Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(43): e2400650121, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39405352

RESUMEN

Two-pore domain potassium (K2P) channels play a central role in modulating cellular excitability and neuronal function. The unique structure of the selectivity filter in K2P and other potassium channels determines their ability to allow the selective passage of potassium ions across cell membranes. The nematode C. elegans has one of the largest K2P families, with 47 subunit-coding genes. This remarkable expansion has been accompanied by the evolution of atypical selectivity filter sequences that diverge from the canonical TxGYG motif. Whether and how this sequence variation may impact the function of K2P channels has not been investigated so far. Here, we show that the UNC-58 K2P channel is constitutively permeable to sodium ions and that a cysteine residue in its selectivity filter is responsible for this atypical behavior. Indeed, by performing in vivo electrophysiological recordings and Ca2+ imaging experiments, we demonstrate that UNC-58 has a depolarizing effect in muscles and sensory neurons. Consistently, unc-58 gain-of-function mutants are hypercontracted, unlike the relaxed phenotype observed in hyperactive mutants of many neuromuscular K2P channels. Finally, by combining molecular dynamics simulations with functional studies in Xenopus laevis oocytes, we show that the atypical cysteine residue plays a key role in the unconventional sodium permeability of UNC-58. As predicting the consequences of selectivity filter sequence variations in silico remains a major challenge, our study illustrates how functional experiments are essential to determine the contribution of such unusual potassium channels to the electrical profile of excitable cells.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Sodio , Xenopus laevis , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Sodio/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Permeabilidad , Oocitos/metabolismo , Simulación de Dinámica Molecular , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/química , Cisteína/metabolismo , Células Receptoras Sensoriales/metabolismo
2.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39337686

RESUMEN

Ovarian cysts are linked to hormone imbalances and altered gene expressions, but the connection between cysts and ion channel expression is understudied. This study explored the role of TWIK-related acid-sensitive K+ (TASK) channels in bovine ovarian cyst formation. The ovarian follicles were split into small (5 to 10 mm in diameter) and large (>25 mm in diameter) groups. Among the measured K+, Na+, and Cl- concentrations in follicular fluid (FF) obtained from small-sized follicles (SFs) and large-sized follicles (LFs), the K+ concentration was significantly lower in LFFF. Quantitative PCR, Western blot, and immunocytochemistry data revealed that TASK-3 expression levels significantly decreased by approximately 50% in LFs and granulosa cells obtained from LFs (LFGCs) compared to the corresponding controls. The TASK-3 protein was localized to the plasma membranes of GCs. The diameters of LFGCs were larger than those of SFGCs. The cell swelling response to exposure to a hypotonic solution (200 mOsm/L) was highly reduced in TASK-3-overexpressing cells compared to vector-transfected cells. TASK-3-knockdown cells showed arrested growth. Senescence markers were detected in LFGCs and TASK-3-knockdown cells. These findings suggest that reduced TASK-3 expression in LFs is associated with the inhibition of GC growth, leading to senescence and cyst formation.


Asunto(s)
Senescencia Celular , Células de la Granulosa , Quistes Ováricos , Folículo Ovárico , Canales de Potasio de Dominio Poro en Tándem , Animales , Femenino , Bovinos , Células de la Granulosa/metabolismo , Quistes Ováricos/metabolismo , Quistes Ováricos/patología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Folículo Ovárico/metabolismo , Regulación hacia Abajo , Líquido Folicular/metabolismo , Potasio/metabolismo
3.
J Neurosci ; 44(36)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39107057

