Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Eur J Neurosci ; 59(1): 3-16, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38018635

RESUMEN

The expression of IKCa (SK4) channel subunits overlaps with that of SK channel subunits, and it has been proposed that the two related subunits prefer to co-assemble to form heteromeric hSK1:hIKCa channels. This implicates hSK1:hIKCa heteromers in physiological roles that might have been attributed to activation of SK channels. We have used a mutation approach to confirm formation of heterometric hSK1:hIKCa channels. Introduction of residues within hSK1 that were predicted to impart sensitivity to the hIKCa current blocker TRAM-34 changed the pharmacology of functional heteromers. Heteromeric channels formed between wildtype hIKCa and mutant hSK1 subunits displayed a significantly higher sensitivity and maximum block to addition of TRAM-34 than heteromers formed between wildtype subunits. Heteromer formation was disrupted by a single point mutation within one COOH-terminal coiled-coil domain of the hIKCa channel subunit. This mutation only disrupted the formation of hSK1:hIKCa heteromeric channels, without affecting the formation of homomeric hIKCa channels. Finally, the Ca2+ gating sensitivity of heteromeric hSK1:hIKCa channels was found to be significantly lower than the Ca2+ gating sensitivity of homomeric hIKCa channels. These data confirmed the preferred formation of heteromeric channels that results from COOH-terminal interactions between subunits. The distinct sensitivity of the heteromer to activation by Ca2+ suggests that heteromeric channels fulfil a distinct function within those neurons that express both subunits.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Neuronas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Mutación , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología
2.
J Pharmacol Sci ; 148(1): 1-5, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34924112

RESUMEN

The KCa3.1 inhibition up-regulates IL-10 expression in regulatory T (Treg) cells in the recovery phase of inflammatory bowel disease (IBD) model mice; however, the underlying signaling pathway remains unclear. We investigated the involvement of AP-1 (Fos/Jun) and NF-κB in the expression of IL-10 and its transcription factors (TFs) in in vitro-induced mouse splenic Treg cells. The pharmacological inhibition of JNK reversed KCa3.1 inhibition-induced increases in the expression of IL-10 and its TFs. The inhibition of KCa3.1 increased phosphorylated JNK and c-Jun levels. Therefore, the JNK/c-Jun signaling pathway may contribute to the KCa3.1 inhibition-induced up-regulation of IL-10 in peripherally-induced Treg cells.


Asunto(s)
Expresión Génica/genética , Enfermedades Inflamatorias del Intestino/genética , Interleucina-10/genética , Interleucina-10/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Proto-Oncogénicas c-jun/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , FN-kappa B/metabolismo , Fosforilación , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
BMC Pharmacol Toxicol ; 22(1): 6, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441172

RESUMEN

BACKGROUND: Vigabatrin (VGB) is an approved non-traditional antiepileptic drug that has been revealed to have potential for treating brain tumors; however, its effect on ionic channels in glioma cells remains largely unclear. METHODS: With the aid of patch-clamp technology, we investigated the effects of VGB on various ionic currents in the glioblastoma multiforme cell line 13-06-MG. RESULTS: In cell-attached configuration, VGB concentration-dependently reduced the activity of intermediate-conductance Ca2+-activated K+ (IKCa) channels, while DCEBIO (5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one) counteracted the VGB-induced inhibition of IKCa channels. However, the activity of neither large-conductance Ca2+-activated (BKCa) nor inwardly rectifying K+ (KIR) channels were affected by the presence of VGB in human 13-06-MG cells. However, in the continued presence of VGB, the addition of GAL-021 or BaCl2 effectively suppressed BKCa and KIR channels. CONCLUSIONS: The inhibitory effect of VGB on IKCa channels demonstrated in the current study could be an important underlying mechanism of VGB-induced antineoplastic (e.g., anti-glioma) actions.


