Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
1.
J Clin Invest ; 131(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34351870

RESUMEN

Dementia resulting from small vessel diseases (SVDs) of the brain is an emerging epidemic for which there is no treatment. Hypertension is the major risk factor for SVDs, but how hypertension damages the brain microcirculation is unclear. Here, we show that chronic hypertension in a mouse model progressively disrupts on-demand delivery of blood to metabolically active areas of the brain (functional hyperemia) through diminished activity of the capillary endothelial cell inward-rectifier potassium channel, Kir2.1. Despite similar efficacy in reducing blood pressure, amlodipine, a voltage-dependent calcium-channel blocker, prevented hypertension-related damage to functional hyperemia whereas losartan, an angiotensin II type 1 receptor blocker, did not. We attribute this drug class effect to losartan-induced aldosterone breakthrough, a phenomenon triggered by pharmacological interruption of the renin-angiotensin pathway leading to elevated plasma aldosterone levels. This hypothesis is supported by the finding that combining losartan with the aldosterone receptor antagonist eplerenone prevented the hypertension-related decline in functional hyperemia. Collectively, these data suggest Kir2.1 as a possible therapeutic target in vascular dementia and indicate that concurrent mineralocorticoid aldosterone receptor blockade may aid in protecting against late-life cognitive decline in hypertensive patients treated with angiotensin II type 1 receptor blockers.


Asunto(s)
Antihipertensivos/uso terapéutico , Enfermedades de los Pequeños Vasos Cerebrales/tratamiento farmacológico , Enfermedades de los Pequeños Vasos Cerebrales/etiología , Hiperemia/tratamiento farmacológico , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Amlodipino/uso terapéutico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/administración & dosificación , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Animales , Antihipertensivos/administración & dosificación , Enfermedades de los Pequeños Vasos Cerebrales/fisiopatología , Circulación Cerebrovascular/efectos de los fármacos , Circulación Cerebrovascular/fisiología , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/etiología , Demencia Vascular/fisiopatología , Modelos Animales de Enfermedad , Quimioterapia Combinada , Eplerenona/administración & dosificación , Eplerenona/uso terapéutico , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Hiperemia/fisiopatología , Losartán/administración & dosificación , Losartán/uso terapéutico , Masculino , Ratones , Microvasos/efectos de los fármacos , Microvasos/fisiopatología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/fisiología , Sistema Renina-Angiotensina/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología
2.
Acta Pharm ; 71(2): 317-324, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33151169

RESUMEN

Terfenadine is a second-generation H1-antihistamine that despite potentially can produce severe side effects it has recently gained attention due to its anticancer properties. Lately, the subfamily 2 of inward rectifier potassium channels (Kir2) has been implicated in the progression of some tumoral processes. Hence, we characterized the effects of terfenadine on Kir2.x channels expressed in HEK-293 cells. Terfenadine inhibited Kir2.3 channels with a strikingly greater potency (IC50 = 1.06 ± 0.11 µmol L-1) compared to Kir2.1 channels (IC50 = 27.8 ± 4.8 µmol L-1). The Kir2.3(I213L) mutant, possessing a larger affinity for phosphatidylinositol 4,5-bisphosphate (PIP2) than the wild-type Kir2.3, was less sensitive to terfenadine inhibition (IC50 = 13.0 ± 2.9 µmol L-1). Additionally, the PIP2 intracellular application had largely reduced the inhibition of Kir2.1 channels by terfenadine. Our data support that Kir2.x channels are targets of terfena-dine by affecting their interaction with PIP2, which could be regarded as a mechanism of the antitumor properties of terfenadine.


Asunto(s)
Antagonistas de los Receptores Histamínicos H1 no Sedantes/farmacología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Terfenadina/farmacología , Células HEK293 , Antagonistas de los Receptores Histamínicos H1 no Sedantes/administración & dosificación , Humanos , Concentración 50 Inhibidora , Canales de Potasio de Rectificación Interna/metabolismo , Terfenadina/administración & dosificación
3.
J Cardiovasc Pharmacol ; 77(3): 267-279, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33229908

RESUMEN

ABSTRACT: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are supposed to be a good human-based model, with virtually unlimited cell source, for studies on mechanisms underlying cardiac development and cardiac diseases, and for identification of drug targets. However, a major drawback of hPSC-CMs as a model system, especially for electrophysiological studies, is their depolarized state and associated spontaneous electrical activity. Various approaches are used to overcome this drawback, including the injection of "synthetic" inward rectifier potassium current (IK1), which is computed in real time, based on the recorded membrane potential ("dynamic clamp"). Such injection of an IK1-like current results in quiescent hPSC-CMs with a nondepolarized resting potential that show "adult-like" action potentials on stimulation, with functional availability of the most important ion channels involved in cardiac electrophysiology. These days, dynamic clamp has become a widely appreciated electrophysiological tool. However, setting up a dynamic clamp system can still be laborious and difficult, both because of the required hardware and the implementation of the dedicated software. In the present review, we first summarize the potential mechanisms underlying the depolarized state of hPSC-CMs and the functional consequences of this depolarized state. Next, we explain how an existing manual patch clamp setup can be extended with dynamic clamp. Finally, we shortly validate the extended setup with atrial-like and ventricular-like hPSC-CMs. We feel that dynamic clamp is a highly valuable tool in the field of cellular electrophysiological studies on hPSC-CMs and hope that our directions for setting up such dynamic clamp system may prove helpful.


Asunto(s)
Potenciales de Acción , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Células Madre Pluripotentes/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Potasio/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Diferenciación Celular , Humanos , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/genética
4.
J Neuroendocrinol ; 32(11): e12881, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32803906

RESUMEN

The secretion of prolactin from the pituitary is negatively controlled by tuberoinfundibular dopamine (TIDA) neurones. The electrical properties of TIDA cells have recently been identified as a modulatory target of neurotransmitters and hormones in the lactotrophic axis. The role of the GABAB receptor in this control has received little attention, yet is of particular interest because it may act as a TIDA neurone autoreceptor. Here, this issue was explored in a spontaneously active rat TIDA in vitro slice preparation using whole-cell recordings. Application of the GABAB receptor agonist, baclofen, dose-dependently slowed down or abolished the network oscillations typical of this preparation. Pharmacological manipulations identify the underlying mechanism as an outward current mediated by G-protein-coupled inwardly rectifying K+ -like channels. In addition to this postsynaptic modulation, we describe a presynaptic modulation where GABAB receptors restrain the release of glutamate and GABA onto TIDA neurones. Our data identify both pre- and postsynaptic modulation of TIDA neurones by GABAB receptors that may play a role in the neuronal network control of pituitary prolactin secretion and lactation.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Células Neuroendocrinas/metabolismo , Receptores de GABA-B/metabolismo , Receptores Presinapticos/metabolismo , Sinapsis/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Baclofeno/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fenómenos Electrofisiológicos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/efectos de los fármacos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Agonistas del GABA/farmacología , Masculino , Células Neuroendocrinas/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/efectos de los fármacos , Receptores Presinapticos/efectos de los fármacos , Sinapsis/efectos de los fármacos
5.
J Neurophysiol ; 124(3): 740-749, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32727273

RESUMEN

All inhalation anesthetics used clinically including isoflurane can suppress breathing; since this unwanted side effect can persist during the postoperative period and complicate patient recovery, there is a need to better understand how isoflurane affects cellular and molecular elements of respiratory control. Considering that astrocytes in a brainstem region known as the retrotrapezoid nucleus (RTN) contribute to the regulation of breathing in response to changes in CO2/H+ (i.e., function as respiratory chemoreceptors), and astrocytes in other brain regions are highly sensitive to isoflurane, we wanted to determine whether and how RTN astrocytes respond to isoflurane. We found that RTN astrocytes in slices from neonatal rat pups (7-12 days postnatal) respond to clinically relevant levels of isoflurane by inhibition of a CO2/H+-sensitive Kir4.1/5.1-like conductance [50% effective concentration (EC50) = 0.8 mM or ~1.7%]. We went on to confirm that similar levels of isoflurane (EC50 = 0.53 mM or 1.1%) inhibit recombinant Kir4.1/5.1 channels but not homomeric Kir4.1 channels expressed in HEK293 cells. We also found that exposure to CO2/H+ occluded subsequent effects of isoflurane on both native and recombinant Kir4.1/5.1 currents. These results identify Kir4.1/5.1 channels in astrocytes as novel targets of isoflurane. These results suggest astrocyte Kir4.1/5.1 channels contribute to certain aspects of general anesthesia including altered respiratory control.NEW & NOTEWORTHY An unwanted side effect of isoflurane anesthesia is suppression of breathing. Despite this clinical significance, effects of isoflurane on cellular and molecular elements of respiratory control are not well understood. Here, we show that isoflurane inhibits heteromeric Kir4.1/5.1 channels in a mammalian expression system and a Kir4.1/5.1-like conductance in astrocytes in a brainstem respiratory center. These results identify astrocyte Kir4.1/5.1 channels as novel targets of isoflurane and potential substrates for altered respiratory control during isoflurane anesthesia.