RESUMEN

An interoceptive homeostatic reflex monitors levels of CO2/H+ to maintain blood gas homeostasis and rapidly regulate tissue acid-base balance by driving lung ventilation and CO2 excretion-this CO2-evoked increase in respiration is the hypercapnic ventilatory reflex (HCVR). Retrotrapezoid nucleus (RTN) neurons provide crucial excitatory drive to downstream respiratory rhythm/pattern-generating circuits, and their activity is directly modulated by changes in CO2/H+ RTN neurons express GPR4 and TASK-2, global deletion of which abrogates CO2/H+ activation of RTN neurons and the HCVR. It has not been determined if the intrinsic pH sensitivity of these proton detectors is required for these effects. We used CRISPR/Cas9 genome editing to generate mice with mutations in either of two pH-sensing histidine residues in GPR4 to determine effects on RTN neuronal CO2/H+ sensitivity and the HCVR. In global GPR4(H81F) and GPR4(H167F) mice, CO2-stimulated breathing and CO2-induced RTN neuronal activation were strongly blunted, with no effect on hypoxia-stimulated breathing. In brainstem slices from GPR4(H81F) mice, peak firing of RTN neurons during bath acidification was significantly reduced compared with GPR4 wild-type mice, and a subpopulation of RTN neurons was rendered pH-insensitive, phenocopying previous results from GPR4-deleted mice. These effects were independent of changes in RTN number/distribution, neuronal excitability or transcript levels for GPR4 and TASK-2. CO2-stimulated breathing was reduced to a similar extent in GPR4(H81F) and TASK-2-deleted mice, with combined mutation yielding no additional deficit in the HCVR. Together, these data demonstrate that the intrinsic pH sensitivity of GPR4 is necessary for full elaboration of the HCVR.


Asunto(s)
Dióxido de Carbono , Neuronas , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ratones , Dióxido de Carbono/farmacología , Dióxido de Carbono/metabolismo , Neuronas/metabolismo , Protones , Respiración/efectos de los fármacos , Masculino , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL , Femenino , Ratones Transgénicos , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo
4.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125945

RESUMEN

Ticks transmit a variety of pathogens, including rickettsia and viruses, when they feed on blood, afflicting humans and other animals. Bioactive components acting on inflammation, coagulation, and the immune system were reported to facilitate ticks' ability to suck blood and transmit tick-borne diseases. In this study, a novel peptide, IstTx, from an Ixodes scapularis cDNA library was analyzed. The peptide IstTx, obtained by recombinant expression and purification, selectively inhibited a potassium channel, TREK-1, in a dose-dependent manner, with an IC50 of 23.46 ± 0.22 µM. The peptide IstTx exhibited different characteristics from fluoxetine, and the possible interaction of the peptide IstTx binding to the channel was explored by molecular docking. Notably, extracellular acidification raised its inhibitory efficacy on the TREK-1 channel. Our results found that the tick-derived peptide IstTx blocked the TREK-1 channel and provided a novel tool acting on the potassium channel.


Asunto(s)
Péptidos , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/química , Animales , Humanos , Péptidos/farmacología , Péptidos/química , Péptidos/metabolismo , Ixodes/metabolismo , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Células HEK293 , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/química , Garrapatas/metabolismo
5.
Nat Commun ; 15(1): 7548, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215006

RESUMEN

TASK-5 (KCNK15) belongs to the acid-sensitive subfamily of two-pore domain potassium (K2P) channels, which includes TASK-1 and TASK-3. TASK-5 stands out as K2P channel for which there is no functional data available, since it was reported in 2001 as non-functional and thus "silent". Here we show that TASK-5 channels are indeed non-functional as homodimers, but are involved in the formation of functional channel complexes with TASK-1 and TASK-3. TASK-5 negatively modulates the surface expression of TASK channels, while the heteromeric TASK-5-containing channel complexes located at the plasma membrane are characterized by changes in single-channel conductance, Gq-coupled receptor-mediated channel inhibition, and sensitivity to TASK modulators. The unique pharmacology of TASK-1/TASK-5 heterodimers, affected by a common polymorphism in KCNK15, needs to be carefully considered in the future development of drugs targeting TASK channels. Our observations provide an access to study TASK-5 at the functional level, particularly in malignant cancers associated with KCNK15.