Asunto(s)
Anticonvulsivantes/farmacología , Antineoplásicos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Vigabatrin/farmacología , Neoplasias Encefálicas/fisiopatología , Línea Celular Tumoral , Glioma/fisiopatología , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología
4.
Int J Pharm ; 580: 119180, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32135227

RESUMEN

Senicapoc (SEN), a potent antisickling agent, shows poor water solubility and poor oral bioavailability. To improve the solubility and cell permeation of SEN, self-nanoemulsifying drug delivery systems (SNEDDSs) were developed. Capryol PGMC®, which showed the highest solubilization capacity, was selected as the oil. The self-emulsification ability of two surfactants, viz., Cremophor-EL® and Tween® 80, was compared. Based on a solubility study and ternary phase diagrams, three optimized nanoemulsions with droplet sizes less than 200 nm were prepared. An in vitro dissolution study demonstrated the superior performance of the SNEDDS over the free drug. During in vitro lipolysis, 80% of SEN loaded in the SNEDDS remained solubilized. An in vitro cytotoxicity study using the Caco-2 cell line indicated the safety of the formulations at 1 mg/mL. The transport of SEN-SNEDDSs across Caco-2 monolayers was enhanced 115-fold (p < 0.01) compared to that of the free drug. According to these results, SNEDDS formulations could be promising tools for the oral delivery of SEN.


Asunto(s)
Acetamidas/síntesis química , Sistemas de Liberación de Medicamentos/métodos , Diseño de Fármacos , Emulsionantes/síntesis química , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Compuestos de Tritilo/síntesis química , Acetamidas/farmacocinética , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Emulsionantes/farmacocinética , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Solubilidad , Compuestos de Tritilo/farmacocinética
5.
Naunyn Schmiedebergs Arch Pharmacol ; 393(2): 225-241, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31494705

RESUMEN

Present study was undertaken to unravel the endothelium-dependent and endothelium-independent relaxant pathways in uterine artery of non-pregnant buffaloes. Isometric tension of arterial rings was recorded using data acquisition system based polyphysiograph. Acetylcholine (ACh) produced endothelium-dependent vasorelaxation by releasing nitric oxide (NO), and inhibition of nitric oxide synthase (NOS) by L-NAME (300 µM) significantly (P < 0.05) reduced the NO release and thereby the vasorelaxant effect of ACh. However, L-NMMA, another NOS inhibitor, and PTIO, a NO scavenger, did not have any additional inhibitory effect on NO and ACh-induced vasorelaxation. Cyclooxygenase (COX) inhibitor (indomethacin) alone did not have any inhibitory action on vasorelaxant response to ACh; however, simultaneous inhibition of COX and NOS enzymes significantly (P < 0.05) attenuated the relaxant response indicating the concurrent release of these two mediators in regulating ACh-induced relaxation. Besides NOS and COX-derived metabolites (EDRF), small (SKCa) and intermediate (IKCa) conductance K+ channels being the members of EDHF play predominant role in mediating ACh-induced vasorelaxation. Using different molecular tools, existence of eNOS, COX-1, and,IKCa in the endothelium, BKCa in vascular smooth muscle, and SKCa in both endothelium and vascular smooth muscle was demonstrated in buffalo uterine artery. Gene sequencing of COX-1 and SKCa genes in uterine artery of buffaloes showed more than 97% structural similarity with ovine (Ovis aries), caprine (Capra hircus), and Indian cow (Bos indicus). Endothelium-independent nitrovasodilator, sodium nitroprusside (SNP), produced vasorelaxation which was sensitive to blockade by soluble guanylate cyclase (sGC) inhibitor (ODQ), thus suggesting the important role of cGMP/PKG pathways in uterine vasorelaxation in buffaloes. Taken together, it is concluded that both endothelium-dependent (EDHF and EDRF) and endothelium-independent (sGC-cGMP) relaxant pathways are present in uterine arteries of non-pregnant buffaloes, and they differently contribute to vasorelaxation during non-pregnant state.


