Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(6): e4995, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747377

RESUMEN

Membrane proteins play critical physiological roles as receptors, channels, pumps, and transporters. Despite their importance, however, low expression levels often hamper the experimental characterization of membrane proteins. We present an automated and web-accessible design algorithm called mPROSS (https://mPROSS.weizmann.ac.il), which uses phylogenetic analysis and an atomistic potential, including an empirical lipophilicity scale, to improve native-state energy. As a stringent test, we apply mPROSS to the Kv1.2-Kv2.1 paddle chimera voltage-gated potassium channel. Four designs, encoding 9-26 mutations relative to the parental channel, were functional and maintained potassium-selective permeation and voltage dependence in Xenopus oocytes with up to 14-fold increase in whole-cell current densities. Additionally, single-channel recordings reveal no significant change in the channel-opening probability nor in unitary conductance, indicating that functional expression levels increase without impacting the activity profile of individual channels. Our results suggest that the expression levels of other dynamic channels and receptors may be enhanced through one-shot design calculations.


Asunto(s)
Xenopus laevis , Animales , Algoritmos , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/metabolismo , Canal de Potasio Kv.1.2/química , Oocitos/metabolismo , Filogenia , Canales de Potasio Shab/metabolismo , Canales de Potasio Shab/genética , Canales de Potasio Shab/química , Mutación , Xenopus
2.
Mol Inform ; 42(12): e202300072, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37793122

RESUMEN

Kv2.1 is widely expressed in brain, and inhibiting Kv2.1 is a potential strategy to prevent cell death and achieve neuroprotection in ischemic stroke. Herein, an in silico model of Kv2.1 tetramer structure was constructed by employing the AlphaFold-Multimer deep learning method to facilitate the rational discovery of Kv2.1 inhibitors. GaMD was utilized to create an ion transporting trajectory, which was analyzed with HMM to generate multiple representative receptor conformations. The binding site of RY785 and RY796(S) under the P-loop was defined with Fpocket program together with the competitive binding electrophysiology assay. The docking poses of the two inhibitors were predicted with the aid of the semi-empirical quantum mechanical calculation, and the IGMH results suggested that Met375, Thr376, and Thr377 of the P-helix and Ile405 of the S6 segment made significant contributions to the binding affinity. These results provided insights for rational molecular design to develop novel Kv2.1 inhibitors.


Asunto(s)
Canales de Potasio Shab , Canales de Potasio Shab/química , Canales de Potasio Shab/metabolismo , Sitios de Unión
3.
Hum Mutat ; 41(1): 69-80, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31513310

RESUMEN

Developmental and epileptic encephalopathies (DEE) refer to a heterogeneous group of devastating neurodevelopmental disorders. Variants in KCNB1 have been recently reported in patients with early-onset DEE. KCNB1 encodes the α subunit of the delayed rectifier voltage-dependent potassium channel Kv 2.1. We review the 37 previously reported patients carrying 29 distinct KCNB1 variants and significantly expand the mutational spectrum describing 18 novel variants from 27 unreported patients. Most variants occur de novo and mainly consist of missense variants located on the voltage sensor and the pore domain of Kv 2.1. We also report the first inherited variant (p.Arg583*). KCNB1-related encephalopathies encompass a wide spectrum of neurodevelopmental disorders with predominant language difficulties and behavioral impairment. Eighty-five percent of patients developed epilepsies with variable syndromes and prognosis. Truncating variants in the C-terminal domain are associated with a less-severe epileptic phenotype. Overall, this report provides an up-to-date review of the mutational and clinical spectrum of KCNB1, strengthening its place as a causal gene in DEEs and emphasizing the need for further functional studies to unravel the underlying mechanisms.