Asunto(s)
Proteínas del Tejido Nervioso , Canales de Potasio de Dominio Poro en Tándem , Animales , Humanos , Membrana Celular/metabolismo , Células HEK293 , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Multimerización de Proteína
6.
Nat Commun ; 15(1): 7545, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215031

RESUMEN

Two-pore domain K+ (K2P) channel activity was previously thought to be controlled primarily via a selectivity filter (SF) gate. However, recent crystal structures of TASK-1 and TASK-2 revealed a lower gate at the cytoplasmic pore entrance. Here, we report functional evidence of such a lower gate in the K2P channel K2P17.1 (TALK-2, TASK-4). We identified compounds (drugs and lipids) and mutations that opened the lower gate allowing the fast modification of pore cysteine residues. Surprisingly, stimuli that directly target the SF gate (i.e., pHe., Rb+ permeation, membrane depolarization) also opened the cytoplasmic gate. Reciprocally, opening of the lower gate reduced the electric work to open the SF via voltage driven ion binding. Therefore, it appears that the SF is so rigidly locked into the TALK-2 protein structure that changes in ion occupancy can pry open a distant lower gate and, vice versa, opening of the lower gate concurrently promote SF gate opening. This concept might extent to other K+ channels that contain two gates (e.g., voltage-gated K+ channels) for which such a positive gate coupling has been suggested, but so far not directly demonstrated.


Asunto(s)
Activación del Canal Iónico , Canales de Potasio de Dominio Poro en Tándem , Animales , Humanos , Citoplasma/metabolismo , Células HEK293 , Iones/metabolismo , Mutación , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/genética , Xenopus laevis
7.
Biophys J ; 123(19): 3408-3420, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39161093

RESUMEN

TWIK-related potassium channel 1 (TREK1), a two-pore-domain mammalian potassium (K+) channel, regulates the resting potential across cell membranes, presenting a promising therapeutic target for neuropathy treatment. The gating of this channel converges in the conformation of the narrowest part of the pore: the selectivity filter (SF). Various hypotheses explain TREK1 gating modulation, including the dynamics of loops connecting the SF with transmembrane helices and the stability of hydrogen bond (HB) networks adjacent to the SF. Recently, two small molecules (Q6F and Q5F) were reported as activators that affect TREK1 by increasing its open probability in single-channel current measurements. Here, using molecular dynamics simulations, we investigate the effect of these ligands on the previously proposed modulation mechanisms of TREK1 gating compared to the apo channel. Our findings reveal that loop dynamics at the upper region of the SF exhibit only a weak correlation with permeation events/nonpermeation periods, whereas the HB network behind the SF appears more correlated. These nonpermeation periods arise from both distinct mechanisms: a C-type inactivation (resulting from dilation at the top of the SF), which has been described previously, and a carbonyl flipping in an SF binding site. We find that, besides the prevention of C-type inactivation in the channel, the ligands increase the probability of permeation by modulating the dynamics of the carbonyl flipping, influenced by a threonine residue at the bottom of the SF. These results offer insights for rational ligand design to optimize the gating modulation of TREK1 and related K+ channels.


Asunto(s)
Activación del Canal Iónico , Simulación de Dinámica Molecular , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/genética , Activación del Canal Iónico/efectos de los fármacos , Humanos
8.
Cell Chem Biol ; 31(7): 1305-1323.e9, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029456

RESUMEN

K2P potassium channels regulate excitability by affecting cellular resting membrane potential in the brain, cardiovascular system, immune cells, and sensory organs. Despite their important roles in anesthesia, arrhythmia, pain, hypertension, sleep, and migraine, the ability to control K2P function remains limited. Here, we describe a chemogenetic strategy termed CATKLAMP (covalent activation of TREK family K+ channels to clamp membrane potential) that leverages the discovery of a K2P modulator pocket site that reacts with electrophile-bearing derivatives of a TREK subfamily small-molecule activator, ML335, to activate the channel irreversibly. We show that CATKLAMP can be used to probe fundamental aspects of K2P function, as a switch to silence neuronal firing, and is applicable to all TREK subfamily members. Together, our findings exemplify a means to alter K2P channel activity that should facilitate molecular and systems level studies of K2P function and enable the search for new K2P modulators.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem , Humanos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Animales , Células HEK293 , Ratones , Potenciales de la Membrana/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratas
9.
J Cell Biol ; 223(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39078369