Asunto(s)
Anestésicos por Inhalación/farmacología , Astrocitos/efectos de los fármacos , Tronco Encefálico/efectos de los fármacos , Células Quimiorreceptoras/efectos de los fármacos , Isoflurano/farmacología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Fenómenos Fisiológicos Respiratorios/efectos de los fármacos , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Ratas , Proteínas Recombinantes , Canal Kir5.1
6.
Toxicol Lett ; 332: 164-170, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32659473

RESUMEN

Manganese (Mn) is an environmental pollutant having a toxic effect on Parkinson's disease, with significant damage seen in the neurons of basal ganglia. Hence, Mn pollution is a public health concern. A Sprague-Dawley rat model was used to determine the damage to basal nuclei, and the effect of Mn intake was detected using the Morris water maze test and transmission electron microscopy. The SH-SY5Y cell line was exposed to Mn, and downstream signaling was assessed to determine the mechanism of toxicity. Mn exposure injured neurons, repressing GABAAR receptors and inducing GABABR receptors. The synergistic effect of the GABABR receptor and Kir6.1-SUR1 or Kir6.2-SUR1 was found to be one of the potential factors for the secretion of α-synuclein. The accumulation of α-synuclein regulated downstream factors calmodulin (CAM) cAMP response element-binding protein (CREB), thereby impairing learning and memory. Other genes downstream of CREB, rather than the feedback regulation of CREB, and brain-derived neurotrophic factor might also be involved.


Asunto(s)
Canales KATP/efectos de los fármacos , Intoxicación por Manganeso/metabolismo , Receptores de GABA/efectos de los fármacos , alfa-Sinucleína/metabolismo , Animales , Ganglios Basales/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Masculino , Intoxicación por Manganeso/psicología , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/psicología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-B/efectos de los fármacos
7.
Biomed Res Int ; 2020: 4370832, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32461988

RESUMEN

Platelet-derived growth factor-BB (PDGF-BB) can induce the proliferation, migration, and phenotypic modulation of vascular smooth muscle cells (VSMCs). We used patch clamp methods to study the effects of PDGF-BB on inward rectifier K+ channel 2.1 (Kir2.1) channels in rat thoracic aorta VSMCs (RASMCs). PDGF-BB (25 ng/mL) increased Kir2.x currents (-11.81 ± 2.47 pA/pF, P < 0.05 vs. CON, n = 10). Ba2+(50 µM) decreased Kir2.x currents (-2.13 ± 0.23 pA/pF, P < 0.05 vs. CON, n = 10), which were promoted by PDGF-BB (-6.98 ± 1.03 pA/pF). PDGF-BB specifically activates Kir2.1 but not Kir2.2 and Kir2.3 channels in HEK-293 cells. The PDGF-BB-induced stimulation of Kir2.1 currents was blocked by the PDGF-BB receptor ß (PDGF-BBRß) inhibitor AG1295 and was not affected by the PDGF-BBRα inhibitor AG1296. The PDGF-BB-induced stimulation of Kir2.1 currents was blocked by the protein kinase A inhibitor Rp-8-CPT-cAMPs; however, the antagonist of protein kinase B (GSK690693) had marginal effects on current activity. The PDGF-BB-induced stimulation of Kir2.1 currents was enhanced by forskolin, an adenylyl cyclase (AC) activator, and was blocked by the AC inhibitor SQ22536. We conclude that PDGF-BB increases Kir2.1 currents via PDGF-BBRß through activation of cAMP-PKA signaling in RASMCs.


Asunto(s)
Becaplermina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Músculo Liso Vascular/citología , Canales de Potasio de Rectificación Interna , Animales , Aorta Torácica/citología , Células Cultivadas , Colforsina/farmacología , Células HEK293 , Humanos , Masculino , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
8.
Nat Neurosci ; 22(7): 1061-1065, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209378

RESUMEN

A key assumption of optogenetics is that light only affects opsin-expressing neurons. However, illumination invariably heats tissue, and many physiological processes are temperature-sensitive. Commonly used illumination protocols increased the temperature by 0.2-2 °C and suppressed spiking in multiple brain regions. In the striatum, light delivery activated an inwardly rectifying potassium conductance and biased rotational behavior. Thus, careful consideration of light-delivery parameters is required, as even modest intracranial heating can confound interpretation of optogenetic experiments.