Asunto(s)
Búfalos/fisiología , Endotelio Vascular/fisiología , Arteria Uterina/fisiología , Vasodilatación , Acetilcolina/farmacología , Animales , Ciclooxigenasa 1/genética , Femenino , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Óxido Nítrico/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Arteria Uterina/metabolismo , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
6.
Sci Rep ; 6: 28770, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27354175

RESUMEN

The calcium-activated potassium channel KCa3.1 controls different cellular processes such as proliferation and volume homeostasis. We investigated the role of KCa3.1 in experimental and human liver fibrosis. KCa3.1 gene expression was investigated in healthy and injured human and rodent liver. Effect of genetic depletion and pharmacological inhibition of KCa3.1 was evaluated in mice during carbon tetrachloride induced hepatic fibrogenesis. Transcription, protein expression and localisation of KCa3.1 was analysed by reverse transcription polymerase chain reaction, Western blot and immunohistochemistry. Hemodynamic effects of KCa3.1 inhibition were investigated in bile duct-ligated and carbon tetrachloride intoxicated rats. In vitro experiments were performed in rat hepatic stellate cells and hepatocytes. KCa3.1 expression was increased in rodent and human liver fibrosis and was predominantly observed in the hepatocytes. Inhibition of KCa3.1 aggravated liver fibrosis during carbon tetrachloride challenge but did not change hemodynamic parameters in portal hypertensive rats. In vitro, KCa3.1 inhibition leads to increased hepatocyte apoptosis and DNA damage, whereas proliferation of hepatic stellate cells was stimulated by KCa3.1 inhibition. Our data identifies KCa3.1 channels as important modulators in hepatocellular homeostasis. In contrast to previous studies in vitro and other tissues this channel appears to be anti-fibrotic and protective during liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Adulto , Anciano , Animales , Apoptosis , Células Cultivadas , Femenino , Células Estrelladas Hepáticas/fisiología , Hepatocitos/fisiología , Humanos , Hígado/patología , Cirrosis Hepática/patología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Ratas Sprague-Dawley , Regulación hacia Arriba
7.
Circ Res ; 118(7): 1078-90, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26838791

RESUMEN

RATIONALE: Recent data from mesenteric and cerebral beds have revealed spatially restricted Ca(2+) transients occurring along the vascular intima that control effector recruitment and vasodilation. Although Ca(2+) is pivotal for coronary artery endothelial function, spatial and temporal regulation of functional Ca(2+) signals in the coronary endothelium is poorly understood. OBJECTIVE: We aimed to determine whether a discrete spatial and temporal profile of Ca(2+) dynamics underlies endothelium-dependent relaxation of swine coronary arteries. METHODS AND RESULTS: Using confocal imaging, custom automated image analysis, and myography, we show that the swine coronary artery endothelium generates discrete basal Ca(2+) dynamics, including isolated transients and whole-cell propagating waves. These events are suppressed by depletion of internal stores or inhibition of inositol 1,4,5-trisphosphate receptors but not by inhibition of ryanodine receptors or removal of extracellular Ca(2+). In vessel rings, inhibition of specific Ca(2+)-dependent endothelial effectors, namely, small and intermediate conductance K(+) channels (K(Ca)3.1 and K(Ca)2.3) and endothelial nitric oxide synthase, produces additive tone, which is blunted by internal store depletion or inositol 1,4,5-trisphosphate receptor blockade. Stimulation of endothelial inositol 1,4,5-trisphosphate-dependent signaling with substance P causes idiosyncratic changes in dynamic Ca(2+) signal parameters (active sites, event frequency, amplitude, duration, and spatial spread). Overall, substance P-induced vasorelaxation corresponded poorly with whole-field endothelial Ca(2+) measurements but corresponded precisely with the concentration-dependent change in Ca(2+) dynamics (linearly translated composite of dynamic parameters). CONCLUSIONS: Our findings show that endothelium-dependent control of swine coronary artery tone is determined by spatial and temporal titration of inherent endothelial Ca(2+) dynamics that are not represented by tissue-level averaged Ca(2+) changes.


Asunto(s)
Señalización del Calcio , Circulación Coronaria/fisiología , Vasos Coronarios/metabolismo , Endotelio Vascular/metabolismo , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Circulación Coronaria/efectos de los fármacos , Femenino , Procesamiento de Imagen Asistido por Computador , Receptores de Inositol 1,4,5-Trifosfato/efectos de los fármacos , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Contracción Isométrica , Masculino , Microscopía Confocal , Modelos Cardiovasculares , Miografía , Óxido Nítrico Sintasa de Tipo III/fisiología , Péptidos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Sustancia P/farmacología , Sus scrofa , Porcinos , Túnica Íntima/fisiología , Resistencia Vascular/efectos de los fármacos , Resistencia Vascular/fisiología
8.
Basic Clin Pharmacol Toxicol ; 119(2): 184-92, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26821335

RESUMEN

Opening of intermediate-conductance calcium-activated potassium channels (KC a 3.1) produces membrane hyperpolarization in the vascular endothelium. Here, we studied the ability of two new KC a 3.1-selective positive-gating modulators, SKA-111 and SKA-121, to (1) evoke porcine endothelial cell KC a 3.1 membrane hyperpolarization, (2) induce endothelium-dependent and, particularly, endothelium-derived hyperpolarization (EDH)-type relaxation in porcine coronary arteries (PCA) and (3) influence coronary artery tone in isolated rat hearts. In whole-cell patch-clamp experiments on endothelial cells of PCA (PCAEC), KC a currents evoked by bradykinin (BK) were potentiated ≈7-fold by either SKA-111 or SKA-121 (both at 1 µM) and were blocked by a KC a 3.1 blocker, TRAM-34. In membrane potential measurements, SKA-111 and SKA-121 augmented bradykinin-induced hyperpolarization. Isometric tension measurements in large- and small-calibre PCA showed that SKA-111 and SKA-121 potentiated endothelium-dependent relaxation with intact NO synthesis and EDH-type relaxation to BK by ≈2-fold. Potentiation of the BK response was prevented by KC a 3.1 inhibition. In Langendorff-perfused rat hearts, SKA-111 potentiated coronary vasodilation elicited by BK. In conclusion, our data show that positive-gating modulation of KC a 3.1 channels improves BK-induced membrane hyperpolarization and endothelium-dependent relaxation in small and large PCA as well as in the coronary circulation of rats. Positive-gating modulators of KC a 3.1 could be therapeutically useful to improve coronary blood flow and counteract impaired coronary endothelial dysfunction in cardiovascular disease.


Asunto(s)
Vasos Coronarios/citología , Células Endoteliales/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/efectos de los fármacos , Animales , Bradiquinina/farmacología , Células Cultivadas , Circulación Coronaria/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica , Corazón/efectos de los fármacos , Corazón/fisiología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Masculino , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxazoles/farmacología , Técnicas de Placa-Clamp , Pirazoles/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Porcinos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
9.
Int Immunopharmacol ; 31: 266-71, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26795234

RESUMEN

OBJECTIVE: To investigate the effects of Ca(2+) activated potassium channel KCa3.1 and voltage-gated potassium channel Kv1.3 of B lymphocyte on inflammatory monocytes chemotaxis and the potential mechanisms. MATERIALS AND METHODS: Thanswell test was used to detect the inflammatory monocyte (Ly-6C(hi)) chemotaxis caused by the B lymphocyte. Enzyme-linked immunosorbent assay (ELISA) was applied to detecting the C-C motif ligand 7 (CCL7) in cultured media. Cell counting kit-8 (CCK) was used to detect the proliferation of B lymphocytes after activation and blockage of both KCa3.1 and Kv1.3 channels. Western blot was used to detect the expression of phosphorylated extracellular signal-regulated kinase (P-ERK) of the B lymphocytes. RESULTS: When activated, B lymphocytes significantly proliferated. After application of KCa3.1 channel-specific inhibitor TRAM-34 and potent Kv1.3 channel inhibitor ShK, both B lymphocytes proliferation and Ly-6C(hi) monocyte chemotaxis were significantly inhibited. The expression of chemotaxis related factor CCL7 decreased remarkably. CONCLUSION: The opening of KCa3.1 and Kv1.3 channels promote B lymphocyte activation, proliferation and Ly-6C(hi) monocyte chemotaxis. The increase of CCL7 secretion by B lymphocyte may explain the pro migration effects.


Asunto(s)
Linfocitos B/inmunología , Quimiotaxis/inmunología , Venenos de Cnidarios/farmacología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Canal de Potasio Kv1.3/fisiología , Monocitos/efectos de los fármacos , Pirazoles/farmacología , Animales , Linfocitos B/efectos de los fármacos , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Quimiotaxis/efectos de los fármacos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canal de Potasio Kv1.3/antagonistas & inhibidores , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología
10.
Acta Pharmacol Sin ; 37(1): 82-97, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26725737

RESUMEN

The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Canales de Potasio Calcio-Activados/fisiología , Nodo Sinoatrial/fisiología , Relojes Biológicos , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/fisiología , Humanos , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología
12.
Circulation ; 132(15): 1377-86, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26362634

RESUMEN

BACKGROUND: Hypokalemia increases the vulnerability to ventricular fibrillation. We hypothesize that the apamin-sensitive small-conductance calcium-activated potassium current (IKAS) is activated during hypokalemia and that IKAS blockade is proarrhythmic. METHODS AND RESULTS: Optical mapping was performed in 23 Langendorff-perfused rabbit ventricles with atrioventricular block and either right or left ventricular pacing during normokalemia or hypokalemia. Apamin prolonged the action potential duration (APD) measured to 80% repolarization (APD80) by 26 milliseconds (95% confidence interval [CI], 14-37) during normokalemia and by 54 milliseconds (95% CI, 40-68) during hypokalemia (P=0.01) at a 1000-millisecond pacing cycle length. In hypokalemic ventricles, apamin increased the maximal slope of APD restitution, the pacing cycle length threshold of APD alternans, the pacing cycle length for wave-break induction, and the area of spatially discordant APD alternans. Apamin significantly facilitated the induction of sustained ventricular fibrillation (from 3 of 9 hearts to 9 of 9 hearts; P=0.009). Short-term cardiac memory was assessed by the slope of APD80 versus activation time. The slope increased from 0.01 (95% CI, -0.09 to 0.12) at baseline to 0.34 (95% CI, 0.23-0.44) after apamin (P<0.001) during right ventricular pacing and from 0.07 (95% CI, -0.05 to 0.20) to 0.54 (95% CI, 0.06-1.03) after apamin infusion (P=0.045) during left ventricular pacing. Patch-clamp studies confirmed increased IKAS in isolated rabbit ventricular myocytes during hypokalemia (P=0.038). CONCLUSIONS: Hypokalemia activates IKAS to shorten APD and maintain repolarization reserve at late activation sites during ventricular pacing. IKAS blockade prominently lengthens the APD at late activation sites and facilitates ventricular fibrillation induction.


Asunto(s)
Estimulación Cardíaca Artificial , Sistema de Conducción Cardíaco/fisiopatología , Hipopotasemia/fisiopatología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Potasio/fisiología , Fibrilación Ventricular/etiología , Potenciales de Acción/efectos de los fármacos , Animales , Apamina/farmacología , Estimulación Cardíaca Artificial/efectos adversos , Susceptibilidad a Enfermedades , Sistema de Conducción Cardíaco/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Hipopotasemia/complicaciones , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Conejos , Fibrilación Ventricular/fisiopatología , Fibrilación Ventricular/prevención & control , Imagen de Colorante Sensible al Voltaje
13.
J Cardiovasc Pharmacol ; 66(1): 118-27, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25815673

RESUMEN

Endothelial KCa2.3 and KCa3.1 channels contribute to the regulation of myogenic tone in resistance arteries by Ca(2+)-mobilizing vasodilatory hormones. To define further the functional role of these channels in distinct vascular beds, we have examined the vasodilatory actions of the KCa channel activator SKA-31 in myogenically active rat cremaster and middle cerebral arteries. Vessels pressurized to 70 mm Hg constricted by 80-100 µm (ie, 25%-45% of maximal diameter). SKA-31 (10 µM) inhibited myogenic tone by 80% in cremaster and ∼65% in middle cerebral arteries, with IC50 values of ∼2 µM in both vessels. These vasodilatory effects were largely prevented by the KCa2.3 blocker UCL1684 and the KCa3.1 blocker TRAM-34 and abolished by endothelial denudation. Preincubation with N(G) nitro L-arginine methyl ester (L-NAME, 0.1 mM) did not affect the inhibitory response to SKA-31, but attenuated the ACh-evoked dilation by ∼45%. Penitrem-A, a blocker of BK(Ca) channels, did not alter SKA-31 evoked vasodilation but did reduce the inhibition of myogenic tone by ACh, the BKCa channel activator NS1619, and sodium nitroprusside. Collectively, these data demonstrate that SKA-31 produces robust inhibition of myogenic tone in resistance arteries isolated from distinct vascular beds in an endothelium-dependent manner.


Asunto(s)
Benzotiazoles/farmacología , Arterias Cerebrales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/agonistas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/agonistas , Vasodilatación/efectos de los fármacos , Animales , Arterias Cerebrales/fisiología , Endotelio Vascular/fisiología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Vasodilatación/fisiología
14.
Br J Pharmacol ; 172(4): 1114-23, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25323322

RESUMEN

BACKGROUND AND PURPOSE: Smooth muscle transient receptor potential melastatin 4 (TRPM4) channels play a fundamental role in the development of the myogenic arterial constriction that is necessary for blood flow autoregulation. As TRPM4 channels are present throughout the vasculature, we investigated their potential role in non-myogenic resistance arteries using the TRPM4 inhibitor 9-phenanthrol. EXPERIMENTAL APPROACH: Pressure and wire myography were used to assess the reactivity of rat arteries, the latter in combination with measurements of smooth muscle membrane potential. Immunohistochemistry (IHC) and endothelial cell (EC) calcium changes were assessed in pressurized vessels and patch clamp measurements made in isolated ECs. KEY RESULTS: The TRPM4 inhibitor 9-phenanthrol reversibly hyperpolarized mesenteric arteries to circa EK and blocked α1 -adrenoceptor-mediated vasoconstriction. Hyperpolarization was abolished and vasoconstriction re-established by damaging the endothelium. In mesenteric and cerebral artery smooth muscle, 9-phenanthrol hyperpolarization was effectively blocked by the KCa 3.1 inhibitor TRAM-34. 9-Phenanthrol did not increase mesenteric EC [Ca(2+)]i , and Na(+) substitution with N-methyl-D-glucamine only increased the muscle resting potential by 10 mV. Immunolabelling for TRPM4 was restricted to the endothelium and perivascular tissue. CONCLUSIONS AND IMPLICATIONS: These data reveal a previously unrecognized action of the TRPM4 inhibitor 9-phenanthrol - the ability to act as an activator of EC KCa 3.1 channels. They do not indicate a functionally important role for TRPM4 channels in the reactivity of non-myogenic mesenteric arteries.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Arterias Mesentéricas/efectos de los fármacos , Fenantrenos/farmacología , Canales Catiónicos TRPM/antagonistas & inhibidores , Animales , Células Endoteliales/fisiología , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Arterias Mesentéricas/fisiología , Ratas Wistar
15.
Dan Med J ; 61(11): B4946, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25370966

RESUMEN

Ulcerative Colitis (UC) is a chronic inflammatory bowel disease located in the mucosa of the large bowel. UC often affects young adults between 15 and 40 years of age with no pre-dominant sex. Over time, incidence rates are steadily increasing and the cause of the disease remains unknown. Symptoms are general discomfort and bloody diarrhea. UC is diagnosed by endoscopic examination of the large bowel, where different hallmarks are found. It is of great importance that attacks/relapses are treated medically, as flares may cause death due to inflammatory destruction of the mucosa and perforation of the colon leading to extreme infection of the abdominal cavity. UC often affects the social life of the patients, as they feel that they must be in the immediate vicinity of toilets. Therefore, many patients prefer to stay at home during active disease. For society, UC is a costly disease due to patients reporting in sick and expensive medications. When medical treatment fails, UC patients must undergo surgery and have their colon removed (colectomy). This PhD project focused on the immune system of the body. Specifically, we looked into T cells (the chairmen of the immune system) that we believe play an important role in disease activity. When T cells are activated in inflammatory diseases, they produce several signaling substances (cytokines) that attract and activate the other parts of the immune system. T cells regulate their effector functions through calcium regulation. Upon activation, calcium is released from intracellular stores, which causes calcium channels to be embedded in the cell membrane (CRAC channels). As long as the T cells are stimulated, the two potassium channels KV1.3 and KCa3.1 maintain the driving force for calcium influx, thus keeping the T cells activated. Our aims were to investigate whether the two potassium channels KV1.3 and KCa3.1 were upregulated in mucosal biopsies from patients with active UC and whether there were correlations between the expression of the channels and the disease severity assessed by endoscopic and histological evaluation. Moreover, we used a rat colitis model (dextran sodium sulphate-induced) to examine the effect of pharmacological inhibition of KV1.3 and KCa3.1 on inflammation. We found that the expression of T cell potassium channel, KV1.3, was increased in active UC and a higher expression correlated well with both the endoscopic and the histological degree of inflammation. This suggests KV1.3 to be involved in the inflammatory process of UC. We did not find an increase of the other potassium channel, KCa3.1, at the gene expression level, but the channels were definitely present in the infiltrating T cells as examined by immunostaining. Preliminary gene expression data showed similar changes of gene expression in biopsies from Crohns disease (CD) patients. In addition, we conducted first pilot studies investigating whether pharmacological blockade of the channels ameliorates colitis in the rat DSS-model. We found a tendency towards less endoscopic inflammation in the acute phase (at day 7 and 10). However, at study termination, the improvement of inflammation failed to reach a significant level, presumably because of insufficient compound absorption from the intestine (based on low plasma concentration and previously reported amelioration of colitis by inhibiting KCa3.1). Based on these findings in our target identification study, it is suggested that both KV1.3 and KCa3.1 play a role in the inflammation of UC and possibly of CD and represent new pharmacological targets.


Asunto(s)
Colitis Ulcerosa/inmunología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Canal de Potasio Kv1.3/fisiología , Linfocitos T/inmunología , Adulto , Animales , Colitis Ulcerosa/patología , Colon/fisiopatología , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/patología , Citocinas/metabolismo , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Canal de Potasio Kv1.3/metabolismo , Ratas
16.
Toxins (Basel) ; 6(8): 2568-79, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25153257

RESUMEN

Intermediate-conductance Ca2+-activated K+ (IK) channels are calcium/calmodulin-regulated voltage-independent K+ channels. Activation of IK currents is important in vessel and respiratory tissues, rendering the channels potential drug targets. A variety of small organic molecules have been synthesized and found to be potent activators of IK channels. However, the poor selectivity of these molecules limits their therapeutic value. Venom-derived peptides usually block their targets with high specificity. Therefore, we searched for novel peptide activators of IK channels by testing a series of toxins from spiders. Using electrophysiological experiments, we identified hainantoxin-I (HNTX-I) as an IK-channel activator. HNTX-I has little effect on voltage-gated Na+ and Ca2+ channels from rat dorsal root ganglion neurons and on the heterologous expression of voltage-gated rapidly activating delayed rectifier K+ channels (human ether-à-go-go-related gene; human ERG) in HEK293T cells. Only 35.2% ± 0.4% of the currents were activated in SK channels, and there was no effect on BK channels. We demonstrated that HNTX-I was not a phrenic nerve conduction blocker or acutely toxic. This is believed to be the first report of a peptide activator effect on IK channels. Our study suggests that the activity and selectivity of HNTX-I on IK channels make HNTX-I a promising template for designing new drugs for cardiovascular diseases.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Péptidos/farmacología , Venenos de Araña/farmacología , Toxinas Biológicas/farmacología , Animales , Células Cultivadas , Cucarachas , Femenino , Ganglios Espinales , Células HEK293 , Humanos , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/fisiología , Péptidos/toxicidad , Nervio Frénico/efectos de los fármacos , Nervio Frénico/fisiología , Ratas Sprague-Dawley , Venenos de Araña/toxicidad , Arañas , Pruebas de Toxicidad Aguda , Toxinas Biológicas/toxicidad
17.
Cell Rep ; 8(4): 1210-24, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25131209

RESUMEN

Macrophages can fuse to form osteoclasts in bone or multinucleate giant cells (MGCs) as part of the immune response. We use a systems genetics approach in rat macrophages to unravel their genetic determinants of multinucleation and investigate their role in both bone homeostasis and inflammatory disease. We identify a trans-regulated gene network associated with macrophage multinucleation and Kcnn4 as being the most significantly trans-regulated gene in the network and induced at the onset of fusion. Kcnn4 is required for osteoclast and MGC formation in rodents and humans. Genetic deletion of Kcnn4 reduces macrophage multinucleation through modulation of Ca(2+) signaling, increases bone mass, and improves clinical outcome in arthritis. Pharmacological blockade of Kcnn4 reduces experimental glomerulonephritis. Our data implicate Kcnn4 in macrophage multinucleation, identifying it as a potential therapeutic target for inhibition of bone resorption and chronic inflammation.


Asunto(s)
Artritis/metabolismo , Huesos/metabolismo , Núcleo Celular/fisiología , Glomerulonefritis/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Macrófagos/metabolismo , Animales , Artritis/patología , Resorción Ósea/metabolismo , Huesos/inmunología , Señalización del Calcio , Células Cultivadas , Redes Reguladoras de Genes , Glomerulonefritis/inmunología , Homeostasis , Humanos , Ratones Noqueados , Ratas Endogámicas Lew , Ratas Endogámicas WKY , Receptores Inmunológicos/metabolismo
18.
Clin Sci (Lond) ; 127(7): 423-33, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24963668

RESUMEN

There is an urgent need to identify novel interventions for mitigating the progression of diabetic nephropathy. Diabetic nephropathy is characterized by progressive renal fibrosis, in which tubulointerstitial fibrosis has been shown to be the final common pathway of all forms of chronic progressive renal disease, including diabetic nephropathy. Therefore targeting the possible mechanisms that drive this process may provide novel therapeutics which allow the prevention and potentially retardation of the functional decline in diabetic nephropathy. Recently, the Ca2+-activated K+ channel KCa3.1 (KCa3.1) has been suggested as a potential therapeutic target for nephropathy, based on its ability to regulate Ca2+ entry into cells and modulate Ca2+-signalling processes. In the present review, we focus on the physiological role of KCa3.1 in those cells involved in the tubulointerstitial fibrosis, including proximal tubular cells, fibroblasts, inflammatory cells (T-cells and macrophages) and endothelial cells. Collectively these studies support further investigation into KCa3.1 as a therapeutic target in diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Animales , Progresión de la Enfermedad , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Riñón/metabolismo , Riñón/patología , Riñón/fisiología , Ratones
19.
Glia ; 62(6): 971-81, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24585442

RESUMEN

Glioblastoma multiforme are highly motile primary brain tumors. Diffuse tissue invasion hampers surgical resection leading to poor patient prognosis. Recent studies suggest that intracellular Ca(2+) acts as a master regulator for cell motility and engages a number of downstream signals including Ca(2+) -activated ion channels. Querying the REepository of Molecular BRAin Neoplasia DaTa (REMBRANDT), an annotated patient gene database maintained by the National Cancer Institute, we identified the intermediate conductance Ca(2+) -activated K(+) channels, KCa3.1, being overexpressed in 32% of glioma patients where protein expression significantly correlated with poor patient survival. To mechanistically link KCa3.1 expression to glioma invasion, we selected patient gliomas that, when propagated as xenolines in vivo, present with either high or low KCa3.1 expression. In addition, we generated U251 glioma cells that stably express an inducible knockdown shRNA to experimentally eliminate KCa3.1 expression. Subjecting these cells to a combination of in vitro and in situ invasion assays, we demonstrate that KCa3.1 expression significantly enhances glioma invasion and that either specific pharmacological inhibition with TRAM-34 or elimination of the channel impairs invasion. Importantly, after intracranial implantation into SCID mice, ablation of KCa3.1 with inducible shRNA resulted in a significant reduction in tumor invasion into surrounding brain in vivo. These results show that KCa3.1 confers an invasive phenotype that significantly worsens a patient's outlook, and suggests that KCa3.1 represents a viable therapeutic target to reduce glioma invasion.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Movimiento Celular/fisiología , Glioma/metabolismo , Glioma/patología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Bases de Datos Genéticas , Femenino , Glioma/genética , Humanos , Masculino , Ratones , Ratones SCID , Invasividad Neoplásica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...