RESUMEN

The evolution of ion channel clustering at nodes of Ranvier enabled the development of complex vertebrate nervous systems. At mammalian nodes, the K+ leak channels TRAAK and TREK-1 underlie membrane repolarization. Despite the molecular similarities between nodes and the axon initial segment (AIS), TRAAK and TREK-1 are reportedly node-specific, suggesting a unique clustering mechanism. However, we show that TRAAK and TREK-1 are enriched at both nodes and AIS through a common mechanism. We identified a motif near the C-terminus of TRAAK that is necessary and sufficient for its clustering. The motif first evolved among cartilaginous fish. Using AnkyrinG (AnkG) conditional knockout mice, CRISPR/Cas9-mediated disruption of AnkG, co-immunoprecipitation, and surface recruitment assays, we show that TRAAK forms a complex with AnkG and that AnkG is necessary for TRAAK's AIS and nodal clustering. In contrast, TREK-1's clustering requires TRAAK. Our results expand the repertoire of AIS and nodal ion channel clustering mechanisms and emphasize AnkG's central role in assembling excitable domains.


Asunto(s)
Ancirinas , Axones , Ratones Noqueados , Canales de Potasio de Dominio Poro en Tándem , Animales , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Axones/metabolismo , Ratones , Ancirinas/metabolismo , Ancirinas/genética , Nódulos de Ranvier/metabolismo , Humanos , Secuencias de Aminoácidos , Evolución Molecular
10.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063089

RESUMEN

Articular chondrocytes are the primary cells responsible for maintaining the integrity and functionality of articular cartilage, which is essential for smooth joint movement. A key aspect of their role involves mechanosensitive ion channels, which allow chondrocytes to detect and respond to mechanical forces encountered during joint activity; nonetheless, the variety of mechanosensitive ion channels involved in this process has not been fully resolved so far. Because some members of the two-pore domain potassium (K2P) channel family have been described as mechanosensors in other cell types, in this study, we investigate whether articular chondrocytes express such channels. RT-PCR analysis reveals the presence of TREK-1 and TREK-2 channels in these cells. Subsequent protein expression assessments, including Western blotting and immunohistochemistry, confirm the presence of TREK-1 in articular cartilage samples. Furthermore, whole-cell patch clamp assays demonstrate that freshly isolated chondrocytes exhibit currents attributable to TREK-1 channels, as evidenced by activation by arachidonic acid (AA) and ml335 and further inhibition by spadin. Additionally, exposure to hypo-osmolar shock activates currents, which can be attributed to the presence of TREK-1 channels, as indicated by their inhibition with spadin. Therefore, these findings highlight the expression of TREK channels in rat articular chondrocytes and suggest their potential involvement in regulating the integrity of cartilage extracellular matrix.


Asunto(s)
Cartílago Articular , Condrocitos , Canales de Potasio de Dominio Poro en Tándem , Animales , Condrocitos/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Cartílago Articular/metabolismo , Cartílago Articular/citología , Ratas , Células Cultivadas , Masculino , Mecanotransducción Celular , Técnicas de Placa-Clamp
11.
Invest Ophthalmol Vis Sci ; 65(8): 24, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39012638

RESUMEN

Purpose: Within the healthy population there is a large variation in the ability to perform smooth pursuit eye movements. Our purpose was to investigate the genetic and physiological bases for this variation. Methods: We carried out a whole-genome association study, recording smooth pursuit movements for 1040 healthy volunteers by infrared oculography. The primary phenotypic measure was root mean square error (RMSE) of eye position relative to target position. Secondary measures were pursuit gain, frequency of catch-up saccades, and frequency of anticipatory saccades. Ten percent of participants, chosen randomly, were tested twice, giving estimates of test-retest reliability. Results: No significant association was found with three genes previously identified as candidate genes for variation in smooth pursuit: DRD3, COMT, NRG1. A strong association (P = 3.55 × 10-11) was found between RMSE and chromosomal region 1q42.2. The most strongly associated marker (rs701232) lies in an intron of KCNK1, which encodes a two-pore-domain potassium ion channel TWIK-1 (or K2P1) that affects cell excitability. Each additional copy of the A allele decreased RMSE by 0.29 standard deviation. When a psychophysical test of visually perceived motion was used as a covariate in the regression analysis, the association with rs701232 did not weaken (P = 5.38 × 10-12). Conclusions: Variation in the sequence or the expression of the pH-dependent ion channel TWIK-1 is a likely source of variance in smooth pursuit. The variance associated with TWIK-1 appears not to arise from sensory mechanisms, because the use of a perceptual covariate left the association intact.


Asunto(s)
Estudio de Asociación del Genoma Completo , Canales de Potasio de Dominio Poro en Tándem , Seguimiento Ocular Uniforme , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Genotipo , Voluntarios Sanos , Concentración de Iones de Hidrógeno , Polimorfismo de Nucleótido Simple , Canales de Potasio de Dominio Poro en Tándem/genética , Seguimiento Ocular Uniforme/fisiología , Movimientos Sacádicos/fisiología
12.
Circ Res ; 135(3): e76-e93, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38841840

RESUMEN

BACKGROUND: Despite advances in understanding hypertension's genetic structure, how noncoding genetic variants influence it remains unclear. Studying their interaction with DNA methylation is crucial to deciphering this complex disease's genetic mechanisms. METHODS: We investigated the genetic and epigenetic interplay in hypertension using whole-genome bisulfite sequencing. Methylation profiling in 918 males revealed allele-specific methylation and methylation quantitative trait loci. We engineered rs1275988T/C mutant mice using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9), bred them for homozygosity, and subjected them to a high-salt diet. Telemetry captured their cardiovascular metrics. Protein-DNA interactions were elucidated using DNA pull-downs, mass spectrometry, and Western blots. A wire myograph assessed vascular function, and analysis of the Kcnk3 gene methylation highlighted the mutation's role in hypertension. RESULTS: We discovered that DNA methylation-associated genetic effects, especially in non-cytosine-phosphate-guanine (non-CpG) island and noncoding distal regulatory regions, significantly contribute to hypertension predisposition. We identified distinct methylation quantitative trait locus patterns in the hypertensive population and observed that the onset of hypertension is influenced by the transmission of genetic effects through the demethylation process. By evidence-driven prioritization and in vivo experiments, we unearthed rs1275988 in a cell type-specific enhancer as a notable hypertension causal variant, intensifying hypertension through the modulation of local DNA methylation and consequential alterations in Kcnk3 gene expression and vascular remodeling. When exposed to a high-salt diet, mice with the rs1275988C/C genotype exhibited exacerbated hypertension and significant vascular remodeling, underscored by increased aortic wall thickness. The C allele of rs1275988 was associated with elevated DNA methylation levels, driving down the expression of the Kcnk3 gene by attenuating Nr2f2 (nuclear receptor subfamily 2 group F member 2) binding at the enhancer locus. CONCLUSIONS: Our research reveals new insights into the complex interplay between genetic variations and DNA methylation in hypertension. We underscore hypomethylation's potential in hypertension onset and identify rs1275988 as a causal variant in vascular remodeling. This work advances our understanding of hypertension's molecular mechanisms and encourages personalized health care strategies.


Asunto(s)
Metilación de ADN , Hipertensión , Sitios de Carácter Cuantitativo , Animales , Humanos , Masculino , Ratones , Presión Sanguínea/genética , Epigénesis Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Ratones Endogámicos C57BL , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Cloruro de Sodio Dietético/efectos adversos
13.
Int J Biol Macromol ; 273(Pt 2): 132892, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878921

RESUMEN

TASK-3 generates a background K+ conductance which when inhibited by acidification depolarizes membrane potential and increases cell excitability. These channels sense pH by protonation of histidine residue H98, but recent evidence revealed that several other amino acid residues also contribute to TASK-3 pH sensitivity, suggesting that the pH sensitivity is determined by an intermolecular network. Here we use electrophysiology and molecular modeling to characterize the nature and requisite role(s) of multiple amino acids in pH sensing by TASK-3. Our results suggest that the pH sensor H98 and consequently pH sensitivity is influenced by remote amino acids that function as a hydrogen-bonding network to modulate ionic conductivity. Among the residues in the network, E30 and K79 are the most important for passing external signals near residue S31 to H98. The hydrogen-bond network plays a key role in selectivity or pH sensing in mTASK-3, and E30 and S31 in the network can modulate the conductive properties (E30) or reverse the pH sensitivity and selectivity of the channel (S31). Molecular dynamics simulations and pK1/2 calculation revealed that double mutants involving H98 + S31 primarily regulate the structure stability of the pore selectivity filter and pore loop regions, further strengthen the stability of the cradle suspension system, and alter the ionization state of E30 and K79, thereby preventing pore conformational change that normally occurs in response to varying extracellular pH. These results demonstrate that crucial residues in the hydrogen-bond network can remotely tune the pH sensing of mTASK-3 and may be a potential allosteric regulatory site for therapeutic molecule development.


Asunto(s)
Enlace de Hidrógeno , Simulación de Dinámica Molecular , Canales de Potasio de Dominio Poro en Tándem , Concentración de Iones de Hidrógeno , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Humanos , Mutación , Animales
14.
PLoS Biol ; 22(6): e3002666, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38905316

RESUMEN

Breast cancer is the most prevalent malignancy and the most significant contributor to mortality in female oncology patients. Potassium Two Pore Domain Channel Subfamily K Member 1 (KCNK1) is differentially expressed in a variety of tumors, but the mechanism of its function in breast cancer is unknown. In this study, we found for the first time that KCNK1 was significantly up-regulated in human breast cancer and was correlated with poor prognosis in breast cancer patients. KCNK1 promoted breast cancer proliferation, invasion, and metastasis in vitro and vivo. Further studies unexpectedly revealed that KCNK1 increased the glycolysis and lactate production in breast cancer cells by binding to and activating lactate dehydrogenase A (LDHA), which promoted histones lysine lactylation to induce the expression of a series of downstream genes and LDHA itself. Notably, increased expression of LDHA served as a vicious positive feedback to reduce tumor cell stiffness and adhesion, which eventually resulted in the proliferation, invasion, and metastasis of breast cancer. In conclusion, our results suggest that KCNK1 may serve as a potential breast cancer biomarker, and deeper insight into the cancer-promoting mechanism of KCNK1 may uncover a novel therapeutic target for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Histonas , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glucólisis/genética , Histonas/metabolismo , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Lactato Deshidrogenasa 5/metabolismo , Lactato Deshidrogenasa 5/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Pronóstico , Regulación hacia Arriba/genética
15.
Chronobiol Int ; 41(6): 802-816, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38757583

RESUMEN

Stable and entrainable physiological circadian rhythms are crucial for overall health and well-being. The suprachiasmatic nucleus (SCN), the primary circadian pacemaker in mammals, consists of diverse neuron types that collectively generate a circadian profile of electrical activity. However, the mechanisms underlying the regulation of endogenous neuronal excitability in the SCN remain unclear. Two-pore domain potassium channels (K2P), including TASK-3, are known to play a significant role in maintaining SCN diurnal homeostasis by inhibiting neuronal activity at night. In this study, we investigated the role of TASK-3 in SCN circadian neuronal regulation and behavioural photoentrainment using a TASK-3 global knockout mouse model. Our findings demonstrate the importance of TASK-3 in maintaining SCN hyperpolarization during the night and establishing SCN sensitivity to glutamate. Specifically, we observed that TASK-3 knockout mice lacked diurnal variation in resting membrane potential and exhibited altered glutamate sensitivity both in vivo and in vitro. Interestingly, despite these changes, the mice lacking TASK-3 were still able to maintain relatively normal circadian behaviour.


Asunto(s)
Ritmo Circadiano , Ratones Noqueados , Canales de Potasio de Dominio Poro en Tándem , Núcleo Supraquiasmático , Animales , Ritmo Circadiano/fisiología , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Ratones , Masculino , Ratones Endogámicos C57BL , Conducta Animal/fisiología , Ácido Glutámico/metabolismo , Neuronas/fisiología , Neuronas/metabolismo , Potenciales de la Membrana/fisiología , Canales de Potasio
16.
Nat Commun ; 15(1): 4628, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821927

RESUMEN

The two-pore domain potassium (K2P) channels TREK-1 and TREK-2 link neuronal excitability to a variety of stimuli including mechanical force, lipids, temperature and phosphorylation. This regulation involves the C-terminus as a polymodal stimulus sensor and the selectivity filter (SF) as channel gate. Using crystallographic up- and down-state structures of TREK-2 as a template for full atomistic molecular dynamics (MD) simulations, we reveal that the SF in down-state undergoes inactivation via conformational changes, while the up-state structure maintains a stable and conductive SF. This suggests an atomistic mechanism for the low channel activity previously assigned to the down state, but not evident from the crystal structure. Furthermore, experimentally by using (de-)phosphorylation mimics and chemically attaching lipid tethers to the proximal C-terminus (pCt), we confirm the hypothesis that moving the pCt towards the membrane induces the up-state. Based on MD simulations, we propose two gating pathways by which movement of the pCt controls the stability (i.e., conductivity) of the filter gate. Together, these findings provide atomistic insights into the SF gating mechanism and the physiological regulation of TREK channels by phosphorylation.


Asunto(s)
Activación del Canal Iónico , Simulación de Dinámica Molecular , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/genética , Humanos , Fosforilación , Dominios Proteicos , Citosol/metabolismo , Animales , Células HEK293 , Cristalografía por Rayos X
17.
Gene ; 926: 148576, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38763364

RESUMEN

Potassium ion (K+) is one of the most essential nutrients for the growth and development of tobacco (Nicotiana tabacum L.), however, the molecular regulation of K+ concentration in tobacco remains unclear. In this study, a two-pore K (TPK) channel gene NtTPKa was cloned from tobacco, and NtTPKa protein contains the unique K+ selection motif GYGD and its transmembrane region primarily locates in the tonoplast membrane. The expression of NtTPKa gene was significantly increased under low-potassium stress conditions. The concentrations of K+ in tobacco were significantly increased in the NtTPKa RNA interference lines and CRISPR/Cas9 knockout mutants. In addition, the transport of K+ by NtTPKa was validated using patch clamp technique, and the results showed that NtTPKa channel protein exclusively transported K+ in a concentration-dependent manner. Together, our results strongly suggested that NtTPKa is a key gene in maintaining K+ homeostasis in tobacco, and it could provide a new genetic resource for increasing the concentration of K+ in tobacco.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana , Proteínas de Plantas , Potasio , Nicotiana/genética , Nicotiana/metabolismo , Potasio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Sistemas CRISPR-Cas , Canales de Potasio/metabolismo , Canales de Potasio/genética
18.
Aging (Albany NY) ; 16(9): 8086-8109, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38728245

RESUMEN

BACKGROUND: Research has shown a connection between vasculogenic mimicry (VM) and cancer progression. However, the functions of genes related to VM in the emergence and progression of TNBC have not been completely elucidated. METHODS: A survival risk model was constructed by screening biomarkers using DESeq2 and WGCNA based on public TNBC transcriptome data. Furthermore, gene set enrichment analysis was performed, and tumor microenvironment and drug sensitivity were analyzed. The selected biomarkers were validated via quantitative PCR detection, immunohistochemical staining, and protein detection in breast cancer cell lines. Biomarkers related to the proliferation and migration of TNBC cells were validated via in vitro experiments. RESULTS: The findings revealed that 235 target genes were connected to the complement and coagulation cascade pathways. The risk score was constructed using KCND2, NRP1, and VSTM4. The prognosis model using the risk score and pathological T stage yielded good validation results. The clinical risk of TNBC was associated with the angiogenesis signaling pathway, and the low-risk group exhibited better sensitivity to immunotherapy. Quantitative PCR and immunohistochemistry indicated that the expression levels of KCND2 in TNBC tissues were higher than those in adjacent nontumor tissues. In the TNBC cell line, the protein expression of KCND2 was increased. Knockdown of KCND2 and VSTM4 inhibited the proliferation and migration of TNBC cells in vitro. CONCLUSIONS: In this study, three VM-related biomarkers were identified, including KCND2, NRP1, and VSTM4. These findings are likely to aid in deepening our understanding of the regulatory mechanism of VM in TNBC.


Asunto(s)
Biomarcadores de Tumor , Neovascularización Patológica , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Femenino , Pronóstico , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral/genética , Proliferación Celular/genética , Neuropilina-1/genética , Neuropilina-1/metabolismo , Movimiento Celular/genética , Transcriptoma , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo
19.
Eur J Med Res ; 29(1): 257, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689322

RESUMEN

BACKGROUND: This study aimed to explore the expression, molecular mechanism and its biological function of potassium two pore domain channel subfamily K member 1 (KCNK1) in bladder cancer (BC). METHODS: We integrated large numbers of external samples (n = 1486) to assess KCNK1 mRNA expression levels and collected in-house samples (n = 245) for immunohistochemistry (IHC) experiments to validate at the KCNK1 protein level. Single-cell RNA sequencing (scRNA-seq) analysis was performed to further assess KCNK1 expression and cellular communication. The transcriptional regulatory mechanisms of KCNK1 expression were explored by ChIP-seq, ATAC-seq and ChIA-PET data. Highly expressed co-expressed genes (HECEGs) of KCNK1 were used to explore potential signalling pathways. Furthermore, the immunoassay, clinical significance and molecular docking of KCNK1 were calculated. RESULTS: KCNK1 mRNA was significantly overexpressed in BC (SMD = 0.58, 95% CI [0.05; 1.11]), validated at the protein level (p < 0.0001). Upregulated KCNK1 mRNA exhibited highly distinguishing ability between BC and control samples (AUC = 0.82 [0.78-0.85]). Further, scRNA-seq analysis revealed that KCNK1 expression was predominantly clustered in BC epithelial cells and tended to increase with cellular differentiation. BC epithelial cells were involved in cellular communication mainly through the MK signalling pathway. Secondly, the KCNK1 transcription start site (TSS) showed promoter-enhancer interactions in three-dimensional space, while being transcriptionally regulated by GRHL2 and FOXA1. Most of the KCNK1 HECEGs were enriched in cell cycle-related signalling pathways. KCNK1 was mainly involved in cellular metabolism-related pathways and regulated cell membrane potassium channel activity. KCNK1 expression was associated with the level of infiltration of various immune cells. Immunotherapy and chemotherapy (docetaxel, paclitaxel and vinblastine) were more effective in BC patients in the high KCNK1 expression group. KCNK1 expression correlated with age, pathology grade and pathologic_M in BC patients. CONCLUSIONS: KCNK1 was significantly overexpressed in BC. A complex and sophisticated three-dimensional spatial transcriptional regulatory network existed in the KCNK1 TSS and promoted the upregulated of KCNK1 expression. The high expression of KCNK1 might be involved in the cell cycle, cellular metabolism, and tumour microenvironment through the regulation of potassium channels, and ultimately contributed to the deterioration of BC.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Canales de Potasio de Dominio Poro en Tándem , Neoplasias de la Vejiga Urinaria , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Simulación del Acoplamiento Molecular , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Transducción de Señal , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...