Asunto(s)
Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Temperatura , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/efectos de la radiación , Animales , Compuestos de Bario/farmacología , Corteza Cerebral/citología , Cloruros/farmacología , Cuerpo Estriado/citología , Hipocampo/citología , Calor , Transporte Iónico/efectos de los fármacos , Transporte Iónico/efectos de la radiación , Luz , Ratones , Actividad Motora/efectos de la radiación , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Optogenética/métodos , Técnicas de Placa-Clamp , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/efectos de la radiación , Proyectos de Investigación
9.
Life Sci ; 221: 233-240, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771310

RESUMEN

AIMS: Luteolin has been shown to be beneficial to cardiovascular tissues and organs. We aimed to study its vasospasmolytic effects against various vasoconstrictors in the isolated rat coronary arteries (RCAs) and its electrophysiological effects on K+ currents via voltage-gated potassium (Kv) channels and inward rectifier potassium (Kir) channels in freshly isolated rat coronary arterial smooth muscle cells (RCASMCs). MAIN METHODS: The vascular tone of the endothelium-denuded RCAs was recorded by a wire myograph. Kv currents and Kir currents in RCASMCs were assessed using whole-cell patch clamp. KEY FINDINGS: Preincubation with luteolin depressed the contractions elicited by KCl, thromboxane A2 analog U46619, vasopressin, Kir blocker BaCl2, Kv blocker 4-aminopyridine and elevation of extracellular calcium ([Ca2+]o) in high K+ depolarizing solution. Instant application of luteolin produced concentration-dependent relaxations in the endothelium-denuded RCAs precontracted with KCl or U46619. Both 4-aminopyridine and BaCl2 attenuated luteolin-induced relaxation in U46619-precontracted RCAs, while neither nitric oxide synthetase inhibitor NG-nitro-L-arginine methyl ester nor cyclooxygenase inhibitor indomethacin affected the relaxation. Luteolin augmented both Kv currents and Kir currents in RCASMCs and the augmentations were antagonized by 4-aminopyridine and BaCl2, respectively. SIGNIFICANCE: The present results demonstrated that luteolin antagonizes various vasoconstrictors in RCAs and augments both Kv currents and Kir currents in RCASMCs, suggesting that the direct action of luteolin on Kv channels and Kir channels is contributory to its vasospasmolytic effect. These findings indicate that luteolin may be a promising food additive with the aim of preventing coronary arterial spasm.


Asunto(s)
Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Rigidez Vascular/efectos de los fármacos , Animales , Calcio , Bloqueadores de los Canales de Calcio , Vasos Coronarios/efectos de los fármacos , Luteolina/farmacología , Masculino , Células Musculares , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/fisiología , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/metabolismo , Ratas , Ratas Wistar , Vasoconstricción , Vasodilatación
10.
Am J Physiol Heart Circ Physiol ; 316(4): H794-H800, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30681365

RESUMEN

In the rodent cerebral circulation, inward rectifying K+ (KIR) channels set resting tone and the distance over which electrical phenomena spread along the arterial wall. The present study sought to translate these observations into human cerebral arteries obtained from resected brain tissue. Computational modeling and a conduction assay first defined the impact of KIR channels on electrical communication; patch-clamp electrophysiology, quantitative PCR, and immunohistochemistry then characterized KIR2.x channel expression/activity. In keeping with rodent observations, computer modeling highlighted that KIR blockade should constrict cerebral arteries and attenuate electrical communication if functionally expressed. Surprisingly, Ba2+ (a KIR channel inhibitor) had no effect on human cerebral arterial tone or intercellular conduction. In alignment with these observations, immunohistochemistry and patch-clamp electrophysiology revealed minimal KIR channel expression/activity in both smooth muscle and endothelial cells. This absence may be reflective of chronic stress as dysphormic neurons, leukocyte infiltrate, and glial fibrillary acidic protein expression was notable in the epileptic cortex. In closing, KIR2.x channel expression is limited in human cerebral arteries from patients with epilepsy and thus has little impact on resting tone or the spread of vasomotor responses. NEW & NOTEWORTHY KIR2.x channels are expressed in rodent cerebral arterial smooth muscle and endothelial cells. As they are critical to setting membrane potential and the distance signals conduct, we sought to translate this work into humans. Surprisingly, KIR2.x channel activity/expression was limited in human cerebral arteries, a paucity tied to chronic brain stress in the epileptic cortex. Without substantive expression, KIR2.x channels were unable to govern arterial tone or conduction.


Asunto(s)
Arterias Cerebrales/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Adulto , Bario/farmacología , Comunicación Celular , Arterias Cerebrales/efectos de los fármacos , Simulación por Computador , Fenómenos Electrofisiológicos/fisiología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Epilepsia/fisiopatología , Femenino , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Tono Muscular/efectos de los fármacos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Adulto Joven
11.
J Neurosci ; 38(19): 4505-4520, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29650696

RESUMEN

Neuropeptide Y (NPY) expression is tightly linked with the development of stress resilience in rodents and humans. Local NPY injections targeting the basolateral amygdala (BLA) produce long-term behavioral stress resilience in male rats via an unknown mechanism. Previously, we showed that activation of NPY Y1 receptors hyperpolarizes BLA principal neurons (PNs) through inhibition of the hyperpolarization-activated, depolarizing H-current, Ih The present studies tested whether NPY treatment induces stress resilience by modulating Ih NPY (10 pmol) was delivered daily for 5 d bilaterally into the BLA to induce resilience; thereafter, the electrophysiological properties of PNs and the expression of Ih in the BLA were characterized. As reported previously, increases in social interaction (SI) times persisted weeks after completion of NPY administration. In vitro intracellular recordings showed that repeated intra-BLA NPY injections resulted in hyperpolarization of BLA PNs at 2 weeks (2W) and 4 weeks (4W) after NPY treatment. At 2W, spontaneous IPSC frequencies were increased, whereas at 4W, resting Ih was markedly reduced and accompanied by decreased levels of HCN1 mRNA and protein expression in BLA. Knock-down of HCN1 channels in the BLA with targeted delivery of lentivirus containing HCN1-shRNA increased SI beginning 2W after injection and induced stress resilience. NPY treatment induced sequential, complementary changes in the inputs to BLA PNs and their postsynaptic properties that reduce excitability, a mechanism that contributes to less anxious behavior. Furthermore, HCN1 knock-down mimicked the increases in SI and stress resilience observed with NPY, indicating the importance of Ih in stress-related behavior.SIGNIFICANCE STATEMENT Resilience improves mental health outcomes in response to adverse situations. Neuropeptide Y (NPY) is associated with decreased stress responses and the expression of resilience in rodents and humans. Single or repeated injections of NPY into the basolateral amygdala (BLA) buffer negative behavioral effects of stress and induce resilience in rats, respectively. Here, we demonstrate that repeated administration of NPY into the BLA unfolds several cellular mechanisms that decrease the activity of pyramidal output neurons. One key mechanism is a reduction in levels of the excitatory ion channel HCN1. Moreover, shRNA knock-down of HCN1 expression in BLA recapitulates some of the actions of NPY and causes potent resilience to stress, indicating that this channel may be a possible target for therapy.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuropéptido Y/farmacología , Canales de Potasio/efectos de los fármacos , Resiliencia Psicológica/efectos de los fármacos , Amígdala del Cerebelo/citología , Animales , Ansiedad/genética , Ansiedad/psicología , Fenómenos Electrofisiológicos/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Relaciones Interpersonales , Masculino , Microinyecciones , Neuropéptido Y/administración & dosificación , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
12.
Medicine (Baltimore) ; 97(4): e9653, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29369181

RESUMEN

Dexamethasone (DEX) could induce low birth weight of infant, and low birth weight has close associations with glucocorticoid levels, insulin resistance, hypertension, and metabolic syndrome in adulthood. This study was designed to reveal the action mechanisms of DEX on the birth weight of infant.Using quantitative real-time polymerase chain reaction (qRT-PCR), trophoblast cells of human placenta were identified and the optimum treatment time of DEX were determined. Trophoblast cells were treated by DEX (DEX group) or ethanol (control group) (each group had 3 samples), and then were performed with RNA-sequencing. Afterward, the differentially expressed genes (DEGs) were identified by R package, and their potential functions were successively enriched using DAVID database and Enrichr method. Followed by protein-protein interaction (PPI) network was constructed using Cytoscape software. Using Enrichr method and TargetScan software, the transcription factors (TFs) and micorRNAs (miRNAs) targeted the DEGs separately were predicted. Based on MsigDB database, gene set enrichment analysis (GSEA) was performed.There were 391 DEGs screened from the DEX group. Upregulated SRR and potassium voltage-gated channel subfamily J member 4 (KCNJ4) and downregulated GALNT1 separately were enriched in PDZ (an acronym of PSD-95, Dlg, and ZO-1) domain binding and Mucin type O-glycan biosynthesis. In the PPI network, CDK2 and CDK4 had higher degrees. TFs ATF2 and E2F4 and miRNA miR-16 were predicted for the DEGs. Moreover, qRT-PCR analysis confirmed that SRR and KCNJ4 were significantly upregulated.These genes might affect the roles of DEX in the birth weight of infant, and might be promising therapeutic targets for reducing the side effects of DEX.


Asunto(s)
Peso al Nacer/genética , Dexametasona/efectos adversos , Glucocorticoides/efectos adversos , Análisis de Secuencia de ARN , Trofoblastos/efectos de los fármacos , Factor de Transcripción Activador 2/efectos de los fármacos , Peso al Nacer/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/efectos de los fármacos , Factor de Transcripción E2F4/efectos de los fármacos , Femenino , Humanos , Recién Nacido , MicroARNs/efectos de los fármacos , N-Acetilgalactosaminiltransferasas/efectos de los fármacos , Placenta/citología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa , Polipéptido N-Acetilgalactosaminiltransferasa
13.
Mol Psychiatry ; 23(2): 211-221, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-27777420

RESUMEN

Here, we report a novel target of the drug memantine, ATP-sensitive K+ (KATP) channels, potentially relevant to memory improvement. We confirmed that memantine antagonizes memory impairment in Alzheimer's model APP23 mice. Memantine increased CaMKII activity in the APP23 mouse hippocampus, and memantine-induced enhancement of hippocampal long-term potentiation (LTP) and CaMKII activity was totally abolished by treatment with pinacidil, a specific opener of KATP channels. Memantine also inhibited Kir6.1 and Kir6.2 KATP channels and elevated intracellular Ca2+ concentrations in neuro2A cells overexpressing Kir6.1 or Kir6.2. Kir6.2 was preferentially expressed at postsynaptic regions of hippocampal neurons, whereas Kir6.1 was predominant in dendrites and cell bodies of pyramidal neurons. Finally, we confirmed that Kir6.2 mutant mice exhibit severe memory deficits and impaired hippocampal LTP, impairments that cannot be rescued by memantine administration. Altogether, our studies show that memantine modulates Kir6.2 activity, and that the Kir6.2 channel is a novel target for therapeutics to improve memory impairment in Alzheimer disease patients.


Asunto(s)
Memantina/farmacología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Enfermedad de Alzheimer/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/efectos de los fármacos , Dendritas , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Memantina/metabolismo , Memoria/efectos de los fármacos , Memoria/fisiología , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Ratones Transgénicos , Neuronas , Fosforilación , Canales de Potasio/efectos de los fármacos , Células Piramidales , Sinapsis , Lóbulo Temporal
14.
J Neurochem ; 144(2): 152-161, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29086421

RESUMEN

Beta-adrenoceptors (ß2 -ARs) have beneficial effects on prefrontal cortex (PFC) working memory, however, the cellular and molecular mechanisms are unclear yet. In this study, we probed the effect of ß2 -AR-selective agonist clenbuterol (Clen) on synaptic transmission in layer 5/6 pyramidal neurons of PFC. Bath application of Clen reduced spontaneous IPSC (sIPSC) frequency without effects on sEPSCs. Clen did not alter the frequency and amplitude of miniature IPSCs (mIPSCs), but exerted heterogeneous effects on evoked IPSCs (eIPSCs) recorded from PFC layer 5/6 pyramidal neurons. Clen decreased the firing rate of action potentials of fast-spiking GABAergic interneurons. Clen-induced hyperpolarization of fast-spiking GABAergic interneurons required potentiation of an inward rectifier K+ channels. Clen-induced hyperpolarization of fast-spiking interneurons was dependent on Gs protein rather than cAMP and protein kinase A. Our findings demonstrate that Clen (10 µM) enhances inward rectifier K+ channels via Gs protein to cause membrane hyperpolarization of fast-spiking GABAergic interneurons resulting in reduction of action potentials firing rate to reduce GABAergic transmission.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Agonistas Adrenérgicos beta/farmacología , Clenbuterol/farmacología , Interneuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
15.
Brain Res ; 1663: 87-94, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28288868

RESUMEN

Inwardly rectifying potassium (Kir) channels are expressed in many cell types and contribute to a wide range of physiological processes. Particularly, Kir4.1 channels are involved in the astroglial spatial potassium buffering. In this work, we examined the effects of the cationic amphiphilic drug quinacrine on Kir4.1 channels heterologously expressed in HEK293 cells, employing the patch clamp technique. Quinacrine inhibited the currents of Kir4.1 channels in a concentration and voltage dependent manner. In inside-out patches, quinacrine inhibited Kir4.1 channels with an IC50 value of 1.8±0.3µM and with extremely slow blocking and unblocking kinetics. Molecular modeling combined with mutagenesis studies suggested that quinacrine blocks Kir4.1 by plugging the central cavity of the channels, stabilized by the residues E158 and T128. Overall, this study shows that quinacrine blocks Kir4.1 channels, which would be expected to impact the potassium transport in several tissues.


Asunto(s)
Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/metabolismo , Quinacrina/farmacología , Animales , Astrocitos/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico/fisiología , Técnicas de Placa-Clamp/métodos , Potasio/metabolismo , Canales de Potasio/metabolismo , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Quinacrina/metabolismo , Ratas
16.
Europace ; 19(3): 346-355, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27302393
17.
Acta Biochim Biophys Sin (Shanghai) ; 48(8): 687-95, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27486024

RESUMEN

Activation of the inward rectifier potassium current (IK1) channel has been reported to be associated with suppression of ventricular arrhythmias. In this study, we tested the hypothesis that opening of the IK1 channel with zacopride (ZAC) was involved in the modulation of tissue repair after myocardial infarction. Sprague-Dawley rats were subject to coronary artery ligation and ZAC was administered intraperitoneally (15 µg/kg/day) for 28 days. Compared with the ischemia group, treatment with ZAC significantly reduced the ratio of heart/body weight and the cross-sectional area of cardiomyocytes, suggesting less cardiac hypertrophy. ZAC reduced the accumulation of collagen types I and III, accompanied with decrease of collagen area, which were associated with a reduction of collagen deposition in the fibrotic myocardium. Echocardiography showed improved cardiac function, evidenced by the reduced left ventricular end-diastolic dimension and left ventricular end-systolic dimension, and the increased ejection fraction and fractional shortening in ZAC-treated animals (all P < 0.05 vs. ischemia group). In coincidence with these changes, ZAC up-regulated the protein level of the IK1 channel and down-regulated the phosphorylation of mammalian target of rapamycin (mTOR) and 70-kDa ribosomal protein S6 (p70S6) kinase. Administration of chloroquine alone, an IK1 channel antagonist, had no effect on all the parameters measured, but significantly blocked the beneficial effects of ZAC on cardiac repair. In conclusion, opening of the IK1 channel with ZAC inhibits maladaptive tissue repair and improves cardiac function, potentially mediated by the inhibition of ischemia-activated mTOR-p70S6 signaling pathway via the IK1 channel. So the development of pharmacological agents specifically targeting the activation of the IK1 channel may protect the heart against myocardial ischemia-induced cardiac dysfunction.


Asunto(s)
Infarto del Miocardio/fisiopatología , Canales de Potasio de Rectificación Interna/fisiología , Cicatrización de Heridas , Animales , Benzamidas/farmacología , Peso Corporal , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Colágeno/metabolismo , Hemodinámica , Masculino , Infarto del Miocardio/metabolismo , Tamaño de los Órganos , Fosforilación , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
18.
PLoS One ; 11(5): e0156181, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27214373

RESUMEN

BACKGROUND: Cardiac inwardly rectifying Kir current (IK1) mediates terminal repolarisation and is critical for the stabilization of the diastolic membrane potential. Its predominant molecular basis in mammalian ventricle is heterotetrameric assembly of Kir2.1 and Kir2.2 channel subunits. It has been shown that PKC inhibition of IK1 promotes focal ventricular ectopy. However, the underlying molecular mechanism has not been fully elucidated to date. METHODS AND RESULTS: In the Xenopus oocyte expression system, we observed a pronounced PKC-induced inhibition of Kir2.2 but not Kir2.1 currents. The PKC regulation of Kir2.2 could be reproduced by an activator of conventional PKC isoforms and antagonized by pharmacological inhibition of PKCß. In isolated ventricular cardiomyocytes (rat, mouse), pharmacological activation of conventional PKC isoforms induced a pronounced inhibition of IK1. The PKC effect in rat ventricular cardiomyocytes was markedly attenuated following co-application of a small molecule inhibitor of PKCß. Underlining the critical role of PKCß, the PKC-induced inhibition of IK1 was absent in homozygous PKCß knockout-mice. After heterologous expression of Kir2.1-Kir2.2 concatemers in Xenopus oocytes, heteromeric Kir2.1/Kir2.2 currents were also inhibited following activation of PKC. CONCLUSION: We conclude that inhibition of cardiac IK1 by PKC critically depends on the PKCß isoform and Kir2.2 subunits. This regulation represents a potential novel target for the antiarrhythmic therapy of focal ventricular arrhythmias.


Asunto(s)
Potenciales de la Membrana/efectos de los fármacos , Miocitos Cardíacos/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Proteína Quinasa C/fisiología , Animales , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Femenino , Potenciales de la Membrana/fisiología , Ratones , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Xenopus laevis
19.
J Vet Med Sci ; 78(7): 1153-9, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27086859

RESUMEN

ATP-sensitive potassium (KATP) channels are well characterized in cardiac, pancreatic and many other muscle cells. In the present study, functional expression of the KATP channel was examined in non-pregnant murine longitudinal myometrium. Isometric contraction measurements and Western blot were used. KATP channel openers (KCOs), such as pinacidil, cromakalim, diazoxide and nicorandil, inhibited spontaneous myometrial contractions in a reversible and glibenclamide-sensitive manner. KCOs inhibited oxytocin (OXT)- and prostaglandin F2α (PGF2α)-induced phasic contractions in a glibenclamide-sensitive manner. SUR2B and Kir6.2 were detected by Western blot, whereas SUR1, SUR2A and Kir6.1 were not. These results show that pinacidl, cromakalim, diazoxide and nicorandil-sensitive KATP channels exist in murine myometrium, which are composed of SUR2B and Kir6.2. Based on the modulatory effects of the KATP channel on spontaneous contraction, OXT- and PGF2α-induced contractions, KATP channels seem to play an essential role in murine myometrial motility via activation of SUR2B and Kir6.2.


Asunto(s)
Canales KATP/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Sulfonilureas/metabolismo , Contracción Uterina , Adenosina Trifosfato/metabolismo , Animales , Dinoprost/antagonistas & inhibidores , Femenino , Técnicas In Vitro , Contracción Isométrica , Ratones Endogámicos ICR , Nicorandil/farmacología , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Contracción Uterina/efectos de los fármacos
20.
Am J Physiol Heart Circ Physiol ; 310(11): H1558-66, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27037371

RESUMEN

Myocardial ischemia remains the primary cause of morbidity and mortality in the United States. Ischemic preconditioning (IPC) is a powerful form of endogenous protection against myocardial infarction. We studied alterations in KATP channels surface density as a potential mechanism of the protection of IPC. Using cardiac-specific knockout of Kir6.2 subunits, we demonstrated an essential role for sarcolemmal KATP channels in the infarct-limiting effect of IPC in the mouse heart. With biochemical membrane fractionation, we demonstrated that sarcolemmal KATP channel subunits are distributed both to the sarcolemma and intracellular endosomal compartments. Global ischemia causes a loss of sarcolemmal KATP channel subunit distribution and internalization to endosomal compartments. Ischemia-induced internalization of KATP channels was prevented by CaMKII inhibition. KATP channel subcellular redistribution was also observed with immunohistochemistry. Ischemic preconditioning before the index ischemia reduced not only the infarct size but also prevented KATP channel internalization. Furthermore, not only did adenosine mimic IPC by preventing infarct size, but it also prevented ischemia-induced KATP channel internalization via a PKC-mediated pathway. We show that preventing endocytosis with dynasore reduced both KATP channel internalization and strongly mitigated infarct development. Our data demonstrate that plasticity of KATP channel surface expression must be considered as a potentially important mechanism of the protective effects of IPC and adenosine.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Sarcolema/metabolismo , Adenosina/farmacología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Endocitosis , Endosomas/metabolismo , Hidrazonas/farmacología , Preparación de Corazón Aislado , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/genética , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas , Sarcolema/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA