fat diet (HFD) feeding induced hepatic steatosis in mice, which was accompanied by a reduction in the expression and function of hepatic TRPV2. Moreover, conditional knockout of TRPV2 in hepatocytes exacerbated HFD-induced hepatic steatosis. In an in vitro model of NAFLD, TRPV2 regulated lipid accumulation in HepG2 cells, and TRPV2 activation inhibited the expression of the cellular senescence markers p21 and p16, all of which were mediated by AMPK phosphorylation. Finally, we found that administration of probenecid, a TRPV2 agonist, impaired HFD-induced hepatic steatosis and suppressed HFD-induced elevation in p21 and p16. Collectively, our findings imply that hepatic TRPV2 protects against the accumulation of lipids by modulating p21 signalling.


Asunto(s)
Canales de Calcio , Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , Canales Catiónicos TRPV , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Regulación hacia Abajo , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo
19.
Nat Commun ; 14(1): 7830, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081835

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are a group of rare childhood disorders characterized by severe epilepsy and cognitive deficits. Numerous DEE genes have been discovered thanks to advances in genomic diagnosis, yet putative molecular links between these disorders are unknown. CDKL5 deficiency disorder (CDD, DEE2), one of the most common genetic epilepsies, is caused by loss-of-function mutations in the brain-enriched kinase CDKL5. To elucidate CDKL5 function, we looked for CDKL5 substrates using a SILAC-based phosphoproteomic screen. We identified the voltage-gated Ca2+ channel Cav2.3 (encoded by CACNA1E) as a physiological target of CDKL5 in mice and humans. Recombinant channel electrophysiology and interdisciplinary characterization of Cav2.3 phosphomutant mice revealed that loss of Cav2.3 phosphorylation leads to channel gain-of-function via slower inactivation and enhanced cholinergic stimulation, resulting in increased neuronal excitability. Our results thus show that CDD is partly a channelopathy. The properties of unphosphorylated Cav2.3 closely resemble those described for CACNA1E gain-of-function mutations causing DEE69, a disorder sharing clinical features with CDD. We show that these two single-gene diseases are mechanistically related and could be ameliorated with Cav2.3 inhibitors.


Asunto(s)
Epilepsia , Síndromes Epilépticos , Espasmos Infantiles , Animales , Niño , Humanos , Ratones , Canales de Calcio/genética , Epilepsia/genética , Síndromes Epilépticos/genética , Proteínas Serina-Treonina Quinasas/genética , Espasmos Infantiles/genética
20.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958665

RESUMEN

Chronic heart diseases, such as coronary heart disease, heart failure, secondary arterial hypertension, and dilated and hypertrophic cardiomyopathies, are widespread and have a fairly high incidence of mortality and disability. Most of these diseases are characterized by cardiac arrhythmias, conduction, and contractility disorders. Additionally, interruption of the electrical activity of the heart, the appearance of extensive ectopic foci, and heart failure are all symptoms of a number of severe hereditary diseases. The molecular mechanisms leading to the development of heart diseases are associated with impaired permeability and excitability of cell membranes and are mainly caused by the dysfunction of cardiac Ca2+ channels. Over the past 50 years, more than 100 varieties of ion channels have been found in the cardiovascular cells. The relationship between the activity of these channels and cardiac pathology, as well as the general cellular biological function, has been intensively studied on several cell types and experimental animal models in vivo and in situ. In this review, I discuss the origin of genetic Ca2+ channelopathies of L- and T-type voltage-gated calcium channels in humans and the role of the non-genetic dysfunctions of Ca2+ channels of various types: L-, R-, and T-type voltage-gated calcium channels, RyR2, including Ca2+ permeable nonselective cation hyperpolarization-activated cyclic nucleotide-gated (HCN), and transient receptor potential (TRP) channels, in the development of cardiac pathology in humans, as well as various aspects of promising experimental studies of the dysfunctions of these channels performed on animal models or in vitro.


Asunto(s)
Insuficiencia Cardíaca , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Animales , Humanos , Arritmias Cardíacas/genética , Modelos Animales , Canales de Calcio/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA