Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 941
Filtrar
1.
Addict Biol ; 29(8): e13428, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39087789

RESUMEN

The increasing rates of drug misuse highlight the urgency of identifying improved therapeutics for treatment. Most drug-seeking behaviours that can be modelled in rodents utilize the repeated intravenous self-administration (SA) of drugs. Recent studies examining the mesolimbic pathway suggest that Kv7/KCNQ channels may contribute to the transition from recreational to chronic drug use. However, to date, all such studies used noncontingent, experimenter-delivered drug model systems, and the extent to which this effect generalizes to rats trained to self-administer drugs is not known. Here, we tested the ability of retigabine (ezogabine), a Kv7 channel opener, to regulate instrumental behaviour in male Sprague Dawley rats. We first validated the ability of retigabine to target experimenter-delivered cocaine in a conditioned place preference (CPP) assay and found that retigabine reduced the acquisition of place preference. Next, we trained rats for cocaine-SA under a fixed-ratio or progressive-ratio reinforcement schedule and found that retigabine pretreatment attenuated the SA of low to moderate doses of cocaine. This was not observed in parallel experiments, with rats self-administering sucrose, a natural reward. Compared with sucrose-SA, cocaine-SA was associated with reductions in the expression of the Kv7.5 subunit in the nucleus accumbens, without alterations in Kv7.2 and Kv7.3. Therefore, these studies reveal a reward-specific reduction in SA behaviour and support the notion that Kv7 is a potential therapeutic target for human psychiatric diseases with dysfunctional reward circuitry.


Asunto(s)
Carbamatos , Cocaína , Fenilendiaminas , Ratas Sprague-Dawley , Autoadministración , Sacarosa , Animales , Fenilendiaminas/farmacología , Fenilendiaminas/administración & dosificación , Carbamatos/farmacología , Carbamatos/administración & dosificación , Cocaína/farmacología , Cocaína/administración & dosificación , Masculino , Ratas , Sacarosa/administración & dosificación , Sacarosa/farmacología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Canales de Potasio KCNQ/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Inhibidores de Captación de Dopamina/administración & dosificación
2.
Sci Rep ; 14(1): 15260, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38956136

RESUMEN

KCNQ4 is a voltage-gated K+ channel was reported to distribute over the basolateral surface of type 1 vestibular hair cell and/or inner surface of calyx and heminode of the vestibular nerve connected to the type 1 vestibular hair cells of the inner ear. However, the precise localization of KCNQ4 is still controversial and little is known about the vestibular phenotypes caused by KCNQ4 dysfunction or the specific role of KCNQ4 in the vestibular organs. To investigate the role of KCNQ4 in the vestibular organ, 6-g hypergravity stimulation for 24 h, which represents excessive mechanical stimulation of the sensory epithelium, was applied to p.W277S Kcnq4 transgenic mice. KCNQ4 was detected on the inner surface of calyx of the vestibular afferent in transmission electron microscope images with immunogold labelling. Vestibular function decrease was more severe in the Kcnq4p.W277S/p.W277S mice than in the Kcnq4+/+ and Kcnq4+/p.W277S mice after the stimulation. The vestibular function loss was resulted from the loss of type 1 vestibular hair cells, which was possibly caused by increased depolarization duration. Retigabine, a KCNQ activator, prevented hypergravity-induced vestibular dysfunction and hair cell loss. Patients with KCNQ4 mutations also showed abnormal clinical vestibular function tests. These findings suggest that KCNQ4 plays an essential role in calyx and afferent of type 1 vestibular hair cell preserving vestibular function against excessive mechanical stimulation.


Asunto(s)
Células Ciliadas Vestibulares , Canales de Potasio KCNQ , Ratones Transgénicos , Animales , Canales de Potasio KCNQ/metabolismo , Canales de Potasio KCNQ/genética , Células Ciliadas Vestibulares/metabolismo , Células Ciliadas Vestibulares/patología , Ratones , Fenilendiaminas/farmacología , Carbamatos/farmacología , Vestíbulo del Laberinto/metabolismo , Vestíbulo del Laberinto/patología , Vestíbulo del Laberinto/fisiopatología
3.
Mol Genet Genomic Med ; 12(7): e2446, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980994

RESUMEN

BACKGROUND: Deafness autosomal dominant 2A (DFNA2A) is related to non-syndromic genetic hearing impairment. The KCNQ4 (Potassium Voltage-Gated Channel Subfamily Q Member 4) can lead to DFNA2A. In this study, we report a case of autosomal dominant non-syndromic hearing loss with six family members as caused by a novel variant in the KCNQ4 gene. METHODS: The whole-exome sequencing (WES) and pure tone audiometry were performed on the proband of the family. Sanger sequencing was conducted on family members to determine if the novel variant in the KCNQ4 gene was present. Evolutionary conservation analysis and computational tertiary structure protein prediction of the wild-type KCNQ4 protein and its variant were then performed. In addition, voltage-gated channel activity of the wild-type KCNQ4 protein and its variant were tested using whole-cell patch clamp. RESULTS: It was observed that the proband had inherited autosomal dominant, non-syndromic sensorineural hearing loss as a trait. A novel co-segregating heterozygous missense variant (c.902C>A, p.Ala301Asp) of the KCNQ4 gene was identified in the proband and other five affected family members. This variant was predicted to cause an alanine-to-aspartic acid substitution at position 301 in the KCNQ4 protein. The alanine at position 301 is well conserved across different species. Whole-cell patch clamp showed that there was a significant difference between the WT protein currents and the mutant protein currents in the voltage-gated channel activity. CONCLUSION: In the present study, performing WES in conjunction with Sanger sequencing enhanced the detection of a novel, potentially causative variant (c301 A>G; p.Ala301Asp) in exon 6 of the KCNQ4 gene. Therefore, our findings contributed to the mutation spectrum of the KCNQ4 gene and may be useful in the diagnosis and gene therapy of deafness autosomal dominant 2A.


Asunto(s)
Pérdida Auditiva Sensorineural , Canales de Potasio KCNQ , Mutación Missense , Linaje , Humanos , Canales de Potasio KCNQ/genética , Masculino , Femenino , Adulto , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Persona de Mediana Edad , Pueblos del Este de Asia
4.
Neuropharmacology ; 254: 109994, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750803

RESUMEN

Neuronal voltage-gated KCNQ (Kv7) channels, expressed centrally and peripherally, mediate low-threshold and non-inactivating M-currents responsible for the control of tonic excitability of mammalian neurons. Pharmacological opening of KCNQ channels has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we examined the possible involvement of central KCNQ channels in the analgesic effects of retigabine, a KCNQ channel opener. Behaviorally, intraperitoneally applied retigabine exerted analgesic effects on thermal and mechanical hypersensitivity in male mice developing neuropathic pain after partial sciatic nerve ligation, which was antagonized by the KCNQ channel blocker XE991 preadministered intraperitoneally and intrathecally. Intrathecally applied retigabine also exerted analgesic effects that were inhibited by intrathecally injected XE991. We then explored the synaptic mechanisms underlying the analgesic effects of retigabine in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult male mice developing neuropathic pain, and the effects of retigabine on miniature and afferent-evoked postsynaptic currents were examined. Retigabine reduced the amplitude of A-fiber-mediated EPSCs without affecting C-fiber-mediated excitatory synaptic transmission. A-fiber-mediated EPSCs remained unaltered by retigabine in the presence of XE991, consistently with the behavioral findings. The frequency and amplitude of mEPSCs were not affected by retigabine. Thus, opening of KCNQ channels in the central terminals of primary afferent A-fibers inhibits excitatory synaptic transmission in the spinal dorsal horn, most likely contributing to the analgesic effect of retigabine.


Asunto(s)
Analgésicos , Antracenos , Carbamatos , Canales de Potasio KCNQ , Fenilendiaminas , Animales , Masculino , Carbamatos/farmacología , Fenilendiaminas/farmacología , Canales de Potasio KCNQ/antagonistas & inhibidores , Canales de Potasio KCNQ/efectos de los fármacos , Antracenos/farmacología , Ratones , Analgésicos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Neuralgia/tratamiento farmacológico , Células del Asta Posterior/efectos de los fármacos , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/fisiología , Asta Dorsal de la Médula Espinal/efectos de los fármacos
5.
J Affect Disord ; 359: 364-372, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38772507

RESUMEN

Depression, a complex disorder with significant treatment challenges, necessitates innovative therapeutic approaches to address its multifaceted nature and enhance treatment outcomes. The modulation of KCNQ potassium (K+) channels, pivotal regulators of neuronal excitability and neurotransmitter release, is a promising innovative therapeutic target in psychiatry. Widely expressed across various tissues, including the nervous and cardiovascular systems, KCNQ channels play a crucial role in modulating membrane potential and regulating neuronal activity. Recent preclinical evidence suggests that KCNQ channels, particularly KCNQ3, contribute to the regulation of neuronal excitability within the reward circuitry, offering a potential target for alleviating depressive symptoms, notably anhedonia. Studies using animal models demonstrate that interventions targeting KCNQ channels can restore dopaminergic firing balance and mitigate depressive symptoms. Human studies investigating the effects of KCNQ channel activators, such as ezogabine, have shown promising results in alleviating depressive symptoms and anhedonia. The aforementioned observations underscore the therapeutic potential of KCNQ channel modulation in depression management and highlight the need and justification for phase 2 and phase 3 dose-finding studies as well as studies prespecifying symptomatic targets in depression including anhedonia.


Asunto(s)
Antidepresivos , Carbamatos , Trastorno Depresivo Mayor , Canales de Potasio KCNQ , Fenilendiaminas , Animales , Humanos , Anhedonia/efectos de los fármacos , Anhedonia/fisiología , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Carbamatos/farmacología , Carbamatos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Canales de Potasio KCNQ/agonistas , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ3/genética , Fenilendiaminas/farmacología , Fenilendiaminas/uso terapéutico
6.
Cell Rep ; 43(5): 114158, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38722742

RESUMEN

Throughout the brain, astrocytes form networks mediated by gap junction channels that promote the activity of neuronal ensembles. Although their inputs on neuronal information processing are well established, how molecular gap junction channels shape neuronal network patterns remains unclear. Here, using astroglial connexin-deficient mice, in which astrocytes are disconnected and neuronal bursting patterns are abnormal, we show that astrocyte networks strengthen bursting activity via dynamic regulation of extracellular potassium levels, independently of glutamate homeostasis or metabolic support. Using a facilitation-depression model, we identify neuronal afterhyperpolarization as the key parameter underlying bursting pattern regulation by extracellular potassium in mice with disconnected astrocytes. We confirm this prediction experimentally and reveal that astroglial network control of extracellular potassium sustains neuronal afterhyperpolarization via KCNQ voltage-gated K+ channels. Altogether, these data delineate how astroglial gap junctions mechanistically strengthen neuronal population bursts and point to approaches for controlling aberrant activity in neurological diseases.


Asunto(s)
Astrocitos , Uniones Comunicantes , Hipocampo , Canales de Potasio KCNQ , Potasio , Animales , Ratones , Potenciales de Acción/fisiología , Astrocitos/metabolismo , Conexinas/metabolismo , Conexinas/genética , Uniones Comunicantes/metabolismo , Hipocampo/metabolismo , Canales de Potasio KCNQ/metabolismo , Canales de Potasio KCNQ/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/metabolismo , Neuronas/metabolismo , Potasio/metabolismo , Masculino , Femenino
7.
Br J Pharmacol ; 181(16): 2851-2868, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38657956

RESUMEN

BACKGROUND AND PURPOSE: The analgesic action of paracetamol involves KV7 channels, and its metabolite N-acetyl-p-benzo quinone imine (NAPQI), a cysteine modifying reagent, was shown to increase currents through such channels in nociceptors. Modification of cysteine residues by N-ethylmaleimide, H2O2, or nitric oxide has been found to modulate currents through KV7 channels. The study aims to identify whether, and if so which, cysteine residues in neuronal KV7 channels might be responsible for the effects of NAPQI. EXPERIMENTAL APPROACH: To address this question, we used a combination of perforated patch-clamp recordings, site-directed mutagenesis, and mass spectrometry applied to recombinant KV7.1 to KV7.5 channels. KEY RESULTS: Currents through the cardiac subtype KV7.1 were reduced by NAPQI. Currents through all other subtypes were increased, either by an isolated shift of the channel voltage dependence to more negative values (KV7.3) or by such a shift combined with increased maximal current levels (KV7.2, KV7.4, KV7.5). A stretch of three cysteine residues in the S2-S3 linker region of KV7.2 was necessary and sufficient to mediate these effects. CONCLUSION AND IMPLICATION: The paracetamol metabolite N-acetyl-p-benzo quinone imine (NAPQI) modifies cysteine residues of KV7 subunits and reinforces channel gating in homomeric and heteromeric KV7.2 to KV7.5, but not in KV7.1 channels. In KV7.2, a triple cysteine motif located within the S2-S3 linker region mediates this reinforcement that can be expected to reduce the excitability of nociceptors and to mediate antinociceptive actions of paracetamol.


Asunto(s)
Acetaminofén , Benzoquinonas , Cisteína , Iminas , Cisteína/metabolismo , Acetaminofén/farmacología , Benzoquinonas/farmacología , Benzoquinonas/metabolismo , Animales , Iminas/farmacología , Iminas/química , Iminas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Canales de Potasio KCNQ/metabolismo , Canales de Potasio KCNQ/genética , Humanos , Secuencias de Aminoácidos , Analgésicos no Narcóticos/farmacología , Células HEK293 , Ratas
8.
Neuron ; 112(11): 1832-1847.e7, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460523

RESUMEN

KCNQs are voltage-gated K+ channels that control neuronal excitability and are mutated in epilepsy and autism spectrum disorder (ASD). KCNQs have been extensively studied in neurons, but their function in glia is unknown. Using voltage, calcium, and GABA imaging, optogenetics, and behavioral assays, we show here for the first time in Caenorhabditis elegans (C. elegans) that glial KCNQ channels control neuronal excitability by mediating GABA release from glia via regulation of the function of L-type voltage-gated Ca2+ channels. Further, we show that human KCNQ channels have the same role when expressed in nematode glia, underscoring conservation of function across species. Finally, we show that pathogenic loss-of-function and gain-of-function human KCNQ2 mutations alter glia-to-neuron GABA signaling in distinct ways and that the KCNQ channel opener retigabine exerts rescuing effects. This work identifies glial KCNQ channels as key regulators of neuronal excitability via control of GABA release from glia.


Asunto(s)
Caenorhabditis elegans , Carbamatos , Canales de Potasio KCNQ , Neuroglía , Ácido gamma-Aminobutírico , Animales , Ácido gamma-Aminobutírico/metabolismo , Neuroglía/metabolismo , Carbamatos/farmacología , Canales de Potasio KCNQ/metabolismo , Humanos , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ2/genética , Neuronas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fenilendiaminas/farmacología , Canales de Calcio Tipo L/metabolismo
9.
Hypertension ; 81(3): 561-571, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354270

RESUMEN

BACKGROUND: Small arteries exhibit resting tone, a partially contracted state that maintains arterial blood pressure. In arterial smooth muscle cells, potassium channels control contraction and relaxation. Perivascular adipose tissue (PVAT) has been shown to exert anticontractile effects on the blood vessels. However, the mechanisms by which PVAT signals small arteries, and their relevance remain largely unknown. We aimed to uncover key molecular components in adipose-vascular coupling. METHODS: A wide spectrum of genetic mouse models targeting Kcnq3, Kcnq4, and Kcnq5 genes (Kcnq3-/-, Kcnq4-/-, Kcnq5-/-, Kcnq5dn/dn, Kcnq4-/-/Kcnq5dn/dn, and Kcnq4-/-/Kcnq5-/-), telemetry blood pressure measurements, targeted lipidomics, RNA-Seq profiling, wire-myography, patch-clamp, and sharp-electrode membrane potential measurements was used. RESULTS: We show that PVAT causes smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels to hyperpolarize the membrane potential. This effect relaxes small arteries and regulates blood pressure. Oxygenation of polyunsaturated fats generates oxylipins, a superclass of lipid mediators. We identified numerous oxylipins released by PVAT, which potentiate vasodilatory action in small arteries by opening smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels. CONCLUSIONS: Our results reveal a key molecular function of the KV7.5 family of voltage-gated potassium (K+) channels in the adipose-vascular coupling, translating PVAT signals, particularly oxylipins, to the central physiological function of vasoregulation. This novel pathway opens new therapeutic perspectives.


Asunto(s)
Oxilipinas , Vasodilatación , Animales , Ratones , Tejido Adiposo , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Oxilipinas/metabolismo , Potasio/metabolismo
10.
Laryngoscope ; 134(5): 2356-2363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37962101

RESUMEN

OBJECTIVE: KCNQ4 is one of the most common disease-causing genes involved in autosomal dominant non-syndromic hearing loss. We previously found that patients with KCNQ4 p.G285S exhibited a much more rapid deterioration in hearing loss than those with other KCNQ4 variants. To determine the rate of hearing loss and assess the disease for further analysis, we performed a long-term follow-up of these patients and generated patient-derived induced pluripotent stem cells (iPSCs), and a mouse model. METHODS: Patients with KCNQ4 p.G285S from a five-generation family with hearing loss were followed up from 2005 to 2022. iPSCs were generated by stimulating peripheral blood mononuclear cells from the proband, and their pluripotency was determined. The Kcnq4 p.G286S mouse model was generated using CRISPR/Cas9, and its genotype and phenotype were identified. RESULTS: (1) The annual rates of hearing loss at the frequencies of speech were 0.96 dB for the proband and 0.87 dB for his father during the follow-up period, which were faster than patients with other KCNQ4 variants. (2) The patient-derived iPSC line carrying KCNQ4 p.G285S, possessed the capacity of differentiation and pluripotency capacities. (3) Mutant mice with Kcnq4 p.G286S exhibited hearing loss and outer hair cell loss at 1 month of age. CONCLUSION: Patients with KCNQ4 p.G285S variant exhibited significantly accelerated progression of hearing loss compared to those with other reported variants. Awareness of the natural history of hearing loss associated with KCNQ4 p.G285S is beneficial for genetic counseling and prognosis. The generation of the iPSCs and mouse model can provide a valuable foundation for further in-depth analyses. LEVEL OF EVIDENCE: 4 Laryngoscope, 134:2356-2363, 2024.


Asunto(s)
Sordera , Pérdida Auditiva , Canales de Potasio KCNQ , Animales , Humanos , Ratones , Genotipo , Pérdida Auditiva/genética , Células Madre Pluripotentes Inducidas , Canales de Potasio KCNQ/genética , Leucocitos Mononucleares
11.
Biochem Biophys Res Commun ; 689: 149218, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37976835

RESUMEN

KCNQ (Kv7) channels are voltage-gated, phosphatidylinositol 4,5-bisphosphate- (PIP2-) modulated potassium channels that play essential roles in regulating the activity of neurons and cardiac myocytes. Hundreds of mutations in KCNQ channels are closely related to various cardiac and neurological disorders, such as long QT syndrome, epilepsy, and deafness, which makes KCNQ channels important drug targets. During the past several years, the application of single-particle cryo-electron microscopy (cryo-EM) technique in the structure determination of KCNQ channels has greatly advanced our understanding of their molecular mechanisms. In this review, we summarize the currently available structures of KCNQ channels, analyze their special voltage gating mechanism, and discuss their activation mechanisms by both the endogenous membrane lipid and the exogenous synthetic ligands. These structural studies of KCNQ channels will guide the development of drugs targeting KCNQ channels.


Asunto(s)
Epilepsia , Síndrome de QT Prolongado , Humanos , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/química , Microscopía por Crioelectrón , Corazón , Síndrome de QT Prolongado/genética
12.
Sci Rep ; 13(1): 18608, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903775

RESUMEN

A large number of studies indicate that Potassium Voltage-Gated Channel Q4 (KCNQ4) gene is the cause of non-syndromic hearing loss, but there are few studies investigating the role of KCNQ4 in cancers and scarcity of comprehensive analysis of its involvement in the diagnosis, methylation, mutation, prognosis of various cancer types. Therefore, the aim of this study is to examine the anticancerous and immune effects of KCNQ4 in various cancers and its potential value in breast cancer. In this study, we explored the potential role of KCNQ4 in cancers using public databases and the R software for bioinformatics analysis. The results showed that the low expression of KCNQ4 across specific cancer types was positively associated with low mutation frequency and methylation, and the improved survival. Eight small molecule compounds were identified that could potentially target KCNQ4. In addition, immunohistochemistry confirmed that the KCNQ4 expression was low in breast cancer. In vitro experiments confirmed that overexpression of KCNQ4 inhibited cell migration and invasion and promoted apoptosis. In summary, our comprehensive pan-cancer analysis highlights the potential of KCNQ4 as a cancer marker, and can be used as an auxiliary prognostic indicator and an indicator for immunotherapy in certain tumor types.


Asunto(s)
Neoplasias de la Mama , Sordera , Humanos , Femenino , Sordera/genética , Mutación , Neoplasias de la Mama/genética , Canales de Potasio KCNQ/genética
13.
Life Sci Alliance ; 6(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37748809

RESUMEN

Voltage-sensitive potassium channels play an important role in controlling membrane potential and ionic homeostasis in the gut and have been implicated in gastrointestinal (GI) cancers. Through large-scale analysis of 897 patients with gastro-oesophageal adenocarcinomas (GOAs) coupled with in vitro models, we find KCNQ family genes are mutated in ∼30% of patients, and play therapeutically targetable roles in GOA cancer growth. KCNQ1 and KCNQ3 mediate the WNT pathway and MYC to increase proliferation through resultant effects on cadherin junctions. This also highlights novel roles of KCNQ3 in non-excitable tissues. We also discover that activity of KCNQ3 sensitises cancer cells to existing potassium channel inhibitors and that inhibition of KCNQ activity reduces proliferation of GOA cancer cells. These findings reveal a novel and exploitable role of potassium channels in the advancement of human cancer, and highlight that supplemental treatments for GOAs may exist through KCNQ inhibitors.


Asunto(s)
Adenocarcinoma , Canales de Potasio KCNQ , Humanos , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Canal de Potasio KCNQ2/fisiología , Adenocarcinoma/genética
14.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569725

RESUMEN

Recent evidence suggests that vitamin D is involved in the development of pulmonary arterial hypertension (PAH). The aim of this study was to analyze the electrophysiological and contractile properties of pulmonary arteries (PAs) in vitamin D receptor knockout mice (Vdr-/-). PAs were dissected and mounted in a wire myograph. Potassium membrane currents were recorded in freshly isolated PA smooth muscle cells (PASMCs) using the conventional whole-cell configuration of the patch-clamp technique. Potential vitamin D response elements (VDREs) in Kv7 channels coding genes were studied, and their protein expression was analyzed. Vdr-/- mice did not show a pulmonary hypertensive phenotype, as neither right ventricular hypertrophy nor endothelial dysfunction was apparent. However, resistance PA from these mice exhibited increased response to retigabine, a Kv7 activator, compared to controls and heterozygous mice. Furthermore, the current sensitive to XE991, a Kv7 inhibitor, was also higher in PASMCs from knockout mice. A possible VDRE was found in the gene coding for KCNE4, the regulatory subunit of Kv7.4. Accordingly, Vdr-/- mice showed an increased expression of KCNE4 in the lungs, with no changes in Kv7.1 and Kv7.4. These results indicate that the absence of Vdr in mice, as occurred with vitamin D deficient rats, is not sufficient to induce PAH. However, the contribution of Kv7 channel currents to the regulation of PA tone is increased in Vdr-/- mice, resembling animals and humans suffering from PAH.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Arteria Pulmonar , Animales , Humanos , Ratones , Ratas , Canales de Potasio KCNQ/metabolismo , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Arteria Pulmonar/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/farmacología , Vitamina D/metabolismo
15.
FASEB J ; 37(9): e23125, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37535015

RESUMEN

The evergreen plant rosemary (Salvia rosmarinus) has been employed medicinally for centuries as a memory aid, analgesic, spasmolytic, vasorelaxant and antihypertensive, with recent preclinical and clinical evidence rationalizing some applications. Voltage-gated potassium (Kv) channels in the KCNQ (Kv7) subfamily are highly influential in the nervous system, muscle and epithelia. KCNQ4 and KCNQ5 regulate vascular smooth muscle excitability and contractility and are implicated as antihypertensive drug targets. Here, we found that rosemary extract potentiates homomeric and heteromeric KCNQ4 and KCNQ5 activity, resulting in membrane hyperpolarization. Two rosemary diterpenes, carnosol and carnosic acid, underlie the effects and, like rosemary, are efficacious KCNQ-dependent vasorelaxants, quantified by myography in rat mesenteric arteries. Sex- and estrous cycle stage-dependence of the vasorelaxation matches sex- and estrous cycle stage-dependent KCNQ expression. The results uncover a molecular mechanism underlying rosemary vasorelaxant effects and identify new chemical spaces for KCNQ-dependent vasorelaxants.


Asunto(s)
Plantas Medicinales , Rosmarinus , Ratas , Animales , Músculo Liso Vascular/fisiología , Canales de Potasio KCNQ , Vasodilatadores/farmacología
16.
Biomed Pharmacother ; 164: 114952, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37295249

RESUMEN

KV7 channels exert a pivotal role regulating vascular tone in several vascular beds. In this context, KV7 channel agonists represent an attractive strategy for the treatment of pulmonary arterial hypertension (PAH). Therefore, in this study, we have explored the pulmonary vascular effects of the novel KV7 channel agonist URO-K10. Consequently, the vasodilator and electrophysiological effects of URO-K10 were tested in rat and human pulmonary arteries (PA) and PA smooth muscle cells (PASMC) using myography and patch-clamp techniques. Protein expression was also determined by Western blot. Morpholino-induced knockdown of KCNE4 was assessed in isolated PA. PASMC proliferation was measured by BrdU incorporation assay. In summary, our data show that URO-K10 is a more effective relaxant of PA than the classical KV7 activators retigabine and flupirtine. URO-K10 enhanced KV currents in PASMC and its electrophysiological and relaxant effects were inhibited by the KV7 channel blocker XE991. The effects of URO-K10 were confirmed in human PA. URO-K10 also exhibited antiproliferative effects in human PASMC. Unlike retigabine and flupirtine, URO-K10-induced pulmonary vasodilation was not affected by morpholino-induced knockdown of the KCNE4 regulatory subunit. Noteworthy, the pulmonary vasodilator efficacy of this compound was considerably increased under conditions mimicking the ionic remodelling (as an in vitro model of PAH) and in PA from monocrotaline-induced pulmonary hypertensive rats. Taking all together, URO-K10 behaves as a KCNE4-independent KV7 channel activator with much increased pulmonary vascular effects compared to classical KV7 channel activators. Our study identifies a promising new drug in the context of PAH.


Asunto(s)
Canales de Potasio KCNQ , Canales de Potasio con Entrada de Voltaje , Animales , Humanos , Ratas , Canales de Potasio KCNQ/genética , Morfolinos , Canales de Potasio con Entrada de Voltaje/genética , Vasodilatadores/farmacología
17.
Nat Commun ; 14(1): 3547, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321992

RESUMEN

Autism spectrum disorders (ASD) represent neurodevelopmental disorders characterized by social deficits, repetitive behaviors, and various comorbidities, including epilepsy. ANK2, which encodes a neuronal scaffolding protein, is frequently mutated in ASD, but its in vivo functions and disease-related mechanisms are largely unknown. Here, we report that mice with Ank2 knockout restricted to cortical and hippocampal excitatory neurons (Ank2-cKO mice) show ASD-related behavioral abnormalities and juvenile seizure-related death. Ank2-cKO cortical neurons show abnormally increased excitability and firing rate. These changes accompanied decreases in the total level and function of the Kv7.2/KCNQ2 and Kv7.3/KCNQ3 potassium channels and the density of these channels in the enlengthened axon initial segment. Importantly, the Kv7 agonist, retigabine, rescued neuronal excitability, juvenile seizure-related death, and hyperactivity in Ank2-cKO mice. These results suggest that Ank2 regulates neuronal excitability by regulating the length of and Kv7 density in the AIS and that Kv7 channelopathy is involved in Ank2-related brain dysfunctions.


Asunto(s)
Epilepsia , Canales de Potasio KCNQ , Animales , Ratones , Epilepsia/metabolismo , Canales de Potasio KCNQ/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Neuronas/metabolismo , Convulsiones/genética , Convulsiones/metabolismo
18.
Mol Pharmacol ; 104(2): 42-50, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37280100

RESUMEN

Modulation of KCNQ-encoded voltage-gated potassium Kv7/M channel function represents an attractive strategy to treat neuronal excitability disorders such as epilepsy, pain, and depression. The Kv7 channel group includes five subfamily members (Kv7.1-Kv7.5). Pentacyclic triterpenes display extensive pharmacological activities including antitumor, anti-inflammatory, and antidepression effects. In this study, we investigated the effects of pentacyclic triterpenes on Kv7 channels. Our results show that echinocystic acid, ursonic acid, oleanonic acid, demethylzeylasteral, corosolic acid, betulinaldehyde, acetylursolic acid, and α-boswellic acid gradually exert decreasing degrees of Kv7.2/Kv7.3 channel current inhibition. Echinocystic acid was the most potent inhibitor, with a half-maximal inhibitory concentration (IC50) of 2.5 µM. It significantly shifted the voltage-dependent activation curve in a positive direction and slowed the time constant of activation for Kv7.2/Kv7.3 channel currents. Furthermore, echinocystic acid nonselectively inhibited Kv7.1-Kv7.5 channels. Taken together, our findings indicate that echinocystic acid is a novel and potent inhibitor that could be used as a tool to further understand the pharmacological functions of neuronal Kv7 channels. SIGNIFICANCE STATEMENT: Pentacyclic triterpenes reportedly have multiple potential therapeutic uses such as anticancer, anti-inflammatory, antioxidant, and antidepression effects. In the present study, we show that echinocystic acid, ursonic acid, oleanonic acid, and demethylzeylasteral inhibit Kv7.2/Kv7.3 channels to varying degrees. Of these, echinocystic acid was the most potent Kv7.2/Kv7.3 current inhibitor and inhibited Kv7.1-Kv7.5 currents in a nonselective manner.


Asunto(s)
Ácido Oleanólico , Canales de Potasio con Entrada de Voltaje , Ácido Oleanólico/farmacología , Canales de Potasio KCNQ
19.
Stem Cell Res ; 70: 103119, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37244124

RESUMEN

The voltage-gated potassium channel KvLQT1 encoded by KCNQ1 plays an important role in the repolarization of myocardial action potentials. KCNQ1 mutations can cause Long QT syndrome type 1 (LQT1), which is considered to be the most common causative gene of LQT. In this study, we established a human embryonic stem cell line KCNQ1L114P/+ (WAe009-A-79) carrying a LQT1 related mutation in KCNQ1. The WAe009-A-79 line maintains the morphology, pluripotency, and normal karyotype of stem cells, and can differentiate into all three germ layers in vivo.


Asunto(s)
Células Madre Embrionarias Humanas , Síndrome de QT Prolongado , Canales de Potasio con Entrada de Voltaje , Síndrome de Romano-Ward , Humanos , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de Romano-Ward/genética , Mutación/genética , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio KCNQ/genética
20.
J Membr Biol ; 256(3): 287-297, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37166559

RESUMEN

Heart diseases such as arrhythmia are the main causes of sudden death. Arrhythmias are typically caused by mutations in specific genes, damage in the cardiac tissue, or due to some chemical exposure. Arrhythmias caused due to mutation is called inherited arrhythmia. Induced arrhythmias are caused due to tissue damage or chemical exposure. Mutations in genes that encode ion channels of the cardiac cells usually result in (dysfunction) improper functioning of the channel. Improper functioning of the ion channel may lead to major changes in the action potential (AP) of the cardiac cells. This further leads to distorted electrical activity of the heart. Distorted electrical activity will affect the ECG that results in arrhythmia. KCNQ1 P535T mutation is one such gene mutation that encodes the potassium ion channel (KV7.1) of the cardiac ventricular tissue. Its clinical significance is not known. This study aims to perform a simulation study on P535T mutation in the KCNQ1 gene that encodes the potassium ion channel KV7.1 in the ventricular tissue grid. The effect of P535T mutation on transmural tissue grids for three genotypes (wild type, heterozygous, and homozygous) of cells are studied and the generated pseudo-ECGs are compared. Results show the delayed repolarization in the cells of ventricular tissue grid. Slower propagation of action potential in the transmural tissue grid is observed in the mutated (heterozygous and homozygous) genotypes. Longer QT interval is also observed in the pseudo-ECG of heterozygous and homozygous genotype tissue grids. From the pseudo-ECGs, it is observed that KCNQ1 P535T mutation leads to Long QT Syndrome (LQTS) which may result in life-threatening arrhythmias, such as Torsade de Pointes (TdP), Jervell and Lange-Nielsen syndrome (JLNS), and Romano-Ward syndrome (RWS).


Asunto(s)
Síndrome de Jervell-Lange Nielsen , Síndrome de QT Prolongado , Síndrome de Romano-Ward , Humanos , Canal de Potasio KCNQ1/genética , Síndrome de Jervell-Lange Nielsen/genética , Síndrome de QT Prolongado/genética , Síndrome de Romano-Ward/genética , Mutación , Canales de Potasio , Canales de Potasio KCNQ/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...