Asunto(s)
Epilepsia/diagnóstico , Epilepsia/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Canales de Potasio Shab/genética , Alelos , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Fenotipo , Canales de Potasio Shab/química , Canales de Potasio Shab/metabolismo , Relación Estructura-Actividad
4.
Ann Neurol ; 86(6): 899-912, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31600826

RESUMEN

OBJECTIVE: Pathogenic variants in KCNB1, encoding the voltage-gated potassium channel KV 2.1, are associated with developmental and epileptic encephalopathy (DEE). Previous functional studies on a limited number of KCNB1 variants indicated a range of molecular mechanisms by which variants affect channel function, including loss of voltage sensitivity, loss of ion selectivity, and reduced cell-surface expression. METHODS: We evaluated a series of 17 KCNB1 variants associated with DEE or other neurodevelopmental disorders (NDDs) to rapidly ascertain channel dysfunction using high-throughput functional assays. Specifically, we investigated the biophysical properties and cell-surface expression of variant KV 2.1 channels expressed in heterologous cells using high-throughput automated electrophysiology and immunocytochemistry-flow cytometry. RESULTS: Pathogenic variants exhibited diverse functional defects, including altered current density and shifts in the voltage dependence of activation and/or inactivation, as homotetramers or when coexpressed with wild-type KV 2.1. Quantification of protein expression also identified variants with reduced total KV 2.1 expression or deficient cell-surface expression. INTERPRETATION: Our study establishes a platform for rapid screening of KV 2.1 functional defects caused by KCNB1 variants associated with DEE and other NDDs. This will aid in establishing KCNB1 variant pathogenicity and the mechanism of dysfunction, which will enable targeted strategies for therapeutic intervention based on molecular phenotype. ANN NEUROL 2019;86:899-912.


Asunto(s)
Variación Genética/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Trastornos del Neurodesarrollo/genética , Canales de Potasio Shab/genética , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Trastornos del Neurodesarrollo/diagnóstico , Estructura Secundaria de Proteína , Canales de Potasio Shab/química
5.
Biochem Biophys Res Commun ; 512(4): 665-669, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-30922570

RESUMEN

Voltage-gated potassium (K+) channel sub-family B member 1 (KCNB1, Kv2.1) is known to undergo oxidation-induced oligomerization during aging but whether this process affects brain's physiology was not known. Here, we used 10, 16 and 22 month-old transgenic mice overexpressing a KCNB1 variant that does not oligomerize (Tg-C73A) and as control, mice overexpressing the wild type (Tg-WT) channel and non-transgenic (non-Tg) mice to elucidate the effects of channel's oxidation on cognitive function. Aging mice in which KCNB1 oligomerization is negligible (Tg-C73A), performed significantly better in the Morris Water Maze (MWM) test of working memory compared to non-Tg or Tg-WT mice. KCNB1 and synapsin-1 co-immunoprecipitated and the cognitive impairment in the MWM was associated with moderate loss of synapsin-1 in pre-synaptic structures of the hippocampus, whereas neurodegeneration and neuronal loss were not significantly different in the various genotypes. We conclude that moderate oxidation of the KCNB1 channel during aging can influence neuronal networks by affecting synaptic function.


Asunto(s)
Envejecimiento , Disfunción Cognitiva/metabolismo , Estrés Oxidativo , Canales de Potasio Shab/metabolismo , Animales , Disfunción Cognitiva/genética , Disfunción Cognitiva/fisiopatología , Expresión Génica , Variación Genética , Humanos , Memoria a Corto Plazo , Ratones , Ratones Transgénicos , Oxidación-Reducción , Multimerización de Proteína , Canales de Potasio Shab/química , Canales de Potasio Shab/genética
6.
J Gen Physiol ; 151(3): 292-315, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30397012

RESUMEN

Allosteric ligands modulate protein activity by altering the energy landscape of conformational space in ligand-protein complexes. Here we investigate how ligand binding to a K+ channel's voltage sensor allosterically modulates opening of its K+-conductive pore. The tarantula venom peptide guangxitoxin-1E (GxTx) binds to the voltage sensors of the rat voltage-gated K+ (Kv) channel Kv2.1 and acts as a partial inverse agonist. When bound to GxTx, Kv2.1 activates more slowly, deactivates more rapidly, and requires more positive voltage to reach the same K+-conductance as the unbound channel. Further, activation kinetics are more sigmoidal, indicating that multiple conformational changes coupled to opening are modulated. Single-channel current amplitudes reveal that each channel opens to full conductance when GxTx is bound. Inhibition of Kv2.1 channels by GxTx results from decreased open probability due to increased occurrence of long-lived closed states; the time constant of the final pore opening step itself is not impacted by GxTx. When intracellular potential is less than 0 mV, GxTx traps the gating charges on Kv2.1's voltage sensors in their most intracellular position. Gating charges translocate at positive voltages, however, indicating that GxTx stabilizes the most intracellular conformation of the voltage sensors (their resting conformation). Kinetic modeling suggests a modulatory mechanism: GxTx reduces the probability of voltage sensors activating, giving the pore opening step less frequent opportunities to occur. This mechanism results in K+-conductance activation kinetics that are voltage-dependent, even if pore opening (the rate-limiting step) has no inherent voltage dependence. We conclude that GxTx stabilizes voltage sensors in a resting conformation, and inhibits K+ currents by limiting opportunities for the channel pore to open, but has little, if any, direct effect on the microscopic kinetics of pore opening. The impact of GxTx on channel gating suggests that Kv2.1's pore opening step does not involve movement of its voltage sensors.


Asunto(s)
Proteínas de Artrópodos/farmacología , Activación del Canal Iónico , Canales de Potasio Shab/metabolismo , Venenos de Araña/farmacología , Regulación Alostérica , Sitio Alostérico , Animales , Proteínas de Artrópodos/química , Células CHO , Cricetinae , Cricetulus , Unión Proteica , Ratas , Canales de Potasio Shab/agonistas , Canales de Potasio Shab/química , Venenos de Araña/química
7.
Int J Mol Sci ; 19(8)2018 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-30126179

RESUMEN

Two-pore domain K⁺ channels (K2P) display a characteristic extracellular cap structure formed by two M1-P1 linkers, the functional role of which is poorly understood. It has been proposed that the presence of the cap explains the insensitivity of K2P channels to several K⁺ channel blockers including tetraethylammonium (TEA). We have explored this hypothesis using mutagenesis and functional analysis, followed by molecular simulations. Our results show that the deletion of the cap structure of TASK-3 (TWIK-related acid-sensitive K⁺ channel) generates a TEA-sensitive channel with an IC50 of 11.8 ± 0.4 mM. The enhanced sensitivity to TEA displayed by the cap-less channel is also explained by the presence of an extra tyrosine residue at position 99. These results were corroborated by molecular simulation analysis, which shows an increased stability in the binding of TEA to the cap-less channel when a ring of four tyrosine is present at the external entrance of the permeation pathway. Consistently, Y99A or Y205A single-residue mutants generated in a cap-less channel backbone resulted in TASK-3 channels with low affinity to external TEA.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio Shab/antagonistas & inhibidores , Tetraetilamonio/farmacología , Secuencia de Aminoácidos , Animales , Cobayas , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Mutación Puntual , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Ratas , Canales de Potasio Shab/química , Canales de Potasio Shab/genética , Canales de Potasio Shab/metabolismo
8.
Elife ; 72018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30109985

RESUMEN

Voltage-activated potassium (Kv) channels open to conduct K+ ions in response to membrane depolarization, and subsequently enter non-conducting states through distinct mechanisms of inactivation. X-ray structures of detergent-solubilized Kv channels appear to have captured an open state even though a non-conducting C-type inactivated state would predominate in membranes in the absence of a transmembrane voltage. However, structures for a voltage-activated ion channel in a lipid bilayer environment have not yet been reported. Here we report the structure of the Kv1.2-2.1 paddle chimera channel reconstituted into lipid nanodiscs using single-particle cryo-electron microscopy. At a resolution of ~3 Å for the cytosolic domain and ~4 Å for the transmembrane domain, the structure determined in nanodiscs is similar to the previously determined X-ray structure. Our findings show that large differences in structure between detergent and lipid bilayer environments are unlikely, and enable us to propose possible structural mechanisms for C-type inactivation.


Asunto(s)
Canal de Potasio Kv.1.2/ultraestructura , Membrana Dobles de Lípidos/química , Nanocompuestos/ultraestructura , Canales de Potasio Shab/ultraestructura , Animales , Microscopía por Crioelectrón , Cristalografía por Rayos X , Activación del Canal Iónico , Canal de Potasio Kv.1.2/química , Nanocompuestos/química , Potasio/química , Conformación Proteica , Ratas , Canales de Potasio Shab/química
9.
Cell Death Dis ; 9(8): 820, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30050035

RESUMEN

Oxidative modification of the voltage-gated K+ channel subfamily B member 1 (KCNB1, Kv2.1) is emerging as a mechanism of neuronal vulnerability potentially capable of affecting multiple conditions associated with oxidative stress, from normal aging to neurodegenerative disease. In this study we report that oxidation of KCNB1 channels is exacerbated in the post mortem brains of Alzheimer's disease (AD) donors compared to age-matched controls. In addition, phosphorylation of Focal Adhesion kinases (FAK) and Src tyrosine kinases, two key signaling steps that follow KCNB1 oxidation, is also strengthened in AD vs. control brains. Quadruple transgenic mice expressing a non-oxidizable form of KCNB1 in the 3xTg-AD background (APPSWE, PS1M146V, and tauP301L), exhibit improved working memory along with reduced brain inflammation, protein carbonylation and intraneuronal ß-amyloid (Aß) compared to 3xTg-AD mice or mice expressing the wild type (WT) KCNB1 channel. We conclude that oxidation of KCNB1 channels is a mechanism of neuronal vulnerability that is pervasive in the vertebrate brain.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Canales de Potasio Shab/metabolismo , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/metabolismo , Animales , Dasatinib/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Quinasa 1 de Adhesión Focal/metabolismo , Gliosis , Humanos , Masculino , Memoria a Corto Plazo , Ratones , Ratones Transgénicos , Estrés Oxidativo , Carbonilación Proteica , Canales de Potasio Shab/química , Canales de Potasio Shab/genética , Familia-src Quinasas/metabolismo
10.
Proc Natl Acad Sci U S A ; 115(31): E7331-E7340, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29941597

RESUMEN

Kv2.1 exhibits two distinct forms of localization patterns on the neuronal plasma membrane: One population is freely diffusive and regulates electrical activity via voltage-dependent K+ conductance while a second one localizes to micrometer-sized clusters that contain densely packed, but nonconducting, channels. We have previously established that these clusters represent endoplasmic reticulum/plasma membrane (ER/PM) junctions that function as membrane trafficking hubs and that Kv2.1 plays a structural role in forming these membrane contact sites in both primary neuronal cultures and transfected HEK cells. Clustering and the formation of ER/PM contacts are regulated by phosphorylation within the channel C terminus, offering cells fast, dynamic control over the physical relationship between the cortical ER and PM. The present study addresses the mechanisms by which Kv2.1 and the related Kv2.2 channel interact with the ER membrane. Using proximity-based biotinylation techniques in transfected HEK cells we identified ER VAMP-associated proteins (VAPs) as potential Kv2.1 interactors. Confirmation that Kv2.1 and -2.2 bind VAPA and VAPB employed colocalization/redistribution, siRNA knockdown, and Förster resonance energy transfer (FRET)-based assays. CD4 chimeras containing sequence from the Kv2.1 C terminus were used to identify a noncanonical VAP-binding motif. VAPs were first identified as proteins required for neurotransmitter release in Aplysia and are now known to be abundant scaffolding proteins involved in membrane contact site formation throughout the ER. The VAP interactome includes AKAPs, kinases, membrane trafficking machinery, and proteins regulating nonvesicular lipid transport from the ER to the PM. Therefore, the Kv2-induced VAP concentration at ER/PM contact sites is predicted to have wide-ranging effects on neuronal cell biology.


Asunto(s)
Membrana Celular/química , Retículo Endoplásmico/química , Canales de Potasio Shab/química , Proteínas de Transporte Vesicular/química , Animales , Biotinilación , Células HEK293 , Hipocampo/metabolismo , Humanos , Transporte de Proteínas , Ratas , Canales de Potasio Shab/fisiología , Proteínas de Transporte Vesicular/metabolismo
11.
Nat Struct Mol Biol ; 25(4): 320-326, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29581567

RESUMEN

Membrane potential regulates the activity of voltage-dependent ion channels via specialized voltage-sensing modules, but the mechanisms involved in coupling voltage-sensor movement to pore opening remain unclear owing to a lack of resting state structures and robust methods to identify allosteric pathways. Here, using a newly developed interaction-energy analysis, we probe the interfaces of the voltage-sensing and pore modules in the Drosophila Shaker K+ channel. Our measurements reveal unexpectedly strong equilibrium gating interactions between contacts at the S4 and S5 helices in addition to those between S6 and the S4-S5 linker. Network analysis of MD trajectories shows that the voltage-sensor and pore motions are linked by two distinct pathways: a canonical pathway through the S4-S5 linker and a hitherto unknown pathway akin to rack-and-pinion coupling involving the S4 and S5 helices. Our findings highlight the central role of the S5 helix in electromechanical transduction in the voltage-gated ion channel (VGIC) superfamily.


Asunto(s)
Canal de Potasio Kv.1.2/química , Potenciales de la Membrana , Mapeo de Interacción de Proteínas , Canales de Potasio Shab/química , Sitio Alostérico , Animales , Drosophila melanogaster , Activación del Canal Iónico , Conformación Molecular , Simulación de Dinámica Molecular , Mutagénesis , Mutación , Oocitos/metabolismo , Proteínas Recombinantes de Fusión/química , Transducción de Señal , Espectrometría de Fluorescencia , Procesos Estocásticos , Xenopus laevis/metabolismo
12.
Methods Mol Biol ; 1684: 305-319, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29058201

RESUMEN

Voltage-gated potassium channels play pivotal roles in excitable and non-excitable cells. For many decades, structural properties and molecular mechanisms of these channels were inferred from functional observations. At the turn of the twenty-first century, structural biology revealed major aspects in the structural basis of ion channel organization, permeation, and gating. Among the available tools, homology modeling associated with low resolution microscopy helps in delineating the different structural elements of voltage-gated channels. Here, we describe in detail the methodology of homology modeling, using the 3D structure of the Kv2.1ΔCTA ion channel as a reference.


Asunto(s)
Biología Computacional/métodos , Canales de Potasio Shab/química , Microscopía Electrónica , Modelos Moleculares , Conformación Proteica , Homología Estructural de Proteína
13.
Sci Rep ; 7: 41646, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139741

RESUMEN

Heterotetramer voltage-gated K+ (KV) channels KV2.1/KV6.4 display a gating charge-voltage (QV) distribution composed by two separate components. We use state dependent chemical accessibility to cysteines substituted in either KV2.1 or KV6.4 to assess the voltage sensor movements of each subunit. By comparing the voltage dependences of chemical modification and gating charge displacement, here we show that each gating charge component corresponds to a specific subunit forming the heterotetramer. The voltage sensors from KV6.4 subunits move at more negative potentials than the voltage sensors belonging to KV2.1 subunits. These results indicate that the voltage sensors from the tetrameric channels move independently. In addition, our data shows that 75% of the total charge is attributed to KV2.1, while 25% to KV6.4. Thus, the most parsimonious model for KV2.1/KV6.4 channels' stoichiometry is 3:1.


Asunto(s)
Activación del Canal Iónico , Multimerización de Proteína , Canales de Potasio Shab/química , Canales de Potasio Shab/metabolismo , Secuencia de Aminoácidos , Línea Celular , Células Cultivadas , Humanos , Potenciales de la Membrana , Subunidades de Proteína , Canales de Potasio Shab/genética
14.
J Hum Genet ; 62(5): 569-573, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27928161

RESUMEN

Potassium voltage-gated channel subfamily B member 1 (KCNB1) encodes Kv2.1 potassium channel of crucial role in hippocampal neuron excitation homeostasis. KCNB1 mutations are known to cause early-onset infantile epilepsy. To date, 10 KCNB1 mutations have been described in 11 patients. Using whole-exome sequencing, we identified a novel de novo missense (c.1132G>C, p.V378L) KCNB1 mutation in a patient with global developmental delay, intellectual disability, severe speech impairment, but no episode of epilepsy until the lastly examined age of 6 years old. Furthermore, she showed neuropsychiatric symptoms including hyperactivity with irritability, heteroaggressiveness, psychomotor instability and agitation. Our observation might expand the phenotypic spectrum of KCNB1-related phenotypes and raises the issue of the occurrence of the epileptic phenotype.


Asunto(s)
Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Mutación/genética , Canales de Potasio Shab/genética , Secuencia de Aminoácidos , Preescolar , Electroencefalografía , Femenino , Humanos , Lactante , Fenotipo , Canales de Potasio Shab/química , Síndrome
15.
Toxicon ; 124: 8-14, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27810559

RESUMEN

Jingzhaotoxin-XI (JZTX-XI) is a 34-residue peptide from the Chinese tarantula Chilobrachys jingzhao venom that potently inhibits both voltage-gated sodium channel Nav1.5 and voltage-gated potassium channel Kv2.1. In the present study, we further showed that JZTX-XI blocked Kv2.1 currents with the IC50 value of 0.39 ± 0.06 µM. JZTX-XI significantly shifted the current-voltage (I-V) curves and normalized conductance-voltage (G-V) curves of Kv2.1 channel to more depolarized voltages. Ala-scanning mutagenesis analyses demonstrated that mutants I273A, F274A, and E277A reduced toxin binding affinity by 10-, 16-, and 18-fold, respectively, suggesting that three common residues (I273, F274, E277) in the Kv2.1 S3b segment contribute to the formation of JZTX-XI receptor site, and the acidic residue Glu at the position 277 in Kv2.1 is the most important residue for JZTX-XI sensitivity. A single replacement of E277 with Asp(D) increased toxin inhibitory activity. These results establish that JZTX-XI inhibits Kv2.1 activation by trapping the voltage sensor in the rested state through a similar mechanism to that of HaTx1, but these two toxins have small differences in the most crucial molecular determinant. Furthermore, the in-depth investigation of the subtle differences in molecular determinants may be useful for increasing our understanding of the molecular details regarding toxin-channel interactions.


Asunto(s)
Péptidos/toxicidad , Canales de Potasio Shab/efectos de los fármacos , Venenos de Araña/toxicidad , Secuencia de Aminoácidos , Animales , Sitios de Unión , Mutagénesis Sitio-Dirigida , Homología de Secuencia de Aminoácido , Canales de Potasio Shab/química , Canales de Potasio Shab/genética
16.
Sci Rep ; 6: 23894, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27045173

RESUMEN

Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b-S4 "paddle motif," which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple toxin binding sites. We show here that the S3-S4 segments within Cav3.1 can be transplanted into Kv2.1 to examine their individual contributions to voltage sensing and pharmacology. With these results, we now have a more complete picture of the conserved nature of the paddle motif in all three major voltage-gated ion channel types (Kv, Nav, and Cav). When screened with tarantula toxins, the four paddle sequences display distinct toxin binding properties, demonstrating that gating-modifier toxins can bind to Cav channels in a domain specific fashion. Domain III was the most commonly and strongly targeted, and mutagenesis revealed an acidic residue that is important for toxin binding. We also measured the lipid partitioning strength of all toxins tested and observed a positive correlation with their inhibition of Cav3.1, suggesting a key role for membrane partitioning.


Asunto(s)
Canales de Calcio Tipo T/química , Neurotoxinas/química , Canales de Potasio Shab/química , Venenos de Araña/química , Secuencias de Aminoácidos , Animales , Sitios de Unión , Calcio/química , Membrana Celular/química , Activación del Canal Iónico , Lípidos/química , Modelos Moleculares , Oocitos/química , Canales de Potasio con Entrada de Voltaje/química , Unión Proteica , Dominios Proteicos , Proteínas/química , Ratas , Arañas , Xenopus laevis
17.
PLoS One ; 10(10): e0141349, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26505474

RESUMEN

The voltage-gated K+ (Kv) channel subunits Kv2.1 and Kv2.2 are expressed in almost every tissue. The diversity of Kv2 current is increased by interacting with the electrically silent Kv (KvS) subunits Kv5-Kv6 and Kv8-Kv9, into functional heterotetrameric Kv2/KvS channels. These Kv2/KvS channels possess unique biophysical properties and display a more tissue-specific expression pattern, making them more desirable pharmacological and therapeutic targets. However, little is known about the pharmacological properties of these heterotetrameric complexes. We demonstrate that Kv5.1, Kv8.1 and Kv9.3 currents were inhibited differently by the channel blocker 4-aminopyridine (4-AP) compared to Kv2.1 homotetramers. In contrast, Kv6.4 currents were potentiated by 4-AP while displaying moderately increased affinities for the channel pore blockers quinidine and flecainide. We found that the 4-AP induced potentiation of Kv6.4 currents was caused by modulation of the Kv6.4-mediated closed-state inactivation: suppression by 4-AP of the Kv2.1/Kv6.4 closed-state inactivation recovered a population of Kv2.1/Kv6.4 channels that was inactivated at resting conditions, i.e. at a holding potential of -80 mV. This modulation also resulted in a slower initiation and faster recovery from closed-state inactivation. Using chimeric substitutions between Kv6.4 and Kv9.3 subunits, we demonstrated that the lower half of the S6 domain (S6c) plays a crucial role in the 4-AP induced potentiation. These results demonstrate that KvS subunits modify the pharmacological response of Kv2 subunits when assembled in heterotetramers and illustrate the potential of KvS subunits to provide unique pharmacological properties to the heterotetramers, as is the case for 4-AP on Kv2.1/Kv6.4 channels.


Asunto(s)
4-Aminopiridina/química , Multimerización de Proteína/efectos de los fármacos , Subunidades de Proteína/química , Canales de Potasio Shab/química , 4-Aminopiridina/farmacología , Secuencias de Aminoácidos/genética , Animales , Línea Celular , Humanos , Potenciales de la Membrana/efectos de los fármacos , Ratones , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Prolina/química , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Canales de Potasio Shab/antagonistas & inhibidores , Canales de Potasio Shab/genética , Transfección
18.
Elife ; 4: e06774, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25948544

RESUMEN

Tarantula toxins that bind to voltage-sensing domains of voltage-activated ion channels are thought to partition into the membrane and bind to the channel within the bilayer. While no structures of a voltage-sensor toxin bound to a channel have been solved, a structural homolog, psalmotoxin (PcTx1), was recently crystalized in complex with the extracellular domain of an acid sensing ion channel (ASIC). In the present study we use spectroscopic, biophysical and computational approaches to compare membrane interaction properties and channel binding surfaces of PcTx1 with the voltage-sensor toxin guangxitoxin (GxTx-1E). Our results show that both types of tarantula toxins interact with membranes, but that voltage-sensor toxins partition deeper into the bilayer. In addition, our results suggest that tarantula toxins have evolved a similar concave surface for clamping onto α-helices that is effective in aqueous or lipidic physical environments.


Asunto(s)
Bloqueadores del Canal Iónico Sensible al Ácido/química , Canales Iónicos Sensibles al Ácido/química , Proteínas de Artrópodos/química , Neurotoxinas/química , Péptidos/química , Canales de Potasio Shab/química , Venenos de Araña/química , Bloqueadores del Canal Iónico Sensible al Ácido/síntesis química , Bloqueadores del Canal Iónico Sensible al Ácido/toxicidad , Canales Iónicos Sensibles al Ácido/genética , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/síntesis química , Proteínas de Artrópodos/toxicidad , Expresión Génica , Activación del Canal Iónico , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Neurotoxinas/síntesis química , Neurotoxinas/toxicidad , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Péptidos/síntesis química , Péptidos/toxicidad , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Homología de Secuencia de Aminoácido , Canales de Potasio Shab/antagonistas & inhibidores , Canales de Potasio Shab/genética , Venenos de Araña/síntesis química , Venenos de Araña/toxicidad , Arañas , Liposomas Unilamelares/química , Xenopus laevis
19.
PLoS One ; 10(3): e0120431, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25798591

RESUMEN

Potassium channels allow the selective flux of K⁺ excluding the smaller, and more abundant in the extracellular solution, Na⁺ ions. Here we show that Shab is a typical K⁺ channel that excludes Na⁺ under bi-ionic, Na(o)/K(i) or Na(o)/Rb(i), conditions. However, when internal K⁺ is replaced by Cs⁺ (Na(o)/Cs(i)), stable inward Na⁺ and outward Cs⁺ currents are observed. These currents show that Shab selectivity is not accounted for by protein structural elements alone, as implicit in the snug-fit model of selectivity. Additionally, here we report the block of Shab channels by external Ca²âº ions, and compare the effect that internal K⁺ replacement exerts on both Ca²âº and TEA block. Our observations indicate that Ca²âº blocks the channels at a site located near the external TEA binding site, and that this pore region changes conformation under conditions that allow Na⁺ permeation. In contrast, the latter ion conditions do not significantly affect the binding of quinidine to the pore central cavity. Based on our observations and the structural information derived from the NaK bacterial channel, we hypothesize that Ca²âº is probably coordinated by main chain carbonyls of the pore's first K⁺-binding site.


Asunto(s)
Calcio/farmacología , Potasio/metabolismo , Canales de Potasio Shab/antagonistas & inhibidores , Animales , Sitios de Unión/efectos de los fármacos , Cesio/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Permeabilidad/efectos de los fármacos , Porosidad , Bloqueadores de los Canales de Potasio , Quinidina/farmacología , Células Sf9 , Canales de Potasio Shab/química , Canales de Potasio Shab/metabolismo , Sodio/metabolismo , Spodoptera
20.
J Gen Physiol ; 144(5): 441-55, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25311637

RESUMEN

Signaling proteins such as ion channels largely exist in two functional forms, corresponding to the active and resting states, connected by multiple intermediates. Multiparametric kinetic models based on sophisticated electrophysiological experiments have been devised to identify molecular interactions of these conformational transitions. However, this approach is arduous and is not suitable for large-scale perturbation analysis of interaction pathways. Recently, we described a model-free method to obtain the net free energy of activation in voltage- and ligand-activated ion channels. Here we extend this approach to estimate pairwise interaction energies of side chains that contribute to gating transitions. Our approach, which we call generalized interaction-energy analysis (GIA), combines median voltage estimates obtained from charge-voltage curves with mutant cycle analysis to ascertain the strengths of pairwise interactions. We show that, for a system with an arbitrary gating scheme, the nonadditive contributions of amino acid pairs to the net free energy of activation can be computed in a self-consistent manner. Numerical analyses of sequential and allosteric models of channel activation also show that this approach can measure energetic nonadditivities even when perturbations affect multiple transitions. To demonstrate the experimental application of this method, we reevaluated the interaction energies of six previously described long-range interactors in the Shaker potassium channel. Our approach offers the ability to generate detailed interaction energy maps in voltage- and ligand-activated ion channels and can be extended to any force-driven system as long as associated "displacement" can be measured.


Asunto(s)
Activación del Canal Iónico , Canal de Potasio Kv.1.2/química , Canales de Potasio Shab/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Cinética , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/metabolismo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Canales de Potasio Shab/genética , Canales de Potasio Shab/metabolismo , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...